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Abstract
The construction of bi-frames is a fundamental problem in frame theory. Due to their
wide applications, the study of vector-valued frames and subspace frames has
interested many mathematicians in recent years. In this paper, we introduce the weak
Gabor bi-frame (WGBF) in vector-valued subspaces, characterize WGBFs on the time
domain, and present some examples.
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1 Introduction
The concept of frame was introduced by Duffin and Schaeffer in [1], which dealt with non-
harmonic Fourier series, and Gabor frames date back to [2]. Nowadays Gabor frames have
been widely applied in signal processing [3–6]. They have been studied quite extensively
on the whole space L2(R). Vector-valued frames were also called superframes, they were
introduced in [7] by Han and in [8, 9] by Balan in the context of signal multiplexing, which
means encoding several signals as a single one with the purpose of sharing a communica-
tion channel. In some structured cases with orthogonal windows known as superframes
it is possible to find a Nyquist rate defining a phase transition between super-Riesz se-
quences and superframes. This was done in [10, 11] for the Gabor case, and in [12] for the
wavelet case, following the constructions of vector-valued wavelet transforms [12–14]. In
applications, when signals belong to a subspace of L2(R,CL), one would like to perform a
Gabor analysis of the signals in the most efficient way, while still preserving all the features
of the observed data. That is why subspace Gabor analysis has interested many mathemati-
cians. The literature [10, 11, 15–34] has considered Gabor frames for L2(R,CL) and their
subspaces.

We denote by Z the set of integers, and by N the set of positive integers. Let H be a
separable Hilbert space, and {ei}i∈I be an at most countable sequence in H. The sequence
{ei}i∈I is called a frame (tight frame; Parseval frame) for H if there exist positive constants
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A and B such that

A‖f ‖2 ≤
∑

i∈I

∣∣〈f , ei〉
∣∣2 ≤ B‖f ‖2

for f ∈ H (A = B; A = B = 1); and it is called a Bessel sequence in H if the right-hand side
inequality holds. Let {ei}i∈I be a frame for H. A frame {ẽi}i∈I for H is called a dual of
{ei}i∈I if

f =
∑

i∈I
〈f , ẽi〉ei for f ∈H. (1)

By a simple argument, we see that (1) is equivalent to

f =
∑

i∈I
〈f , ei〉ẽi.

So, in this case, we also say ({ei}i∈I , {ẽi}i∈I ) is a pair of dual frames (bi-frame) for H. And
by a standard argument, ({ei}i∈I , {ẽi}i∈I ) is a bi-frame for H if and only if {ei}i∈I and {ẽi}i∈I
are Bessel sequences, and

〈f , g〉 =
∑

i∈I
〈f , ẽi〉〈ei, g〉 for f , g ∈H. (2)

Given L ∈ N and a, b > 0, let L2(R,CL) be the Hilbert space of vector-valued square inte-
grable functions endowed with the inner product

〈f , f̃〉 =
L∑

l=1

∫

R

fl(t)f̃l(t) dt

for f = (f1, f2, . . . , fL), f̃ = (f̃1, f̃2, . . . , f̃L) ∈ L2(R,CL). The modulation operator Emb and trans-
lation operator Tna on L2(R,CL) with m, n ∈ Z are defined by

Embf = (Embf1, Embf2, . . . , EmbfL) and Tnaf = (Tnaf1, Tnaf2, . . . , TnafL)

for f ∈ L2(R,CL), respectively, where

Embf (·) = e2π imb·f (·) and Tnaf (·) = f (· – na)

for f ∈ L2(R). Obviously, L2(R,CL) is the L-fold direct sum of L2(R). Throughout this pa-
per, fl denotes the lth component of f ∈ L2(R,CL), and G(g, a, b) denotes the Gabor system:

G(g, a, b) = {EmbTnag : m, n ∈ Z} (3)

for g ∈ L2(R,CL). A set S in R with positive measure is said to be aZ-periodic if S + an = S
for n ∈ Z. For such S, we denote by L2(S,CL) the closed subspace of L2(R,CL) of the form

L2(S,CL) =
{

f ∈ L2(
R,CL) : supp(f) ⊂ S

}
.
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For simplicity, we write L2(S) = L2(S,C1). As pointed out in [23], Gabor analysis on
L2(S,CL) with S being aZ-periodic might be suitable to treat periodic and intermittent
vector-valued signals.

Li and Jia in [30] introduced and characterized scalar-valued weak Gabor bi-frames
(WGBFs) under the setting of subspaces of L2(R). Tian and Li in [33] characterized Gabor
bi-frames on time domain in the context of vector-valued subspaces. This paper addresses
vector-valued subspace weak Gabor bi-frames under the following general setup:

General setup:
(i) L ∈N, a, b > 0;

(ii) S is an aZ-periodic subset of R.
We introduce the WGBF under the setting of vector-valued subspces, characterize WG-

BFs on the time domain, and also provide some examples of WGBFs. Theorem 3.1 in [30]
dealt with WGBFs in scalar-valued subspaces of L2(R). Our result is a nontrivial general-
ization of [30], Theorem 3.1. This is because the inner product has a more complicated
geometry in L2(R,CL) than in L2(R).

Section 2 states the main result and some related remarks. Section 3 focuses on some
lemmas, which is an auxiliary one. Section 4 is devoted to proving the main result. Some
examples are provided simultaneously. Finally, we give our conclusions.

2 Results and discussion
Definition 2.1 Let L, a, b and S be as in the general setup, and g, h ∈ L2(S,CL). We say
that

(
G(g, a, b),G(h, a, b)

)
(4)

is a weak Gabor bi-frame (WGBF) for L2(S,CL) if there exists a dense subsetM of L2(S,CL)
such that

〈f , f̃〉 =
∑

m,n∈Z
〈f , EmbTnag〉〈EmbTnah, f̃〉 for f , f̃ ∈M, (5)

where the series is absolutely convergent. To be specific, in this case, we say that (4) is a
weak Gabor bi-frame (WGBF) for L2(S,CL) related to M.

Remark 2.1 Definition 2.1 reduces to [30], Definition 1.1, if L = 1, where the authors dealt
with the WGBFs for L2(S). In Definition 2.1, if G(g, a, b) and G(h, a, b) are Bessel sequences
in L2(S,CL), then (4) is a Gabor bi-frame (GBF) for L2(S,CL) by a standard argument. So
WGBF generalizes GBF. In applications, sometimes we only need to consider a certain
class of signals (say the signals in M) which is dense in L2(S,CL). Mathematically, it is
roughly enough that (5) holds, no matter whether G(g, a, b) and G(h, a, b) are Bessel se-
quences. In this case, we can think

f =
∑

m,n∈Z
〈f , EmbTnag〉EmbTnah =

∑

m,n∈Z
〈f , EmbTnah〉EmbTnag for f ∈M.

Remark 2.2 If M is a linear subspace of L2(S,CL), Eq. (5) is equivalent to

‖f‖2 =
∑

m,n∈Z
〈f , EmbTnag〉〈EmbTnah, f〉 for f ∈M
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with the right-hand side series converging absolutely by the polarization identity of inner
products.

Define the set L∞
c (S,CL) as

{
f = (f1, f2, . . . , fL) : fl ∈ L∞(R),

fl is compactly supported, and supp(fl) ⊂ S for each 1 ≤ l ≤ L
}

.

Obviously, L∞
c (S,CL) is a dense subspace of L2(S,CL). The following theorem is our main

result, it characterizes WGBFs for L2(S,CL) related to L∞
c (S,CL) on the time domain.

Theorem 2.1 Let L ∈ N, a, b > 0, and S be an aZ-periodic subset of R. Suppose g, h ∈
L2(S,CL). Then (G(g, a, b),G(h, a, b)) is a WGBF for L2(S,CL) related to L∞

c (S,CL) if and
only if

∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na) = bδk,0δl,jχS(t) (6)

for k ∈ Z, 1 ≤ l, j ≤ L and a.e. t ∈ (0, a).

Remark 2.3 Theorem 2.1 generalizes [30], Theorem 3.1, which dealt with the scalar case.
It is a nontrivial generalization due to the complicated geometry of the inner product in
L2(S,CL). This can be seen from its proof in Sect. 4.

3 Some lemmas
This section is devoted to some lemmas which are used in the following section. We denote
by L∞(R,CL) the Hilbert space

L∞(
R,CL) =

{
f = (f1, f2, . . . , fL) : fl ∈ L∞(R) for each 1 ≤ l ≤ L

}

with the norm

‖f‖∞ = max
1≤l≤L

‖fl‖∞.

Lemma 3.1 Let L, b be as in the general setup, and g, h ∈ L2(R,CL). Suppose f , f̃ ∈
L2(R,CL) such that fl , f̃l satisfying

∑
k∈Z |fl(· – k

b )|2,
∑

k∈Z |f̃l(· – k
b )|2 ∈ L∞([0, 1

b )) for each
1 ≤ l ≤ L. Then

∑

m∈Z
〈f , Embg〉〈Embh, f̃〉

=
1
b

∑

1≤l,j≤L

∫

R

f̃j(t)hj(t)
∑

k∈Z
gl

(
t –

k
b

)
fl

(
t –

k
b

)
dt (7)

with the left-hand side series converging absolutely.
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Proof By the assumptions of f , f̃ , we see that
∑L

l=1
∑

k∈Z |fl(· – k
b )|2 ≤ M,

∑L
l=1

∑
k∈Z |f̃l(· –

k
b )|2 ≤ M for some 0 < M < ∞ and each 1 ≤ l ≤ L. Then

L∑

l=1

∑

k∈Z

∣∣∣∣fl

(
t –

k
b

)
gl

(
t –

k
b

)∣∣∣∣

≤
L∑

l=1

(∑

k∈Z

∣∣∣∣fl

(
t –

k
b

)∣∣∣∣
2) 1

2
(∑

k∈Z

∣∣∣∣gl

(
t –

k
b

)∣∣∣∣
2) 1

2

≤
( L∑

l=1

∑

k∈Z

∣∣∣∣fl

(
t –

k
b

)∣∣∣∣
2
) 1

2
( L∑

l=1

∑

k∈Z

∣∣∣∣gl

(
t –

k
b

)∣∣∣∣
2
) 1

2

≤ √
M

( L∑

l=1

∑

k∈Z

∣∣∣∣gl

(
t –

k
b

)∣∣∣∣
2
) 1

2

.

And thus

∫ 1
b

0

( L∑

l=1

∑

k∈Z

∣∣∣∣fl

(
t –

k
b

)
gl

(
t –

k
b

)∣∣∣∣

)2

dt

≤ M
∫ 1

b

0

L∑

l=1

∑

k∈Z

∣∣∣∣gl

(
t –

k
b

)∣∣∣∣
2

dt

≤ M‖g‖2

< ∞. (8)

Similarly,

∫ 1
b

0

( L∑

l=1

∑

k∈Z

∣∣∣∣f̃l

(
t –

k
b

)
hl

(
t –

k
b

)∣∣∣∣

)2

dt ≤ M‖h‖2 < ∞. (9)

By a simple calculation, we have

〈f , Embg〉 =
∫ 1

b

0

( L∑

l=1

∑

k∈Z
fl

(
t –

k
b

)
gl

(
t –

k
b

))
e–2π imbt dt,

〈Embh, f̃〉 =
∫ 1

b

0

( L∑

l=1

∑

k∈Z
f̃l

(
t –

k
b

)
hl

(
t –

k
b

))
e2π imbt dt,

for m ∈ Z. Again using (8) and (9), we see that the series
∑

m∈Z〈f , Embg〉〈Embh, f̃〉 converges
absolutely, and thus

∑

m∈Z
〈f , Embg〉〈Embh, f̃〉

=
1
b

∫ 1
b

0

( L∑

l=1

∑

k∈Z
fl

(
t –

k
b

)
gl

(
t –

k
b

))( L∑

j=1

∑

k∈Z
f̃j

(
t –

k
b

)
hj

(
t –

k
b

))
dt, (10)
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because of {√be2π imbt : m ∈ Z} being an orthonormal basis for L2([0, 1
b )). Write

J(t) =
L∑

l=1

∑

k∈Z
fl

(
t –

k
b

)
gl

(
t –

k
b

)
.

Then (10) is equivalent to

∑

m∈Z
〈f , Embg〉〈Embh, f̃〉 =

1
b

∫ 1
b

0

L∑

j=1

∑

k∈Z
f̃j

(
t –

k
b

)
hj

(
t –

k
b

)
J(t) dt.

Observing that

L∑

j=1

∑

k∈Z

∣∣∣∣f̃j

(
t –

k
b

)
hj

(
t –

k
b

)
J(t)

∣∣∣∣

≤
( L∑

j=1

∑

k∈Z

∣∣∣∣f̃j

(
t –

k
b

)
hj

(
t –

k
b

)∣∣∣∣

)( L∑

l=1

∑

k∈Z

∣∣∣∣fl

(
t –

k
b

)
gl

(
t –

k
b

)∣∣∣∣

)
∈ L1

([
0,

1
b

))

by (8) and (9), we have

∑

m∈Z
〈f , Embg〉〈Embh, f̃〉

=
1
b

L∑

j=1

∑

k∈Z

∫ 1
b

0
f̃j

(
t –

k
b

)
hj

(
t –

k
b

)
J(t) dt

=
1
b

L∑

j=1

∫

R

f̃j(t)hj(t)J(t) dt

by the Lebesgue dominated convergence theorem. It follows that

∑

m∈Z
〈f , Embg〉〈Embh, f̃〉

=
1
b

∑

1≤l,j≤L

∫

R

f̃j(t)hj(t)
∑

k∈Z
gl

(
t –

k
b

)
fl

(
t –

k
b

)
dt.

�

Lemma 3.2 Let L, a and b be as in the general setup, and g, h ∈ L2(R,CL). Then, for f , f̃ ∈
L∞

c (R,CL), we have

∑

m,n∈Z
〈f , EmbTnag〉〈EmbTnah, f̃〉

=
1
b

∑

1≤l,j≤L

∫

R

∑

k∈Z

(∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na)

)
fl

(
t –

k
b

)
f̃j(t) dt (11)

with the left-hand side series converging absolutely.
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Proof Fix f , f̃ ∈ L∞
c (R,CL). It is easy to check

∑L
l=1

∑
k∈Z |fl(·– k

b )|2,
∑L

l=1
∑

k∈Z |f̃l(·– k
b )|2 ∈

L∞([0, 1
b )). For an arbitrary n ∈ Z, replace g and h in Lemma 3.1 by Tnag and Tnah, respec-

tively. Then

∑

m∈Z
〈f , EmbTnag〉〈EmbTnah, f̃〉

=
1
b

∑

1≤l,j≤L

∫

R

∑

k∈Z
gl

(
t – na –

k
b

)
hj(t – na)fl

(
t –

k
b

)
f̃j(t) dt. (12)

Noting that G(f , a, b) is a Bessel sequence by [24], Proposition 6.2.2, and

∣∣〈f , EmbTnag〉∣∣ =
∣∣〈E–mbT–naf , g〉∣∣,

∣∣〈f̃ , EmbTnah〉∣∣ =
∣∣〈E–mbT–na f̃ , h〉∣∣,

we have {〈f , EmbTnag〉}m,n∈Z, {〈f̃ , EmbTnah〉}m,n∈Z ∈ l2(Z2), and thus the left-hand side series
of Eq. (11) is absolutely convergent. Hence,

∑

m,n∈Z
〈f , EmbTnag〉〈EmbTnah, f̃〉

=
∑

n∈Z

∑

m∈Z
〈f , EmbTnag〉〈EmbTnah, f̃〉

=
1
b

∑

1≤l,j≤L

∑

n∈Z

∫

R

∑

k∈Z
gl

(
t – na –

k
b

)
hj(t – na)fl

(
t –

k
b

)
f̃j(t) dt (13)

by (12). Assume that supp(fl), supp(f̃l) ⊂ [–Na, Na] for some N ∈ N and each 1 ≤ l ≤ L.
Then there exists P ∈N such that fl(t – k

b )f̃j(t) = 0 for |k| ≥ P and 1 ≤ l, j ≤ L. And thus

∫

R

∑

n∈Z

∑

k∈Z

∣∣∣∣gl

(
t – na –

k
b

)
hj(t – na)fl

(
t –

k
b

)
f̃j(t)

∣∣∣∣dt

=
∫ Na

–Na

∑

n∈Z

∑

|k|≤P

∣∣∣∣gl

(
t – na –

k
b

)
hj(t – na)fl

(
t –

k
b

)
f̃j(t)

∣∣∣∣dt

≤ ‖f‖∞‖f̃‖∞
∑

|k|≤P

∑

n∈Z

∫ Na

–Na

∣∣∣∣gl

(
t – na –

k
b

)
hj(t – na)

∣∣∣∣dt

= ‖f‖∞‖f̃‖∞
∑

|k|≤P

∑

n∈Z

N–1∑

j=–N

∫ a

0

∣∣∣∣gl

(
t – (n – j)a –

k
b

)
hj

(
t – (n – j)a

)∣∣∣∣dt

= ‖f‖∞‖f̃‖∞
∑

|k|≤P

2N
∑

n∈Z

∫ a

0

∣∣∣∣gl

(
t – na –

k
b

)
hj(t – na)

∣∣∣∣dt

= 2N‖f‖∞‖f̃‖∞
∑

|k|≤P

∫

R

∣∣∣∣gl

(
t –

k
b

)
hj(t)

∣∣∣∣dt

< ∞
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for 1 ≤ l, j ≤ L. Again using (13), we obtain

∑

m,n∈Z
〈f , EmbTnag〉〈EmbTnah, f̃〉

=
1
b

∑

1≤l,j≤L

∫

R

∑

k∈Z

(∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na)

)
fl

(
t –

k
b

)
f̃j(t) dt.

�

4 Proof of Theorem 2.1 and some examples
Proof of Theorem 2.1. Observe that L∞

c (S,CL) is a linear dense subspace of L2(S,CL). It
follows that (4) being a WGBF for L2(S,CL) related to L∞

c (S,CL) is equivalent to

〈f , f̃〉 =
1
b

∑

1≤l,j≤L

∫

R

∑

k∈Z

(∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na)

)
fl

(
t –

k
b

)
f̃j(t) dt (14)

for f , f̃ ∈ L∞
c (S,CL) by Definition 2.1 and Lemma 3.2.

The proof of sufficiency is obvious. Next we will prove the necessity. Since

∫ a

0

∑

n∈Z

∣∣∣∣gl

(
t – na –

k
b

)
hj(t – na)

∣∣∣∣dt

≤
∫ a

0

(∑

n∈Z

∣∣∣∣gl

(
t – na –

k
b

)∣∣∣∣
2) 1

2
(∑

n∈Z

∣∣hj(t – na)
∣∣2

) 1
2

dt

≤
(∫ a

0

∑

n∈Z

∣∣∣∣gl

(
t – na –

k
b

)∣∣∣∣
2

dt
) 1

2
(∫ a

0

∑

n∈Z

∣∣hj(t – na)
∣∣2 dt

) 1
2

= ‖gl‖L2(R)‖hj‖L2(R) < ∞,

almost all points in (0, a) are Lebesgue points of

∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na) for 1 ≤ l, j ≤ L, k ∈ Z.

Fix 1 ≤ l0, j0 ≤ L, k0 ∈ Z and such a Lebesgue point t0 ∈ (0, a). Take 0 < ε < 1
2b such that

Bε = (t0 – ε, t0 + ε) ⊂ (0, a), and define f , f̃ in (14) by

f = (0, . . . , 0, fl0 , 0, . . . , 0), fl0

(
t –

k0

b

)
=

χBε (t)χS(t)√
2ε

,

f̃ = (0, . . . , 0, f̃j0 , 0, . . . , 0), f̃j0 (t) =
χBε (t)χS(t)√

2ε
.

Then

∫

R

χBε (t)χS(t)√
2ε

χBε (t + k0
b )χS(t + k0

b )√
2ε

dt

=
1
b

∫

R

∑

n∈Z
gl0

(
t – na –

k0

b

)
hl0 (t – na)

χBε (t)χS(t)
2ε

dt (15)
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when l0 = j0, and

0 =
1
b

∫

R

∑

n∈Z
gl0

(
t – na –

k0

b

)
hj0 (t – na)

χBε (t)χS(t)
2ε

dt (16)

when l0 �= j0. From (15), we have

1
2ε

∫

Bε

δk0,0χS(t) dt =
1

2bε

∫

Bε

∑

n∈Z
gl0

(
t – na –

k0

b

)
hl0 (t – na)χS(t) dt.

This leads to

∑

n∈Z
gl0

(
t0 – na –

k0

b

)
hl0 (t0 – na)χS(t0) = bδk0,0χS(t0) (17)

by letting ε → 0. Because of hl0 ∈ L2(S), (17) is equivalent to

∑

n∈Z
gl0

(
t0 – na –

k0

b

)
hl0 (t0 – na) = bδk0,0χS(t0). (18)

From (16), we have

0 =
1

2bε

∫

Bε

∑

n∈Z
gl0

(
t – na –

k0

b

)
hj0 (t – na)χS(t) dt.

This leads to

∑

n∈Z
gl0

(
t0 – na –

k0

b

)
hj0 (t0 – na)χS(t0) = 0 (19)

by letting ε → 0. Because of hj0 ∈ L2(S), (19) is equivalent to

∑

n∈Z
gl0

(
t0 – na –

k0

b

)
hj0 (t0 – na) = 0. (20)

Combining (18) with (20), we have

∑

n∈Z
gl0

(
t0 – na –

k0

b

)
hj0 (t0 – na) = bδk0,0δl0,j0χS(t0).

Therefore, (6) holds by the arbitrariness of j0, l0, k0 and t0.

Example 4.1 Let L, a, b and S be as in the general setup, and ab ≤ 1
2 . Suppose g, h ∈

L2(S,CL), satisfy supp(g), supp(h) ⊂ (–a, a) and

gl(t)hj(t) + gl(t – a)hj(t – a) = bδl,jχS(t) (21)

for 1 ≤ l, j ≤ L and a.e. t ∈ (0, a). Then (4) is a WGBF for L2(S,CL) related to L∞
c (S,CL). In

particular, if g, h ∈ L∞(R,CL) in addition, (4) is a GBF for L2(S,CL).
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Proof By a standard argument, we have

∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na) = gl

(
t – a –

k
b

)
hj(t – a) + gl

(
t –

k
b

)
hj(t) (22)

for k ∈ Z, 1 ≤ l, j ≤ L and a.e. t ∈ (0, a). Since ab ≤ 1
2 , we have (–a, a) ∩ ((–a, a) + k

b ) = ∅ for
0 �= k ∈ Z. And because of supp(g) ⊂ (–a, a), we have

gl

(
t – a –

k
b

)
= gl

(
t –

k
b

)
= 0

for 0 �= k ∈ Z, 1 ≤ l ≤ L and a.e. t ∈ (0, a). Using (22), we obtain

∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na) = 0

for 0 �= k ∈ Z, 1 ≤ l, j ≤ L and a.e. t ∈ (0, a). It follows that

∑

n∈Z
gl

(
t – na –

k
b

)
hj(t – na) = bδk,0δl,jχS(t)

for k ∈ Z, 1 ≤ l, j ≤ L and a.e. t ∈ (0, a) by (21). Therefore (4) is a WGBF for L2(S,CL) re-
lated to L∞

c (S,CL) by Theorem 2.1. Furthermore, suppose g, h ∈ L∞(R,CL) in addition,
then g, h ∈ L∞

c (R,CL). Therefore, G(g, a, b) and G(h, a, b) are Bessel sequences by [24],
Proposition 6.2.2. Then, using g, h ∈ L2(S,CL), we see that they are Bessel sequences in
L2(S,CL). So (4) is a GBF for L2(S,CL) by Remark 2.1. �

Example 4.2 Let L = 2, a, b > 0 satisfying ab ≤ 1
2 , 0 < α,β < 1

2 , 0 < c ≤ a and S =
⋃

n∈Z[(0, c) + na]. Define g(t) = (g1(t), g2(t)), h(t) = (h1(t), h2(t)) as follows:

g1(t) = χ(0,c)(t)tα + (c1 + c2)χ(–a,c–a)(t)(t + a)–β ,

g2(t) = (c1 – c2)χ(0,c)(t)tα +
(
1 + c2

1 – c2
2
)
χ(–a,c–a)(t)(t + a)–β ,

h1(t) = b
(
1 + c2

1 – c2
2
)
χ(0,c)(t)t–α – b(c1 – c2)χ(–a,c–a)(t)(t + a)β ,

h2(t) = –b(c1 + c2)χ(0,c)(t)t–α + bχ(–a,c–a)(t)(t + a)β ,

where c1 and c2 are two complex constants. Then (4) is a WGBF for L2(S,C2) related to
L∞

c (S,C2), but it is not a GBF for L2(S,C2).

Proof By a simple argument, g, h satisfy the assumptions of Example 4.1. So (4) is a
WGBF for L2(S,C2) related to L∞

c (S,C2). Observe that at least one of
∑

n∈Z |g1(· – na)|2,
∑

n∈Z |g2(· – na)|2,
∑

n∈Z |h1(· – na)|2 and
∑

n∈Z |h2(· – na)|2 /∈ L∞(R). Then at least one of
G(g1, a, b), G(g2, a, b), G(h1, a, b) and G(h2, a, b) is not a Bessel sequence in L2(R) by [35],
Proposition 11.3.4. It follows that at least one of G(g, a, b) and G(h, a, b) is not a Bessel
sequence in L2(S,C2). This shows that (4) is not a GBF for L2(S,C2). �
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5 Conclusions
The construction of bi-frames is a fundamental problem in frame theory. In recent years,
the study of vector-valued frames and subspace frames has interested many mathemati-
cians due to their wide applications. The concept of weak bi-frame generalizes that of bi-
frame, and it has potentials in broadening applications of the frame theory in computation.
We in this paper introduce the WGBF under the setting of vector-valued subspaces, char-
acterize WGBFs on the time domain, and present some examples. Our result generalizes
that of scalar-valued functions in the literature. Due to the more complicated geometry
of inner products in vector-valued function spaces than in scalar-valued function spaces,
our result is not a trivial generalization.
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