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Abstract
We state and prove new generalized Lyapunov-type and Hartman-type inequalities
for a conformable boundary value problem of order α ∈ (1, 2] with mixed
non-linearities of the form

(Ta
αx)(t) + r1(t)

∣
∣x(t)

∣
∣
η–1

x(t) + r2(t)
∣
∣x(t)

∣
∣
δ–1

x(t) = g(t), t ∈ (a,b),

satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r1, r2, and g are
real-valued integrable functions, and the non-linearities satisfy the conditions
0 < η < 1 < δ < 2. Moreover, Lyapunov-type and Hartman-type inequalities are
obtained when the conformable derivative Ta

α is replaced by a sequential
conformable derivative Ta

α ◦ Ta
α , α ∈ (1/2, 1]. The potential functions r1, r2 as well as

the forcing term g require no sign restrictions. The obtained inequalities generalize
some existing results in the literature.
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1 Introduction
The Lyapunov inequality and its generalizations have been indispensable in the investiga-
tion of various topics of differential equations including oscillation theory, stability theory,
intervals of disconjugacy, and eigenvalue problems [1–5]. The problem was initiated by
Lyapunov himself who established a necessary condition for the existence of solutions for
the boundary value problem (BVP)

⎧

⎨

⎩

x′′(t) + r(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0.
(1.1)

Indeed, he proved in [6] that if BVP (1.1) has a non-trivial solution, then the inequality

∫ b

a

∣
∣r(t)

∣
∣dt >

4
b – a

(1.2)
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holds, where r is a real-valued integrable function. Since then (1.2) is referred to as the
Lyapunov inequality. In [7], Wintner was ahead and replaced |r(t)| by the function r+(t)
and obtained the following slightly different version of the Lyapunov inequality:

∫ b

a
r+(t) dt >

4
b – a

, (1.3)

where r+(t) = max{r(t), 0}. This inequality is considered to be the best reachable one in the
sense that the constant 4 in (1.3) cannot be replaced by any other larger constant (see [6]
and [8, Theorem 5.1]). In his remarkable book, Hartman [8] was beyond this estimate and
obtained a generalized version as follows:

∫ b

a
(b – t)(t – a)r+(t) dt > b – a. (1.4)

The study of this problem on various types of differential and difference equations over the
last years has resulted in different versions of Lyapunov-type inequalities; the reader may
consult the papers [9–13] and the first chapter in [14] for a complete view. In parallel to the
intensive investigation tendency amongst researchers, Agarwal et al. in [15] has recently
considered the mixed non-linear BVP of the form

⎧

⎨

⎩

x′′(t) + r1(t)|x(t)|η–1x(t) + r2(t)|x(t)|δ–1x(t) = 0,

x(a) = x(b) = 0,
(1.5)

where the non-linearities satisfy

0 < η < 1 < δ < 2 (1.6)

and no sign restrictions are imposed on the real-valued integrable potential functions r1,
r2, and obtained the following Hartman-type and Lyapunov-type inequalities.

Theorem 1.1 (Hartman-type inequality) Suppose that a, b, b > a are consecutive zeros of
a non-trivial solution of BVP (1.5), then the inequality

η0

(∫ b

a
(b – t)(t – a)r+

1 (t) dt
)2

+ δ0

(∫ b

a
(b – t)(t – a)r+

2 (t) dt
)2

+ (η0 + δ0)
(∫ b

a
(b – t)(t – a)r+

1 (t) dt
)(∫ b

a
(b – t)(t – a)r+

2 (t) dt
)

>
1
4

(b – a)2 (1.7)

holds, where

η0 = (2 – η)ηη/(2–η)22/(η–2) and δ0 = (2 – δ)δδ/(2–δ)22/(δ–2). (1.8)

Theorem 1.2 (Lyapunov-type inequality) Suppose that a, b, b > a are consecutive zeros of
a non-trivial solution of BVP (1.5), then the inequality

η0

(∫ b

a
r+

1 (t) dt
)2

+ δ0

(∫ b

a
r+

2 (t) dt
)2

+ (η0 + δ0)
(∫ b

a
r+

1 (t) dt
)(∫ b

a
r+

2 (t) dt
)
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>
4

(b – a)2 (1.9)

holds, where η0 and δ0 are defined in (1.8).

At some earlier time in [16] and under the same conditions, the same authors considered
the mixed non-linear forced BVP of the form

⎧

⎨

⎩

x′′(t) + r1(t)|x(t)|η–1x(t) + r2(t)|x(t)|δ–1x(t) = g(t),

x(a) = x(b) = 0,
(1.10)

where g is a real-valued integrable function and obtained the following Hartman-type and
Lyapunov-type inequalities.

Theorem 1.3 (Hartman-type inequality) Suppose that a, b, b > a are consecutive zeros of
a non-trivial solution of BVP (1.10), then the inequality

(∫ b

a
(b – t)(t – a)

(

r+
1 + r+

2
)

(t) dt
)

×
(∫ b

a
(b – t)(t – a)

{

η0r+
1 (t) + δ0r+

2 (t) +
∣
∣g(t)

∣
∣
}

dt
)

>
1
4

(b – a)2 (1.11)

holds, where η0 and δ0 are defined in (1.8).

Theorem 1.4 (Lyapunov-type inequality) Suppose that a, b, b > a are consecutive zeros of
a non-trivial solution of BVP (1.10), then the inequality

(∫ b

a

(

r+
1 + r+

2
)

(t) dt
)(∫ b

a

{

η0r+
1 (t) + δ0r+

2 (t) +
∣
∣g(t)

∣
∣
}

dt
)

>
4

(b – a)2 (1.12)

holds, where η0 and δ0 are defined in (1.8).

It is to be noted that the forcing function g in (1.10) requires no sign restriction as
well. Furthermore, inequality (1.11) implies (1.12) because, upon applying the arithmetic–
geometric mean, we get (b – t)(t – a) ≤ (b – a)2/4 for all t ∈ [a, b]. The reader can also fig-
ure out that both inequalities (1.11) and (1.12) reduce to the classical Hartman-type and
Lyapunov-type inequalities as η → 1– and δ → 1+, respectively.

Fractional differential equations have proved direct evolvement into multidisciplinary
subjects such as viscoelasticity, ground water flows, boundary layer theory, granular flows,
dynamics of cold atoms in optical lattices, plasma turbulence, and dynamics of polymeric
materials; see, for instance, [17, 18]. The development of these equations in the last years
has recently led to a tremendous number of papers which have studied different qualitative
topics. Amongst them is the investigation of Lyapunov inequality which was initiated by
Ferreria in [19] and continued by other scholars [20–35]. On the other hand, the newly
defined conformable fractional calculus was initiated in [36] and studied later on in the
papers [37, 38] where many properties of conformable operators were introduced. Apart
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from its simple application, nevertheless, it has been realized that this topic proves to be
essential and profitable in generating new types of fractional operators [39]. However, the
progress in this direction is still at its earliest stage [40–43].

The objective of this paper is to state and prove new generalized Lyapunov-type and
Hartman-type inequalities for a conformable boundary value problem of order α ∈ (1, 2]
with mixed non-linearities of the form

(

Ta
αx

)

(t) + r1(t)
∣
∣x(t)

∣
∣
η–1x(t) + r2(t)

∣
∣x(t)

∣
∣
δ–1x(t) = g(t), t ∈ (a, b),

satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r1, r2, and g are real-
valued integrable functions, and the non-linearities satisfy the conditions 0 < η < 1 < δ < 2.
Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the con-
formable derivative Ta

α is replaced by a sequential conformable derivative Ta
α ◦ Ta

α , α ∈
(1/2, 1]. The potential functions r1, r2 as well as the forcing term g require no sign restric-
tions. The obtained inequalities generalize and compliment some existing results in the
literature.

2 Preliminaries on conformable derivatives
This section is devoted to stating some preliminaries on higher-order fractional con-
formable derivatives. We borrow the notations and terminology from the recent papers
[36, 37].

Definition 2.1 ([36, 37]) The (left) conformable fractional derivative starting from a of a
function f : [a,∞) →R of order 0 < α ≤ 1 is defined by

(

Ta
αg

)

(t) = lim
ε→0

g(t + ε(t – a)1–α) – g(t)
ε

. (2.1)

In case a = 0, we write Tα . If (Ta
αg)(t) exists on (a, b), then

(

Ta
αg

)

(a) = lim
t→a+

(

Ta
αg

)

(t).

If g is differentiable, then one should note the following essential identity:

(

Ta
αg

)

(t) = (t – a)1–αg ′(t). (2.2)

Moreover, the conformable fractional integral of order 0 < α ≤ 1 starting at a ≥ 0 is defined
by

(

Ia
αg

)

(t) =
∫ t

a
g(x)(x – a)α–1 dx (2.3)

or following the notation in [36] as

(

Ia
αg

)

(t) =
∫ t

a
g(x)xα–1 dx.

Throughout this article, we shall apply the conformable integral in (2.3). In case of higher
order, the following definition is adopted.
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Definition 2.2 ([37]) Let n < α ≤ n + 1 and set γ = α – n. Then the conformable fractional
derivative starting from a of a function g : [a,∞) → R of order α, where g(n)(t) exists, is
defined by

(

Ta
αg

)

(t) =
(

Ta
γ g(n))(t). (2.4)

In case a = 0, we write Tα .

Note that if α = n + 1, then γ = 1 and the fractional derivative of g becomes g(n+1)(t).
Also, when n = 0 (or α ∈ (0, 1)), then γ = α and the definition coincides with that in Defi-
nition 2.1. From (2.4), it is an immediate consequence that if n < α ≤ n + 1, then γ = α – n
and if, moreover, the (n + 1)st derivative (or the derivative of g(n)) exists, then we have

(

Ta
αg

)

(t) =
(

Tγ
a g(n))(t) = (t – a)1–γ g(n+1)(t) = (t – a)1–α+ng(n+1)(t). (2.5)

Lemma 2.3 ([36]) Assume that g : [a,∞) → R is continuous and 0 < α ≤ 1. Then, for all
t > a, we have

Ta
α Ia

αg(t) = g(t).

In case of higher order, the following definition is valid.

Definition 2.4 ([37]) Let α ∈ (n, n + 1] and set γ = α – n. Then the left conformable frac-
tional integral starting at a of order α is defined by

(

Ia
αg

)

(t) = Ia
n+1

(

(t – a)γ –1g
)

=
1
n!

∫ t

a
(t – x)n(x – a)γ –1g(x) dx. (2.6)

Notice that if α = n + 1 then γ = 1 and hence

(

Ia
αg

)

(t) =
(

Ia
n+1g

)

(t) =
1
n!

∫ t

a
(t – x)ng(x) dx,

which is the iterative integral of g , n + 1 times over (a, t].
Recalling that the left Riemann–Liouville fractional integral of order α > 0 starting from

a is defined by

(

aIαg
)

(t) =
1

�(α)

∫ t

a
(t – s)α–1g(s) ds, (2.7)

we see that (Ia
αg)(t) = (aIαg)(t) for α = n + 1, n = 0, 1, 2, . . . .

Example 2.5 In virtue of [37], we recall that

(

aIα(t – a)μ–1)(x) =
�(μ)

�(μ + α)
(x – a)α+μ–1, α,μ > 0.

Indeed, if μ ∈R such that α +μ– n > 0, then the conformable fractional integral of (t – a)μ

of order α ∈ (n, n + 1] is

(

Ia
α(t – a)μ

)

(x) =
(

Ia
n+1(t – a)μ+α–n–1)(x) =

�(α + μ – n)
�(α + μ + 1)

(x – a)α+μ. (2.8)
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The following is a generalization of Lemma 2.3.

Lemma 2.6 ([37]) Assume that f : [a,∞) → R such that g(n)(t) is continuous and n < α ≤
n + 1. Then, for all t > a, we have

Ta
αIa

αg(t) = g(t).

Theorem 2.7 ([37]) Let α ∈ (n, n + 1] and g : [a,∞) →R be (n + 1) times differentiable for
t > a. Then, for all t > a, we have

Ic
αTa

α(g)(t) = g(t) –
n

∑

k=0

g(k)(a)(t – a)k

k!
. (2.9)

Example 2.8 In view of [37], we recall that the solution of the following conformable frac-
tional initial value problem

(

Ta
αx

)

(t) = λx(t), x(a) = x0 (2.10)

is

x(t) = x0eλ(t–a)α/α , t > a,

for α ∈ (0, 1].

3 Results and discussion
Prior to proceeding to the main theorems, we state the following key lemma which was
proved in [15].

Lemma 3.1 ([15]) If A is positive and B, z are non-negative, then

Az2 – Bzα + (2 – α)αα/(2–α)22/(α–2)A–α/(2–α)B2/(2–α) ≥ 0 (3.1)

for any α ∈ (0, 2). The equality holds if and only if B = z = 0.

The investigation of Lyapunov inequalities is delivered in two separate folds.

3.1 A Lyapunov-type inequality for mixed forced conformable BVP
In this subsection, we consider the following mixed forced conformable BVP:

⎧

⎨

⎩

Ta
αx(t) + r1(t)|x(t)|η–1x(t) + r2(t)|x(t)|δ–1x(t) = g(t),

x(a) = x(b) = 0,
(3.2)

where α ∈ (1, 2], the non-linearities satisfy (1.6), and the potential functions r1, r2, and
forcing term g are real-valued integrable functions which do not require any sign restric-
tion. The solution of (3.2) is valid for all real-valued functions x(t) with Ta

αx(t) exists and
is integrable on [a, b] such that it satisfies (3.2). The Lyapunov inequality for BVP (3.2) is
established.
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Consider the following (local) conformable BVP:

⎧

⎨

⎩

–(Tc
αx)(t) = F (t),

x(a) = x(b) = 0
(3.3)

for t ∈ (a, b), where α ∈ (1, 2]. The Green’s function and its properties are given in the
following two lemmas.

Lemma 3.2 ([44]) x is a solution of BVP (3.3) if and only if it satisfies the integral equation

x(t) =
∫ b

a
H(t, s)F (s) ds, (3.4)

where H is the Green’s function for BVP (3.3) defined by

H(t, s) =
(t – a)(b – s)

b – a
(s – a)α–2 –

⎧

⎨

⎩

0, a ≤ t ≤ s ≤ b,

(t – s)(s – a)α–2, a ≤ s ≤ t ≤ b.

Lemma 3.3 ([44]) The Green’s function H defined above has the following properties:
(i) H(t, s) ≥ 0 for all a ≤ t, s ≤ b,

(ii) maxt∈[a,b] H(t, s) = H(s, s) for s ∈ [a, b],
(iii) H(s, s) has a unique maximum at s0 = [a + (α – 1)b]/α, and we have

max
s∈[a,b]

H(s, s) = H(s0, s0) =
(b – a)α–1(α – 1)α–1

αα
.

The following Lyapunov-type inequality was proved for the BVP:

⎧

⎨

⎩

(Ta
αx)(t) + r(t)x(t) = 0,

x(a) = x(b) = 0
(3.5)

in the frame of conformable derivatives [44].

Theorem 3.4 (Lyapunov-type inequality [44]) Suppose that a, b, a > b are consecutive
zeros of a non-trivial solution of BVP (3.5), then the inequality

∫ b

a

∣
∣r(t)

∣
∣dt >

αα

(α – 1)α–1(b – a)α–1 (3.6)

holds.

Remark 3.5 If α = 2, then (3.6) reduces to the classical Lyapunov inequality (1.2).

In what follows, we make use of the following notation:

u± = max{±u, 0}.
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Theorem 3.6 (Hartman-type inequality) If x(t) is a positive solution of BVP (3.2) in (a, b),
then the inequality

(∫ b

a
(b – t)(t – a)α–1[r+

1 (t) + r+
2 (t)

]

dt
)

×
(∫ b

a
(b – t)(t – a)α–1[η0r+

1 (t) + δ0r+
2 (t) + g–(t)

]

dt
)

>
1
4

(b – a)2 (3.7)

holds, where η0 and δ0 are defined in (1.8).

Proof Let x be a positive solution of (3.2) in (a, b) with x(a) = x(b) = 0. On the basis of
Lemma 3.2, the solution of BVP (3.2) is given by

x(t) =
∫ b

a
H(t, s)

[

r1(s)xη(s) + r2(s)xδ(s) – g(s)
]

ds (3.8)

for any t ∈ (a, b), where H(t, s) is the Green’s function of BVP (3.3).
On the other hand, we have from (ii) of Lemma 3.3 that

0 ≤ H(t, s) ≤ H(s, s)

=
(b – s)(s – a)α–1

b – a
, s ∈ (a, b). (3.9)

Let x(t0) = maxt∈(a,b) x(t). Then, by (3.8) and (3.9), we have

x(t0) =
∫ b

a
H(t0, s)

[

r1(s)xη(s) + r2(s)xδ(s) – g(s)
]

ds

≤ 1
b – a

∫ b

a
(b – s)(s – a)α–1[r+

1 (s)xη(s) + r+
2 (s)xδ(s) + g–(s)

]

ds

≤ μ1xη(t0) + μ2xδ(t0) + μ, (3.10)

where

μj =
1

b – a

∫ b

a
(b – s)(s – a)α–1r+

j (s) ds, j = 1, 2 (3.11)

and

μ =
1

b – a

∫ b

a
(b – s)(s – a)α–1g–(s) ds.

By the help of inequality (3.1) in Lemma 3.1 with A = 1 and B = 1, we reach the quadratic
inequality

(μ1 + μ2)x2(t0) – x(t0) + η0μ1 + δ0μ2 + μ > 0. (3.12)
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This is possible only if

(μ1 + μ2)(η0μ1 + δ0μ2 + μ) >
1
4

.

This completes the proof. �

Theorem 3.7 (Hartman-type inequality) If x(t) is a negative solution of BVP (3.2) in (a, b),
then the inequality

(∫ b

a
(b – t)(t – a)α–1[r+

1 (t) + r+
2 (t)

]

dt
)

×
(∫ b

a
(b – t)(t – a)α–1[η0r+

1 (t) + δ0r+
2 (t) + g+(t)

]

dt
)

>
1
4

(b – a)2 (3.13)

holds, where η0 and δ0 are defined in (1.8).

Proof Let x be a negative solution of (3.2) in (a, b) with x(a) = x(b) = 0. In fact, if x(t) < 0
for t ∈ (a, b), then we can consider z(t) = –x(t) as a positive solution of the BVP

⎧

⎨

⎩

Ta
αz(t) + r1(t)|z(t)|η–1z(t) + r2(t)|z(t)|δ–1z(t) = –g(t),

z(a) = z(b) = 0
(3.14)

in (a, b). By using (3.3) and (3.14), z(t) can be expressed as

z(t) =
∫ b

a
H(t, s)

[

r1(s)zη(s) + r2(s)zδ(s) + g(s)
]

ds (3.15)

for any t ∈ (a, b), where H(t, s) is the Green’s function of BVP (3.3).
Let z(t∗) = maxt∈(a,b) z(t). Then, by (3.15) and (3.9), we have

z(t∗) =
∫ b

a
H(t∗, s)

[

r1(s)zη(s) + r2(s)zδ(s) + g(s)
]

ds

≤ 1
b – a

∫ b

a
(b – s)(s – a)α–1[r+

1 (s)zη(s) + r+
2 (s)zδ(s) + g+(s)

]

ds

≤ μ1zη(t∗) + μ2zδ(t∗) + ν,

where μ1 and μ2 are defined in (3.11) and

ν =
1

b – a

∫ b

a
(b – s)(s – a)α–1g+(s) ds.

Repeating the same steps as in Theorem 3.6, we obtain (3.13), which completes the
proof. �



Abdeljawad et al. Journal of Inequalities and Applications  (2018) 2018:143 Page 10 of 17

Theorem 3.8 (Hartman-type inequality) If x(t) is a solution of BVP (3.2) which has no
zero in (a, b), then the inequality

(∫ b

a
(b – t)(t – a)α–1[r+

1 (t) + r+
2 (t)

]

dt
)

×
(∫ b

a
(b – t)(t – a)α–1[η0r+

1 (t) + δ0r+
2 (t) +

∣
∣g(t)

∣
∣
]

dt
)

>
1
4

(b – a)2 (3.16)

holds, where η0 and δ0 are defined in (1.8).

Proof Let x be a solution of (3.2) which has no zero in (a, b) with x(a) = x(b) = 0. Since
either x(t) > 0 or x(t) < 0 for t ∈ (a, b) and g±(t) ≤ |g(t)|, by (3.7) and (3.13) we obtain (3.16).
This completes the proof of Theorem 3.8. �

Upon employing

max
t∈(a,b)

{

(b – t)(t – a)α–1} =
(α – 1)α–1

αα
(b – a)α (3.17)

for all t ∈ (a, b), as inferred from (iii) of Lemma 3.3, we deduce that inequalities (3.7) and
(3.16) in Theorem 3.6, Theorem 3.7, and Theorem 3.8 imply the following Lyapunov-type
inequalities, respectively.

Theorem 3.9 (Lyapunov-type inequality) If x(t) is a positive solution of BVP (3.2) in (a, b),
then the inequality

(∫ b

a

[

r+
1 (t) + r+

2 (t)
]

dt
)(∫ b

a

[

η0r+
1 (t) + δ0r+

2 (t) + g–(t)
]

dt
)

>
α0

(b – a)2α–2

holds, where η0 and δ0 are defined in (1.8), and

α0 =
α2α

4(α – 1)2α–2 . (3.18)

Theorem 3.10 (Lyapunov-type inequality) If x(t) is a negative solution of BVP (3.2), then
the inequality

(∫ b

a

[

r+
1 (t) + r+

2 (t)
]

dt
)(∫ b

a

[

η0r+
1 (t) + δ0r+

2 (t) + g+(t)
]

dt
)

>
α0

(b – a)2α–2

holds, where η0, δ0, and α0 are defined in (1.8) and (3.18), respectively.

Theorem 3.11 (Lyapunov-type inequality) If x(t) is a solution of BVP (3.2) which has no
zero in (a, b), then the inequality

(∫ b

a

[

r+
1 (t) + r+

2 (t)
]

dt
)(∫ b

a

[

η0r+
1 (t) + δ0r+

2 (t) +
∣
∣g(t)

∣
∣
]

dt
)

>
α0

(b – a)2α–2 (3.19)

holds, where η0, δ0, and α0 are defined in (1.8) and (3.18), respectively.
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If we set r2(t) = 0 in BVP (3.2), then we obtain the following particular forced sub-linear
BVP:

⎧

⎨

⎩

Ta
αx(t) + r1(t)|x(t)|η–1x(t) = g(t),

x(a) = x(b) = 0.
(3.20)

Theorem 3.12 If x(t) is solution of BVP (3.20) which has no zero in (a, b), then the following
Hartman-type and Lyapunov-type inequalities hold:

(i)

(∫ b

a
(b – t)(t – a)α–1r+

1 (t) dt
)

×
(∫ b

a
(b – t)(t – a)α–1[η0r+

1 (t) +
∣
∣g(t)

∣
∣
]

dt
)

>
1
4

(b – a)2, (3.21)

(ii)

(∫ b

a
r+

1 (t) dt
)(∫ b

a

[

η0r+
1 (t) +

∣
∣g(t)

∣
∣
]

dt
)

>
α0

(b – a)2α–2 ,

where η0 and α0 are defined in (1.8) and (3.18), respectively.

If we set r1(t) = 0 in BVP (3.2), then we obtain the following particular forced super-linear
BVP:

⎧

⎨

⎩

Ta
αx(t) + r2(t)|x(t)|δ–1x(t) = g(t),

x(a) = x(b) = 0.
(3.22)

Theorem 3.13 If x(t) is a solution of BVP (3.22) which has no zero in (a, b), then the fol-
lowing Hartman-type and Lyapunov-type inequalities hold:

(i)

(∫ b

a
(b – t)(t – a)α–1r+

2 (t) dt
)

×
(∫ b

a
(b – t)(t – a)α–1[δ0r+

2 (t) +
∣
∣g(t)

∣
∣
]

dt
)

>
1
4

(b – a)2, (3.23)

(ii)

(∫ b

a
r+

2 (t) dt
)(∫ b

a

[

δ0r+
2 (t) +

∣
∣g(t)

∣
∣
]

dt
)

>
α0

(b – a)2α–2 ,

where δ0 and α0 are defined in (1.8) and (3.18), respectively.
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Remark 3.14 If α = 2, then Theorem 3.8 and Theorem 3.11 reduce to Theorem 2.3 and
Theorem 2.4 in [16], respectively.

As η → 1– and δ → 1+, BVP (3.2) reduces to the forced problem

⎧

⎨

⎩

Ta
αx(t) + r(t)x(t) = g(t),

x(a) = x(b) = 0,
(3.24)

where r(t) = r1(t) + r2(t). Furthermore, since limη→1– η0 = limδ→1+ δ0 = 1/4 and in view of
Theorem 3.8 and Theorem 3.11, the following corollary is an immediate consequence.

Corollary 3.15 If x(t) is a solution of BVP (3.24) which has no zero in (a, b), then the fol-
lowing Hartman-type and Lyapunov-type inequalities hold:

(i)

(∫ b

a
(b – t)(t – a)α–1r+(t) dt

)(∫ b

a
(b – t)(t – a)α–1[r+(t) + 4

∣
∣g(t)

∣
∣
]

dt
)

> (b – a)2,

(ii)

(∫ b

a
r+(t) dt

)(∫ b

a

[

r+(t) + 4
∣
∣g(t)

∣
∣
]

dt
)

>
4α0

(b – a)2α–2 ,

where α0 is defined in (3.18).

Remark 3.16 If we set α = 2 and g(t) = 0 in (3.24), then inequalities (i) and (ii) in
Corollary 3.15 reduce to the classical Hartman (1.4) and Lyapunov inequalities (1.3) for
BVP (1.1). Furthermore, one can easily note that (ii) of Corollary 3.15 implies Theorem 3.4
by taking g(t) = 0.

3.2 A Lyapunov-type inequality for mixed forced sequential conformable BVP
In this section, we consider the following mixed forced sequential conformable BVP:

⎧

⎨

⎩

Ta
αTa

αx(t) + r1(t)|x(t)|η–1x(t) + r2(t)|x(t)|δ–1x(t) = g(t),

x(a) = x(b) = 0,
(3.25)

where α ∈ (1/2, 1] and the non-linearities, the potential functions, and forcing term satisfy
the same assumptions as in (3.2). The solution of (3.25) is valid for x(t) defined on [a, b]
such that Ta

αTa
αx(t) exists and is integrable on [a, b] and such that x(t) satisfies (3.25). The

Lyapunov inequality for (3.25) is established.
Consider the following sequential conformable BVP:

⎧

⎨

⎩

(Ta
α ◦ Ta

αx)(t) = F (t),

x(a) = x(b) = 0
(3.26)
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for t ∈ (a, b), where α ∈ (1/2, 1]. The following two lemmas, which were developed in [44],
contain the Green’s function corresponding to BVP (3.26) and its estimate properties.

Lemma 3.17 x is a solution of BVP (3.26) if and only if it satisfies the integral equation

x(t) =
∫ b

a
G(t, s)F (s) ds, (3.27)

where G is the Green’s function of BVP (3.26) defined by

G(t, s) =

⎧

⎨

⎩

g1(t, s), a ≤ s ≤ t ≤ b,

g2(t, s), a ≤ t ≤ s ≤ b

such that

g1(t, s) =
1
α

(s – a)2α–1
[

1 –
(

t – a
b – a

)α]

and

g2(t, s) =
1
α

(s – a)α–1(t – a)α
[

1 –
(

s – a
b – a

)α]

.

Lemma 3.18 The Green’s function G defined above has the following properties:
(i) G(t, s) ≥ 0 for all a ≤ t, s ≤ b,

(ii) maxt∈[a,b] G(t, s) = G(s, s) for s ∈ [a, b],
(iii) f (s) = G(s, s) has a unique maximum at

s0 = 
(a, b,α) := a + (b – a)(2α – 1)1/α(3α – 1)–1/α , (3.28)

and we have

max
s∈[a,b]

G(s, s) = G(s0, s0) = (2α – 1)2–1/α(3α – 1)1/α–3(b – a)2α–1. (3.29)

For the sequential BVP

⎧

⎨

⎩

(Ta
α ◦ Ta

αx)(t) + r(t)x(t) = 0,

x(a) = x(b) = 0,
(3.30)

Abdeljawad et al. [44] established the following Lyapunov-type inequality.

Theorem 3.19 (Lyapunov-type inequality) If x(t) is a solution of BVP (3.30) which has no
zero in (a, b), then the inequality

∫ b

a

∣
∣r(t)

∣
∣dt >

1
G(
(a, b,α),
(a, b,α))

=
(2α – 1)1/α–2(3α – 1)3–1/α

(b – a)2α–1 (3.31)

holds, where 
(a, b,α) is defined in (3.28).
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Remark 3.20 Since

lim
α→1–

G
(


(a, b,α),
(a, b,α)
)

=
1
4

(b – a),

the classical Lyapunov inequality (1.2) is obtained as α → 1–. In this case, one may also
deduce that (Ta

α ◦ Ta
αx)(t) → x′′(t) as α → 1–.

Theorem 3.21 (Hartman-type inequality) If x(t) is a solution of BVP (3.25) which has no
zero in (a, b), then the inequality

(∫ b

a
U (t)

[

r+
1 (t) + r+

2 (t)
]

dt
)(∫ b

a
U (t)

[

η0r+
1 (t) + δ0r+

2 (t) +
∣
∣g(t)

∣
∣
]

dt
)

>
1
4
α2 (3.32)

holds, where

U (t) = (t – a)2α–1
[

1 –
(

t – a
b – a

)α]

,

and that η0 and δ0 are defined in (1.8).

Proof In the proof, we make use of the solution representation (3.27) of BVP (3.26) and
the properties of the Green’s function G(t, s) of BVP (3.26) given in Lemma 3.17 and (ii) of
Lemma 3.18. Namely, we have that

0 ≤ G(t, s) ≤ G(s, s) =
1
α
U (s), s ∈ (a, b).

To avoid redundancy with the proof of Theorem 3.6, we omit the remaining part of the
proof. �

Theorem 3.22 (Lyapunov-type inequality) If x(t) is a solution of BVP (3.25) which has no
zero in (a, b), then the inequality

(∫ b

a

[

r+
1 (t) + r+

2 (t)
]

dt
)(∫ b

a

[

η0r+
1 (t) + δ0r+

2 (t) +
∣
∣g(t)

∣
∣
]

dt
)

>
α1

(b – a)4α–2 (3.33)

holds, where

α1 =
1
4

(3α – 1)6–2/α(2α – 1)2/α–4,

and that η0 and δ0 are defined in (1.8).

The proof is straightforward and it follows from (3.29) and inequality (3.32).

Remark 3.23 If α = 1 in Theorem 3.21 and Theorem 3.22, then inequalities (3.32)
and (3.33) reduce to inequalities (3.16) and (3.19) in Theorem 3.8 and Theorem 3.11 with
α = 2, respectively. Moreover, the limiting case η → 1– and δ → 1+ in Theorem 3.22 with
g(t) = 0 and r(t) = r1(t) + r2(t) will imply Theorem 3.19.
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Finally, we conclude this paper with the following remark. The results obtained for
BVP (3.2) can be extended to the forced mixed non-linear problem in the frame of con-
formable derivatives with positive and negative coefficients

⎧

⎨

⎩

Ta
αx(t) ± r1(t)|x(t)|η–1x(t) ∓ r2(t)|x(t)|δ–1x(t) = g(t),

x(a) = x(b) = 0.

Moreover, similar results to Theorem 3.21 and Theorem 3.22 can be obtained for the se-
quential conformable problem with positive and negative coefficients of the form

⎧

⎨

⎩

Ta
αTa

αx(t) ± r1(t)|x(t)|η–1x(t) ∓ r2(t)|x(t)|δ–1x(t) = g(t),

x(a) = x(b) = 0.

It might be of interest to find similar results for the more general equation of the form

Ta
αx(t) +

n
∑

j=1

rj(t)
∣
∣x(t)

∣
∣
γj–1x(t) = g(t), α ∈ (1, 2]

or

Ta
αTa

αx(t) +
n

∑

j=1

rj(t)
∣
∣x(t)

∣
∣
γj–1x(t) = g(t), α ∈ (1/2, 1],

where the non-linearities satisfy

0 < γ1 < · · · < γm < 1 < γm+1 < · · · < γn < 2,

and no sign restriction is imposed on the forcing term g(t) and the potential functions
rj(t), j = 1, . . . , n. The formulations and the proofs of the results are left to the reader.

4 Conclusion
Conformable derivatives are naturally local fractional derivatives which allow deriving
with respect to arbitrary order. Recently, it has been realized that conformable derivatives
are essential in generating new types of fractional operators; see, for instance, the results
reported in [39]. In this article, we have accommodated the concept and the properties of
conformable derivatives to establish new generalized Lyapunov-type and Hartman-type
inequalities for a boundary value problem with mixed non-linearities, α ∈ (1, 2]. In ad-
dition, the main results are carried out for the sequential conformable derivatives of the
form Ta

α ◦ Ta
α , α ∈ (1/2, 1]. The corresponding classical Lyapunov-type and Hartman-type

inequalities are obtained in the limiting cases α → 2– and α → 1–, respectively. The ob-
tained inequalities generalize and compliment some existing results in the literature.
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