
Ahmad et al. Journal of Inequalities and Applications  (2018) 2018:134 
https://doi.org/10.1186/s13660-018-1730-y

R E S E A R C H Open Access

Sobolev’s embedding on time scales
Naveed Ahmad1, Hira Ashraf Baig1, Ghaus ur Rahman2* and M. Shoaib Saleem3

*Correspondence:
ghaus957@yahoo.com
2Department of Mathematics and
Statistics, University of Swat, KPK,
Pakistan
Full list of author information is
available at the end of the article

Abstract
For 1 ≤ p < n, the embeddings of Sobolev spacesW1,p

� (�Tn ) of functions defined on
an open subset of an arbitrary time scale Tn, n ≥ 1, endowed with the Lebesgue
�-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121,
2006) for n = 1 and later generalized to arbitrary n≥ 1 in (Su et al. in Dyn. Partial Differ.
Equ. 12(3):241–263, 2015). In this article we present the embeddings of Sobolev
spacesW1,p

� (�Tn ) for n ≤ p≤ ∞ and then, using these embeddings, we develop
general Sobolev’s embedding for the Sobolev spacesW1,p

� (�Tn ) on time scales, where
k is a non-negative integer and 1≤ p≤ ∞.
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1 Introduction
Before 1988 discrete and continuous analyses were independently treated as two different
branches of mathematics. In order to combine differential as well as integral calculus with
the notion of finite differences calculus, German mathematician Stefan Hilger introduced
a theory. This new approach is known as time scale theory. It unites two approaches of dy-
namic modeling, difference and differential equations. In principle, these two approaches
are special cases of a more general theory of time scale calculus. Time scale calculus is ap-
plicable in a field where dynamic processes can be described using discrete or continuous
models. The applications of this theory are substantial and have received a lot of attention
over the last few years. The most important among them is a system of dynamic equations.
Moreover, it has various applications in biology, engineering, economics, physics, neutral
network, and social sciences. For further details and basic notions of time scale calculus,
we refer to [3–6].

Sobolev spaces are among the fundamental tools of functional analysis. They are used
in variational methods to solve ordinary/partial differential equations or difference equa-
tions. In spite of this, the theory for functions defined on an arbitrary bounded interval
of the real numbers has been established [7, 8]. Nevertheless, for functions defined on an
arbitrary time scale, it appears that the study has not given too much attention. In [9] the
authors studied the Sobolev spaces on time scales. Moreover, the authors presented some
applications of their work by making use of variational method. To illustrate the feasibility
and effectiveness of the existence results, some examples are provided at the end of the
paper.
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Motivated by the above work, in this paper we will study properties of Sobolev spaces.
Also, general Sobolev’s embedding will be developed along with important embedding
called Morrey’s inequality for the Sobolev spaces of functions defined on an open subset
of an arbitrary time scale T

n. These embeddings actually relate the Sobolev spaces with
the space of Hölder continuous functions on an open domain of Rn.

Beside the introductory section, the paper consists of three sections. In Sect. 2 we pro-
vide definitions of some basic notions related to an n-dimensional time scale. Also, some
function spaces, like a space of Hölder continuous functions, Lp spaces, Sobolev spaces,
and some important results connected to n-dimensional time scale, are presented. Finally,
in Sect. 3 we develop main results of the manuscript, the Morrey type inequality, and the
general Sobolev’s embedding on an n-dimensional time scale.

2 Preliminaries
Here, we recall some elementary results which will be used throughout the article.

Suppose n to be a positive integer. For each i ∈ {1, 2, . . . , n}, let Ti denote a time scale,
that is, a non-empty closed subset of R. Set

T
n = T1 ×T2 × · · · ×Tn =

{
t = (t1, t2, . . . , tn) : ti ∈ Ti, i = 1, 2, . . . , n

}
,

we call Tn an n-dimensional time scale. The set Tn is a complete metric space with the
metric d defined by

d(t, s) =

( n∑

i=1

|ti – si|2
)1/2

for t, s ∈ T
n.

Denote by σi and ρi the forward and backward jump operators defined on Ti. Specially,
for ti ∈ Ti, the forward jump operator σi : Ti −→ Ti is defined by

σi(ti) = inf{si ∈ Ti : si > ti};

and the back jump operator ρi : Ti −→ Ti is defined by

ρi(ti) = sup{ti ∈ Ti : si < ti}.

In this definition we put σi(maxTi) = maxTi if Ti has a finite maximum and ρi(minTi) =
minTi whenever Ti has finite minimum. Also, we call each ti ∈ Ti the right-scattered el-
ement in Ti if σi(ti) > ti, right-dense element in Ti if σi(ti) = ti, where ti < maxTi, left-
scattered in Ti if ρi(ti) < ti, and left-dense in Ti if ρi(ti) = ti, where ti > minTi. If Ti has a
left-scattered maximum M, then we define Tk

i = Ti \ {M}, otherwise Tk
i = Ti. When Ti has

a right-scattered minimum m, then (Ti)k = Ti \ {m}, otherwise (Ti)k = Ti.
Assume a function f : Tn −→ R. The partial delta derivative of f with respect to ti ∈ (Tn)k

is defined as

lim
si−→ti ,si �=σi(ti)

f (t1, . . . , ti–1,σi(ti), ti+1, . . . , tn) – f (t1, . . . , ti–1, si, ti+1, . . . , tn)
σi(ti) – si
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whenever the limit exists, and denoted by ∂f (t)
�iti

. Furthermore, the second order partial delta
derivative of f is denoted as ∂2f (t)

�it2
i

or ∂2f (t)
�iti�jtj

. In the same fashion, one can define a higher
order delta derivative.

In addition to the above, the partial nebla derivative of f with respect to the independent
variable ti ∈ (Tn)k is defined as

lim
si−→ti ,si �=ρi(ti)

f (t1, . . . , ti–1,ρi(ti), ti+1, . . . , tn) – f (t1, . . . , ti–1, si, ti+1, . . . , tn)
ρi(ti) – si

provided the limit exists and is denoted by ∂f (t)
ρiti

. The second order partial nebla derivative
of f is denoted as ∂2f (t)

ρit2
i

or ∂2f (t)
ρitiρjtj

. Higher order partial nebla derivatives are similarly de-
fined. Combining both delta and nebla derivatives, we can define the mixed derivatives.
For instance, a second order mixed derivative is denoted by ∂2f (t)

�itiρjtj
or ∂2f (t)

ρiti�jtj
. Hence, for

any multi index α = (α1, . . . ,αn) of order |α| = α1 + · · · + αn, we define

Dα
�f =

∂ |α|f
�1tα1

1 · · ·�ntαn
n

.

If k is a non-negative integer, then

Dk
�f =

{
Dα

�f : |α| = k
}

,

i.e., the set of all delta partial derivatives of order k with

∣∣Dk
�f

∣∣ =
(∑

|α|=k

∣∣Dα
�f

∣∣2
)1/2

.

For k = 1, the elements of D�f can be seen in the form of a vector:

D�f =
(

∂f
�t1

, . . . ,
∂f
�tn

)
.

For a �-measurable set ET ⊂ T
n and a �-measurable function f : ET −→ R, the corre-

sponding Lebesgue �-integral of f over ET will be denoted by

∫

ET

f (t1, t2, . . . , tn)�t1�t2, . . . ,�tn or
∫

ET

f (t)�t or
∫

ET

f (t)μ�,

where μ� represents the Lebesgue measure [10].

2.1 Some function spaces and results on time scales
Let �Tn be an open subset of Tn, n ≥ 1.

Ck(�Tn ) = {u : �Tn −→ R : u is k-times continuously differentiable on �Tn},

C∞(�Tn ) = {u : �Tn −→R : u is infinitely differentiable on �Tn} =
∞⋂

k=0

Ck(�Tn ).
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Moreover, we define some other auxiliary spaces

Ck
c (�Tn ) = Functions in Ck(�Tn ) with compact support,

C∞
c (�Tn ) = Functions in C∞(�Tn ) with compact support,

BC(�Tn ) = Space of all continuous and bounded functions on �Tn .

For u ∈ BC(�Tn ) and 0 < γ ≤ 1, let

‖u‖C(�Tn ) := sup
t∈�Tn

∣∣u(t)
∣∣ and [u]γ := sup

t,s∈�Tn ,t �=s

{ |u(t) – u(s)|
|t – s|γ

}
.

If [u]γ < ∞, then u is Hölder continuous with Hölder exponent γ . The collection of γ -
Hölder continuous functions on �Tn will be denoted by

C0,γ (�Tn ) :=
{

u ∈ BC(�Tn ) : [u]γ < ∞}
,

and for u ∈ C0,γ (�Tn ) we can define the norm by

‖u‖C0,γ (�Tn ) := ‖u‖C(�Tn ) + [u]γ . (2.1)

For γ = 1, the function u is said to be a Lipschitz continuous function.

Theorem 2.1 The functions space C0,γ (�Tn ) is a Banach space with respect to the norm
defined in (2.1).

Proof For u, v ∈ C0,γ (�Tn ),

[u + v]γ = sup
t,s∈�Tn ,t �=s

{ |v(s) + u(s) – v(t) – u(t)|
|t – s|γ

}

≤ sup
t,s∈�Tn ,t �=s

{ |v(s) – v(t)| + |u(t) – u(s)|
|t – s|γ

}

≤ [v]γ + [u]γ

and for λ ∈ R,

[λu]γ = sup
t,s∈�Tn ,t �=s

{ |λu(t) – λu(s)|
|t – s|γ

}
= |λ|[u]γ .

This shows that [·]γ is a semi-norm on C0,γ (�Tn ), and therefore ‖u‖C0,γ (�Tn ) defined
in (2.1) is a norm. To see that C0,γ (�Tn ) is complete, let um be a Cauchy sequence
in C0,γ (�Tn ). Since BC(�Tn ) is complete, there exists u ∈ BC(�Tn ) such that ‖u –
um‖C(�Tn ) → 0, m → ∞.

For t, s ∈ �Tn with t �= s,

|u(t) – u(s)|
|t – s|γ = lim

m→∞
|um(t) – um(s)|

|t – s|γ ≤ lim sup
m→∞

[um]γ ≤ lim
m→∞‖um‖C0,γ (�Tn ) < ∞,
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and so we see that u ∈ C0,γ (�Tn ). Similarly,

|u(t) – um(t) – (u(s) – um(s))|
|t – s|γ = lim

n→∞
|(un – um)(t) – (un – um)(s)|

|t – s|γ
≤ lim sup

n→∞
[un – um]γ → 0, n → ∞,

showing [u – um]γ → 0 as n → ∞, and therefore limn→∞ ‖u – um‖C0,γ (�Tn ) = 0. �

The Hölder space Ck,γ (�Tn ) consists of those functions u that are k times continuously
differentiable and whose kth-partial derivatives are Hölder continuous with exponent γ .
The norm linear spaces, Ck,γ (�Tn ) are Banach spaces with the norm defined by

‖u‖Ck,γ (�Tn ) = sup
t∈�Tn

∣∣Dα
�u

∣∣ + sup
t,s∈�Tn ,t �=s

{ |u(t) – u(s)|
|t – s|γ

}
.

Definition 2.2 ([1]) For p ∈R and p ≥ 1, the Lebesgue space Lp
� is defined as

Lp
�(�Tn ) =

{
u : �Tn −→ R :

∫

�Tn
|u|p�t < +∞

}

equipped with the norm

‖u‖Lp
�(�Tn ) =

(∫

�Tn
|u|p�t

)1/p

.

Remark 2.3 We know that the space Lp
�(�Tn ) is a Banach space with the norm defined

above. Moreover, it is a Hilbert space for p = 2, with the inner product defined by

〈u, v〉L2
�(�Tn ) =

∫

�Tn
u(t)v(t)�t.

Weak derivative ([1]) Suppose u, v ∈ L1
loc,�(�Tn ) and α is multi-index. We say that v is

αth-weak partial delta derivative of u, written as Dα
�u, provided

∫

�Tn
uDα

�φ�t = (–1)|α|
∫

�Tn
vφσ�t for all φ ∈ C|α|

c (�Tn ).

Sobolev spaces of order k ([1]) For p ≥ 1 and a non-negative integer k,

W k,p
� (�Tn ) =

{
u : �Tn −→R : uσ ∈ Lp

�(�Tn ) and Dα
�u ∈ Lp

�(�Tn ), 0 < |α| ≤ k
}

.

For k = 0, W k,p
� (�Tn ) means Lp

�(�Tn ). It is obvious that W k,p
� (�Tn ) is a vector space. Sobolev

spaces are Banach spaces under the norm defined by

‖u‖W k,p
� (�Tn ) =

(∫

�Tn

(∣∣uσ
∣∣p +

∑

0<|α|≤k

|Dα
�u|p

)
�t

)1/p

, 1 ≤ p < ∞.

We define the space W k,p
0,�(�Tn ) as the closure of C∞

c (Tn) in W k,p
� (�Tn ) with the norm

defined above, and it is also a Sobolev space of order k. For p = 2, the spaces W k,p
� (�Tn )
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are Hilbert spaces with the inner product

(u, v)W k,2
� (�Tn ) =

∫

�Tn

(∣∣uσ · vσ
∣∣ +

∑

0<|α|≤k

Dα
�u · Dα

�v
)

�t.

We usually express Hk
� = W k,2

� (�Tn ) and Hk
0,� = W k,2

0,�(�Tn ).

Gagliardo–Nirenberg–Sobolev inequality ([2]) Assume 1 ≤ p < ∞. Then there is a
constant C depending only on p and n such that

‖u‖
Lp∗
� (Tn)

≤ C‖Du‖
Lp∗
� (Tn)

for all u ∈ C1
0
(
T

n),

where p∗ = np
n–p called the Sobolev conjugate of p.

Extension theorem ([2]) Let �Tn ⊂ T
n be an open bounded subset with �Tn ⊂ �′

Tn and
k ≥ 1. If ∂�Tn ∈ Ck , then any function u(t) ∈ W k,p

� (�Tn ) has an extension u′(t) ∈ �′
Tn with

compact support. Moreover,

∥∥u′∥∥
W k,p

� (�′
Tn ) ≤ c2‖u‖W k,p

� (�Tn ),

where the constant c2 > 0 does not depend on u.

Average values If �Tn is an open and bounded subset of Tn, then the average value of the
function u is defined as

∫

�Tn
u(s)�s =

1
μ�(�Tn )

∫

�Tn
u(s)�s = Average of u over the domain �Tn

and for a ball B(t, r) ⊂ �Tn

∫

B(t,r)
u(s)�s =

1
μ�(B(t, r))

∫

B(t,r)
u(s)�s = Average of u over the ball B(t, r).

3 Main results and discussions
This part of the paper is devoted to the main results obtained in the present manuscript.
Assume that n < p < ∞. We will show that if u ∈ W 1,p

� (�Tn ), then u is in fact Hölder con-
tinuous, after possibly re-defining on a set of measure zero. The time scale analogue of
Morrey’s inequality is provided in the following theorem.

Theorem 3.1 (Morrey’s inequality on time scales) Assume n < p ≤ ∞, then there exists a
constant C, depending only on p and n, such that

‖u‖C0,γ (Tn) ≤ C‖u‖W 1,p
� (Tn) (3.1)

for all u ∈ C1(Tn), where γ ≡ 1 – n/p.

Proof We prove this inequality in three steps.
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Step 1. First choose any ball B(t, r) ⊂ T
n. We claim there exists a constant C, depending

only on n, such that

∫ Avg

B(t,r)

∣∣u(s) – u(t)
∣∣�s ≤ C

∫

B(t,r)

|Du(s)|
|s – t|n–1 �s. (3.2)

To prove this, fix any point w ∈ ∂B(0, 1). Then if 0 < η < r,

∣∣u(t + ηw) – u(t)
∣∣ =

∣∣∣∣

∫ η

0

(
u(t + ξw)

)�ξ �ξ

∣∣∣∣

=
∣∣∣∣

∫ η

0
Du(t + ξw) · w�ξ

∣∣∣∣

≤
∫ η

0

∣∣Du(t + ξw)
∣∣�ξ .

Hence,
∫

∂B(0,1)

∣∣u(t + ηw) – u(t)
∣∣�S ≤

∫ η

0

∫

∂B(0,1)

∣∣Du(t + ξw)
∣∣�S�ξ

=
∫ η

0

∫

∂B(0,1)

∣∣Du(t + ξw)
∣∣ξ

n–1

ξn–1 �S�ξ .

Let s = t + ξw, so that ξ = |t – s|. Then, converting the polar coordinates, we obtain

∫

∂B(0,1)

∣∣u(t + ηw) – u(t)
∣∣�S ≤

∫

B(t,η)

|Du(η)|
|t – s|n–1 �s

≤
∫

B(t,r)

|Du(η)|
|t – s|n–1 �s.

Multiplying by ηn–1 and integrating from 0 to r with respect to η, we get

∫

B(t,r)

∣∣u(s) – u(t)
∣∣�s ≤ rn

n

∫

B(t,r)

|Du(η)|
|t – s|n–1 �s,

which asserts
∫ Avg

B(t,r)

∣∣u(s) – u(t)
∣∣�s ≤ C

∫

B(t,r)

|Du(s)|
|s – t|n–1 �s.

Step 2. Fix t ∈ T
n. Then, applying inequality (3.2) and Hölder’s inequality on time scales,

we have

∣∣u(t)
∣∣ ≤

∫ Avg

B(t,1)

∣∣u(t) – u(s)
∣∣�s +

∫ Avg

B(t,1)

∣∣u(s)
∣∣�s

≤ C
∫

B(t,1)

|Du(η)|
|t – s|n–1 �s + C‖u‖Lp

�(Tn)

≤
(∫

Tn
|Du|p�s

)1/p(∫

B(t,1)

�s

|t – s|(n–1) p
p–1

) p–1
p

+ C‖u‖Lp
�(Tn)

≤ ‖u‖W 1,p
� (Tn).
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Thus,

∣∣u(t)
∣∣ ≤ ‖u‖W 1,p

� (Tn). (3.3)

The last estimate holds since p > n implies (n – 1) p
p–1 < n; therefore

∫

B(t,1)

�s

|t – s|(n–1) p
p–1

< ∞.

As t ∈ T
n is arbitrary, inequality (3.3) implies

sup
Tn

|u| ≤ C‖u‖W 1,p
� (Tn). (3.4)

Step 3. Next choose any two points t, s ∈ T
n and write r := |x – y|.

Let V := B(t, r) ∩ B(s, r). Then

∣∣u(t) – u(s)
∣∣ ≤

∫ Avg

V

∣∣u(t) – u(z)
∣∣�z +

∫ Avg

V

∣∣u(s) – u(z)
∣∣�z. (3.5)

But inequality (3.2) and Hölder’s inequality on time scales allow us to estimate

∫ Avg

V

∣∣u(t) – u(z)
∣∣�z ≤ C

∫ Avg

B(t,r)

∣∣u(t) – u(z)
∣∣�z

≤
(∫

B(t,r)
|Du|p�z

)1/p(∫

B(t,r)

�z

|t – z|(n–1) p
p–1

) p–1
p

≤ C
(
rn–(n–1) p

p–1
) p–1

p ‖Du‖Lp
�(Tn)

= C‖Du‖Lp
�(Tn).

Therefore,

∫ Avg

V

∣∣u(t) – u(z)
∣∣�z ≤ Cr1– n

p ‖Du‖Lp
�(Tn). (3.6)

Similarly, we can estimate

∫ Avg

V

∣∣u(s) – u(z)
∣∣�z ≤ Cr1– n

p ‖Du‖Lp
�(Tn), (3.7)

substituting (3.6) and (3.7) into (3.5) yields

∣∣u(t) – u(s)
∣∣ ≤ Cr1– n

p ‖Du‖Lp
�(Tn) = C|t – s|1– n

p ‖Du‖Lp
�(Tn).

Thus,

‖u‖
C0,1– n

p (Tn)
= sup

t �=s

{
u(t) – u(s)

|t – s|1– n
p

}
≤ C‖Du‖Lp

�(Tn).

Using this inequality and (3.4), we get our desired estimate (3.1). �
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Remark 3.2 We say u∗ is a version of a given function u provided

u = u∗ a.e. �Tn .

Theorem 3.3 Let �Tn be a bounded, open subset of Tn, and suppose ∂�Tn is C1. Assume
n < p ≤ ∞ and u ∈ W 1,p

� (�Tn ). Then u has a version u∗ ∈ C0,γ (�Tn ), for γ = 1 – n
p , with the

estimate

∥∥u∗∥∥
C0,γ (�Tn ) ≤ ‖u‖W 1,p

� (�Tn ).

The constant C depends only on p, n, and �Tn .

Proof Since ∂�Tn is C1, then for any u ∈ W 1,p
� (�Tn ) there exists an extension u ∈ W 1,p

� (Tn)
such that

⎧
⎨

⎩
u = uin�Tn , u has compact support,

‖u‖W 1,p
� (�Tn ) ≤ C2‖u‖W 1,p

� (�Tn ).
(3.8)

Since u has compact support, there exists a sequence of functions um ∈ C∞
c (Tn) such that

um −→ u in W 1,p
�

(
T

n). (3.9)

Now, according to Theorem 3.1, we have

‖um – ul‖C0,1– n
p (Tn)

≤ C‖um – ul‖W 1,p
� (Tn)

for all l, m ≥ 1; whence there exists a function u∗ ∈ C0,1– n
p (Tn) such that

um −→ u∗ in C0,1– n
p
(
T

n). (3.10)

Incorporating (3.9) and (3.10), we see that u∗ = u a.e. on �Tn ; so that u∗ is a version of u.
Theorem 3.1 also implies

‖um‖
C0,1– n

p (Tn)
≤ C‖um‖W 1,p

� (Tn).

Assertions (3.9) and (3.10) yield

∥∥u∗∥∥
C0,1– n

p (Tn)
≤ C‖u‖W 1,p

� (Tn).

This inequality and (3.8) yield the complete proof. �

Now we are capable of developing the general Sobolev type inequalities on time scales.

Theorem 3.4 (General Sobolev’s embedding on time scales) Let �Tn be a bounded open
subset of Tn, with a C1 boundary. Assume u ∈ W k,p

� (Tn).
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(i) If k < n
p , then u ∈ Lq

�(�Tn ), where 1
q = 1

p – k
n and

‖u‖Lq
�(�Tn ) ≤ C‖u‖W k,p

� (�Tn ) (3.11)

the constant C depends only on k, p, n, and �Tn .
(ii) If k > n

p , then u ∈ Ck–[ n
p ]–1,γ (�Tn ), where

γ =

⎧
⎨

⎩
[ n

p ] + 1 – n
p if [ n

p ] is not an integer,

any positive number < 1 if [ n
p ] is an integer

and

‖u‖
Ck–[ n

p ]–1,γ (�Tn )
≤ C‖u‖W k,p

� (�Tn ), (3.12)

the constant C depending only on k, p, n, γ , and �Tn .

Proof (i) Assume k < n
p . Moreover, if Dαu ∈ Lp

�(�Tn ) for all |α| = k, then the Sobolev–
Nirenberg–Gagliardo inequality on time scales implies that

∥∥Dβu
∥∥

Lp∗
� (�Tn )

≤ C‖u‖W k,p
� (�Tn ) whenever |β| = k – 1,

thus we have, u ∈ W k–1,p∗
� (�Tn ). Similarly, we find that u ∈ W k–2,p∗∗

� (�Tn ), where 1
p∗∗ =

1
p∗ – 1

n = 1
p – 2

n . Continuing in this way, after k steps we eventually come to the point that
u ∈ W 0,q

� (�Tn ) = Lq
�(�Tn ) for 1

q = 1
p – k

n . The required estimate (3.11) follows by multiplying
the relevant estimates at each stage of the above argument.

(ii) Now assume that k > n
p and n

p are not integers. Then, as above, we see

u ∈ W k–l,r
� (�Tn ) (3.13)

for

1
r

=
1
p

–
l
n

(3.14)

with l < p < n. We choose the integer l so that

l <
n
p

< l + 1, (3.15)

that is, l = [ n
p ]. Consequently, (3.14) and (3.15) imply r = pn

n–pl > n. Hence (3.13) and Mor-
rey’s inequality on time scales imply that Dαu ∈ C0,1– n

r (�Tn ) for all |α| ≤ k – l – 1. Observe
that 1 – n

r = 1 – n
p + l = [ n

p ] + 1 – n
p . Thus u ∈ Ck–[ n

p ]–1,[ n
p ]+1– n

p (�Tn ), and the stated estimate
follows easily.

Finally, suppose that k > n
p and n

p are integers. Set l = [ n
p ] – l = n

p – 1. Consequently, we
have, as above, u ∈ W k–l,r

� (�Tn ) for r = pn
n–pl = n. Hence the Sobolev–Nirenberg–Gagliardo

inequality on time scales shows Dαu ∈ Lq(�Tn ) for all n ≤ q < ∞ and all |α| ≤ k – l – 1 =
k – [ n

p ]. Therefore, Morrey’s inequality on time scales further implies Dαu ∈ C0,1– n
r (�Tn )

for all n ≤ q < ∞ and all |α| ≤ k – [ n
p ] – 1. Consequently, u ∈ Ck–[ n

p ]–1,γ (�Tn ) for 0 < γ < 1.
�
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4 Conclusion
We studied embedding for functions in Sobolev spaces W 1,p

� (Tn) for n ≤ p ≤ ∞ and after
that developed general Sobolev’s embedding on an arbitrary time scale. In case of T =
R, the results coincide with the classical results on Sobolev spaces, see [11–13]. These
embeddings are important for further discussion of Sobolev spaces on time scales.

Funding
The authors acknowledge the financial and moral support by the Institution of Business Administration, Karachi, for the
academic year 2017–2018 during which this research was carried out.

Competing interests
It is declared that no competing interests exist among the authors regarding this manuscript.

Authors’ contributions
All authors have equal contribution in this manuscript. All authors have checked the manuscript and approved the final
version.

Author details
1Institution of Business Administration, Karachi, Pakistan. 2Department of Mathematics and Statistics, University of Swat,
KPK, Pakistan. 3Department of Mathematics, University of Education, Okara, Pakistan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 January 2018 Accepted: 9 June 2018

References
1. Agarwal, R.P., Otero-Espinar, V., Perera, K., Vivero, D.R.: Basic properties of Sobolev’s spaces on time scales. Adv. Differ.

Equ. 2006, Article ID 38121 (2006)
2. Su, Y.H., Yao, J., Feng, Z.: Sobolev spaces on time scales and applications to semilinear Dirichlet problem. Dyn. Partial

Differ. Equ. 12(3), 241–263 (2015)
3. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel

(2001)
4. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Cambridge (2003)
5. Guseinov, G.S.: Integration on time scales. J. Math. Anal. Appl. 285(1), 107–127 (2003)
6. Bohner, M., Guseinov, G.S.: Partial differentiation on time scales. Dyn. Syst. Appl. 13, 351–379 (2004)
7. Brezis, H.: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1996)
8. Tveito, A., Winther, R.: Introduction to Partial Differential Equations: A Computational Approach. Text in Applied

Mathematics, vol. 29. Springer, Berlin (2009)
9. Zhou, J., Li, Y.: Sobolev’s spaces on time scales and its applications to a class of second order Hamiltonian systems on

time scales. Nonlinear Anal., Real World Appl. 73(5), 1375–1388 (2010)
10. Rzezuchowski, T.: A note on measures on time scales. Demonstr. Math. 38(1), 79–84 (2005)
11. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1998)
12. Driver, B.K.: Analysis Tools with Applications. Draft. Springer, New York (2003)
13. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)


	Sobolev's embedding on time scales
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Some function spaces and results on time scales

	Main results and discussions
	Conclusion
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


