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Abstract
Inequalities are frequently used for solving practical engineering problem. There are
two key issues of bounding inequalities; one is to find the bounds, and the other is to
prove the bounds. This paper takes Wilker type inequalities as an example, presents a
two-point-Padé-approximant-based method for finding the bounds, and it also
provides a method to prove the bounds in a new way. It not only recovers the
estimates in Mortici’s method, but it also provides new improvements of estimates
obtained from prevailing methods. In principle, it can be applied for other inequalities.

Keywords: Wilker’s inequality; Trigonometric approximation; Padé approximant;
Two-sided bounds; Becker–Stark’s inequality

1 Introduction
The Wilker inequality, which involves the trigonometric function

f (x) =
(

sin x
x

)2

+
tan x

x
, (1)

has been discussed in the recent past; see also [2, 3, 6–9, 11–15, 17–23] and the references
therein, such as the following ones in [14, 18]:

2 +
16
π4 x3 tan x < f (x) < 2 +

8
45

x3 tan x, 0 < x < π/2, (2)

2 +
(

8
45

– a(x)
)

x3 tan x < f (x) < 2 +
(

8
45

– b(x)
)

x3 tan x, 0 < x < 1, (3)

2 +
(

16
π4 + c(x)

)
x3 tan x < f (x), (π – 1)/2 < x < π/2, (4)

f (x) < 2 +
(

16
π4 + d(x)

)
x3 tan x, π/3 – 1/2 < x < π/2, (5)

where a(x) = 8
945 x2, b(x) = 8

945 x2 – 16
14,175 x4, c(x) = ( 160

π5 – 16
π3 )( π

2 – x), d(x) = ( 160
π5 – 16

π3 )( π
2 –

x) + ( 960
π6 – 96

π4 )( π
2 – x)2.
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Recently, Nenezić, Malešević and Mortici provided inequalities within the extended in-
terval (0,π/2) [15], e.g., Eq. (7) extends both Eq. (4) and Eq. (5), while Eq. (6) extends the
left side of Eq. (3). We have

2 +
(

8
45

– a(x)
)

x3 tan x < f (x) < 2 +
(

8
45

– b1(x)
)

x3 tan x, 0 < x < π/2, (6)

2 +
(

16
π4 + c(x)

)
x3 tan x < f (x) < 2 +

(
16
π4 + d(x)

)
x3 tan x, 0 < x < π/2, (7)

where b1(x) = 8
945 x2 – α

14,175 x4 with α = 480π6–40,320π4+3,628,800
π8 ≈ 17.15041.

In this paper, we consider

F(x) = f (x) · cos(x) =
(

sin x
x

)2

· cos(x) +
sin x

x
(8)

instead of f (x), which is bounded for x ∈ (0,π/2]. Firstly, we present a two-point-Padé
approximant-based method [1] to find the two bounding functions

L(x) = l1(x) · cos(x) + l2(x) · sin(x), R(x) = r1(x) · cos(x) + r2(x) · sin(x), (9)

such that

L(x) ≤ F(x) ≤ R(x), 0 ≤ x ≤ π/2, (10)

where li(x) and ri(x) are unknown polynomials to be determined. Note that cos(x) > 0,∀x ∈
(0,π/2), from Eq. (10), we obtain

l1(x) + l2(x) · tan(x) ≤ f (x) ≤ r1(x) + r2(x) · tan(x), 0 ≤ x ≤ π/2. (11)

Secondly, we also provide a new way for proving it.

2 The two-point-Padé approximant-based method and examples
Given an interval [a, b] ⊆ [0,π/2]. From Eq. (9), let

li(x) =
pi∑

j=0

αi,jxj and ri(x) =
qi∑

j=0

βi,jxj, (12)

where pi, qi ≥ 2, αi,j and βi,j are the unknowns to be determined, and i = 1, 2; so there are
np = p1 + p2 + 2 and nq = q1 + q2 + 2 unknowns in L(x) and R(x) in Eq. (9), respectively.
Let E1(x) = F(x) – L(x) and E2(x) = F(x) – R(x). For the sake of convenience, we introduce
Theorem 3.5.1 in Page 67, Chap. 3.5 of [4] as follows.

Theorem 1 Let w0, w1, . . . , wr be r + 1 distinct points in [a, b], and n0, . . . , nr be r + 1 integers
≥ 0. Let N = n0 + · · · + nr + r. Suppose that g(t) is a polynomial of degree N such that
g(i)(wj) = f (i)(wj), i = 0, . . . , nj, j = 0, . . . , r. Then there exists ξ1(t) ∈ [a, b] such that f (t)–g(t) =
f (N+1)(ξ1(t))

(N+1)!
∏r

i=0(t – wi)ni+1.
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We introduce the following constraints:

⎧⎨
⎩

E(i)
1 (a) = 0, E(j)

1 (b) = 0, i = 0, 1, . . . , k, and j = 0, 1, . . . , N1,

E(i)
2 (a) = 0, E(j)

2 (b) = 0, i = 0, 1, . . . , l, and j = 0, 1, . . . , N2,
(13)

where N1 ≥ np – k – 1 and N2 ≥ nq – l – 1. By selecting suitable k and N1, we can find np

constraints for determining L(x); similarly, by selecting suitable l and N2, we can find nq

constraints for determining R(x). Combining Theorem 1 with Eq. (13), there exists ξi(x) ∈
[a, b], i = 1, 2, such that

⎧⎨
⎩

E1(x) = E(N1+k+2)
1 (ξ1(x))

(N1+k+2)! (x – a)k+1(x – b)N1+1, x ∈ [a, b],

E2(x) = E(N2+l+2)
2 (ξ2(x))

(N2+l+2)! (x – a)l+1(x – b)N2+1, x ∈ [a, b].
(14)

From Eq. (14), if (–1)d · E(N1+k+2)
1 (ξ1(x)) ≥ 0, ∀x ∈ [a, b], we have E1(x) · (–1)N1+1+d ≥ 0,

where d = 0 or d = 1; similarly, if (–1)d · E(N2+l+2)
2 (ξ2(x)) ≥ 0, ∀x ∈ [a, b], we have E2(x) ·

(–1)N2+1+d ≥ 0. Based on the above observations, one may find the bounding functions in
the above way.

We will show three examples which recover or refine previous Wilker type inequalities,
including Eq. (2), Eq. (6) and Eq. (7), where cj is a unknown coefficient to be determined
by interpolation constraints.

Example 1 Let L1(x) = 2 cos(x) + c1 sin(x) and R1(x) = 2 cos(x) + c2 sin(x), E1,l(x) = F(x) –
L1(x) and E1,r(x) = F(x) – R1(x), x ∈ [0,π/2]. It can be verified that E(j)

1,i(0) = 0, where
j = 0, 1, 2, 3, i = l, r. By applying the constraints L1(π/2) = F(π/2) and R(4)

1 (0) = F (4)(0), we
obtain c1 = 16

π4 and c2 = 8
45 , respectively, which recovers Eq. (2).

Example 2 Let L2(x) = 2 cos(x) + (c3 + c4x + c5x2)x3 sin(x) and R2(x) = 2 cos(x) + (c6 + c7x2 +
c8x4)x3 sin(x), E2,l(x) = F(x) – L2(x) and E2,r(x) = F(x) – R2(x), x ∈ [0,π/2]. It can be verified
that E(j)

2,i(0) = 0, where j = 0, 1, 2, 3, i = l, r. By applying the constraints L(j)
2 (0) = F (j)(0), j =

4, 5, 6, we obtain c3 = 8
45 , c4 = 0 and c5 = – 8

945 , which recovers the left side of Eq. (6). By
applying the constraints R(4)

2 (0) = F (4)(0), R(5)
2 (0) = F (5)(0) and R2(π/2) = F(π/2), we obtain

c6 = 8
45 , c7 = – 8

945 and c8 = α
14,175 , which recovers the right side of Eq. (6).

Example 3 Let L3(x) = 2 cos(x) + (c9 + c10(π/2 – x))x3 sin(x), R3(x) = 2 cos(x) + (c11 +
c12(π/2 – x) + c13(x – π/2)2)x3 sin(x), E3,l(x) = F(x) – L3(x) and E3,r(x) = F(x) – R3(x),
x ∈ [0,π/2]. It can be verified that E(j)

3,i(0) = 0, where j = 0, 1, 2, 3, i = l, r. By applying the
constraints L3(π/2) = F(π/2) and L′

3(π/2) = F ′(π/2), we obtain c9 = 16
π4 and c10 = 160

π5 – 16
π3 ,

which recovers the left side of Eq. (7). By applying the constraints R(j)
3 (π/2) = F (j)(π/2),

j = 0, 1, 2, we obtain c11 = 16
π4 , c12 = 160

π5 – 16
π3 and c13 = 960

π6 – 96
π4 , which recovers the right

side of Eq. (7).

3 Results
This section finds other two bounding functions L(x) and R(x) to improve the bounds of
Eq. (6) and Eq. (7). Combining Eq. (12) with Eq. (13), by setting p1 = q1 = 4, p2 = q2 = 5,
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k = 8, N1 = 1, l = 7 and N2 = 2, we obtain L(x) and R(x) in Eq. (10) as

L(x) = l1(x) · cos(x) + l2(x) · sin(x) =

( 4∑
j=0

α1,jxj

)
· cos(x) +

( 5∑
j=0

α2,jxj

)
· sin(x),

R(x) = r1(x) · cos(x) + r2(x) · sin(x) =

( 4∑
j=0

β1,jxj

)
· cos(x) +

( 5∑
j=0

β2,jxj

)
· sin(x),

where

λ1 =
16(2π10 – 177π8 + 4935π6 – 85,050π4 + 831,600π2 – 3,175,200)

(π8 – 360π6 + 35,760π4 – 604,800π2 + 2,822,400)π
,

α1,1 =
λ1

3
, α1,3 =

2λ1

–63
, α2,2 =

λ1

7
,

λ2 =
8(3π10 – 308π8 + 9300π6 – 132,720π4 + 957,600π2 – 2,822,400)

(π8 – 360π6 + 35,760π4 – 604,800π2 + 2,822,400)π2 ,

α1,2 = –λ2, α2,1 = λ2,

λ3 =
(11π10 – 1065π8 + 25,935π6 – 346,500π4 + 2,885,400π2 – 10,584,000)

(π8 – 360π6 + 35,760π4 – 604,800π2 + 2,822,400)π2 ,

α1,4 =
64λ3

315
, α2,3 =

32λ3

–35
, α1,0 = 2, α2,0 = –α1,1, α2,4 =

16λ1

–315
,

α2,5 =
32(2π10 – 141π8 – 1965π6 + 51,660π4 + 12,600π2 – 2,116,800)

315(π8 – 360π6 + 35,760π4 – 604,800π2 + 2,822,400)π2 ;

λ4 =
16(7π10 – 90π8 – 2445π6 + 94,500π4 – 1,134,000π2 + 4,536,000)

(5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600)π
,

β1,1 = λ4, β2,0 = –λ4, β1,3 =
2λ4

–21
, β1,0 = 2,

β1,2 =
40(π12 – 234π10 + 6180π8 – 8568π6 – 1,572,480π4 + 20,260,800π2 – 76,204,800)

21(5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600)π2 ,

β2,1 = –β1,2,

β1,4 =
32(12π12 + 4615π10 – 188,175π8 + 2,650,200π6 – 11,692,800π4 – 45,360,000π2 + 381,024,000)

105(5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600)π4 ,

β2,2 =
3λ4

7
,

β2,3 =
32(π14 – 165π12 + 3108π10 + 13,401π8 – 980,280π6 + 9,933,840π4 – 22,680,000π2 – 76,204,800)

21(5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600)π4 ,

β2,4 =
16λ4

–105
,

β2,5 =
32(13π12 – 2050π10 + 58,995π8 – 616,200π6 + 882,000π4 + 25,704,000π2 – 127,008,000)

–105(5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600)π4 .

In principle, more bounds can be found by setting different parameters in Eq. (12) and
Eq. (13). The main result is as follows.

Theorem 2 We have L(x) ≤ F(x) ≤ R(x), ∀x ∈ [0,π/2].

Proof (1) Firstly, we give the bounds of sin(x), cos(x) and sin(2x). Let �1,1(x) = sin(x) –
P1(x), �1,2(x) = sin(x) – Q1(x), �2,1(x) = cos(x) – P2(x), �2,2(x) = cos(x) – Q2(x), �3,1(x) =
sin(2x)/2 – P3(x), �3,2(x) = sin(2x)/2 – Q3(x), where P1(x), Q1(x), P2(x), Q2(x), P3(x) and
Q3(x) are polynomials of degree 12, 12, 13, 13, 15 and 15, respectively. By introducing the
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following constraints:

�
(i)
1,1(0) = 0, �

(j)
1,1(π/2) = 0, i = 0, 1, . . . , 10, j = 0, 1;

�
(i)
1,2(0) = 0, �

(j)
1,2(π/2) = 0, i = 0, 1, . . . , 9, j = 0, 1, 2;

�
(i)
2,1(0) = 0, �

(j)
2,1(π/2) = 0, i = 0, 1, . . . , 10, j = 0, 1, 2;

�
(i)
2,2(0) = 0, �

(j)
2,2(π/2) = 0, i = 0, 1, . . . , 11, j = 0, 1;

�
(i)
3,1(0) = 0, �

(j)
3,1(π/2) = 0, i = 0, 1, . . . , 13, j = 0, 1;

�
(i)
3,2(0) = 0, �

(j)
3,2(π/2) = 0, i = 0, 1, . . . , 12, j = 0, 1, 2;

(15)

we can obtain P1(x) = x – 1
6 x3 + 1

120 x5 – 1
5040 x7 + 1

362,880 x9 + γ1,1
30,240π11 x11 + γ1,2

22,680π12 x12,
Q1(x) = x – 1

6 x3 + 1
120 x5 – 1

5040 x7 + 1
362,880 x9 – γ1,3

60,480π10 x10 + γ1,4
30,240π11 x11 – γ1,5

45,360π12 x12, P2(x) =
1 – 1

2 x2 + 1
24 x4 – 1

720 x6 + 1
40,320 x8 – 1

3,628,800 x10 + γ2,1
604,800π11 x11 – γ2,2

302,400π12 x12 + γ2,3
453,600π13 x13,

Q2(x) = 1 – 1
2 x2 + 1

24 x4 – 1
720 x6 + 1

40,320 x8 – 1
3,628,800 x10 + γ2,4

302,400π12 x12 – γ2,5
226,800π13 x13, P3(x) =

x – 2
3 x3 + 2

15 x5 – 4
315 x7 + 2

2835 x9 – 4
155,925 x11 + 4

6,081,075 x13 – γ3,1
6,081,075π13 x14 + γ3,2

6,081,075π14 x15,
Q3(x) = x– 2

3 x3 + 2
15 x5 – 4

315 x7 + 2
2835 x9 – 4

155,925 x11 + γ3,3
51,975π12 x13 – γ3,4

155,925π13 x14 + γ3,5
155,925π14 x15,

where γ1,1 = –743,178,240 + 340,623,360π – 11,612,160π3 + 112,896π5 – 480π7 + π9,
γ1,2 = –1,021,870,080+464,486,400π –15,482,880π3 +145,152π5 –576π7 +π9, γ1,3 = π9 –
960π7 + 338,688π5 – 46,448,640π3 + 7,741,440π2 + 1,703,116,800π – 4,087,480,320, γ1,4 =
π9 –1440π7 +564,480π5 –81,285,120π3 +15,482,880π2 +3,065,610,240π –7,431,782,400,
γ1,5 = π9 – 1728π7 + 725,760π5 – 108,380,160π3 + 23,224,320π2 + 4,180,377,600π –
10,218,700,800, γ2,1 = π10 – 1200π8 + 564,480π6 – 116,121,600π4 + 8,515,584,000π2 +
7,431,782,400π – 96,613,171,200, γ2,2 = π10 – 1800π8 + 940,800π6 – 203,212,800π4 +
15,328,051,200π2 + 14,244,249,600π – 177,124,147,200, γ2,3 = π10 – 2160π8 +
1,209,600π6 – 270,950,400π4 + 20,901,888,000π2 + 20,437,401,600π – 245,248,819,200,
γ2,4 = π10 – 600π8 + 188,160π6 – 29,030,400π4 + 1,703,116,800π2 + 619,315,200π –
16,102,195,200, γ2,5 = π10 – 720π8 + 241,920π6 – 38,707,200π4 + 2,322,432,000π2 +
928,972,800π – 22,295,347,200, γ3,1 = 16(π12 – 312π10 + 51,480π8 – 4,942,080π6 +
259,459,200π4 – 6,227,020,800π2 + 40,475,635,200), γ3,2 = 16(π12 – 468π10 + 85,800π8 –
8,648,640π6 +467,026,560π4 –11,416,204,800π2 +74,724,249,600), γ3,3 = 32(π10 –275π8 +
36,960π6 –2,494,800π4 +73,180,800π2 –512,265,600), γ3,4 = 256(π10 –330π8 +47,520π6 –
3,326,400π4 + 99,792,000π2 – 703,533,600), γ3,5 = 64(3π10 – 1100π8 + 166,320π6 –
11,975,040π4 + 365,904,000π2 – 2,594,592,000).

Combining Theorem 1 with Eq. (15), there exists ηi(x) ∈ [0,π/2], i = 1, 2, . . . , 6, such that

�1,1(x) =
�

(13)
1,1 (η1(x))

13!
x11(x – π/2)2 =

cos(η1(x))
13!

x11(x – π/2)2 ≥ 0, ∀x ∈ [0,π/2],

�1,2(x) =
�

(13)
1,2 (η2(x))

13!
x10(x – π/2)3 =

cos(η2(x))
13!

x10(x – π/2)3 ≤ 0, ∀x ∈ [0,π/2],

�2,1(x) =
�

(14)
2,1 (η3(x))

14!
x11(x – π/2)3 =

– cos(η3(x))
14!

x11(x – π/2)3 ≥ 0, ∀x ∈ [0,π/2],

�2,2(x) =
�

(13)
2,2 (η4(x))

13!
x11(x – π/2)2 =

– sin(η4(x))
13!

x11(x – π/2)2 ≤ 0, ∀x ∈ [0,π/2],
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�3,1(x) =
�

(16)
3,1 (2η5(x))

16!
x14(x – π/2)2

=
215 sin(2η5(x))

16!
x14(x – π/2)2 ≥ 0, ∀x ∈ [0,π/2],

�3,2(x) =
�

(16)
3,2 (2η6(x))

16!
x13(x – π/2)3

=
215 sin(2η6(x))

16!
x13(x – π/2)3 ≤ 0, ∀x ∈ [0,π/2].

So for ∀x ∈ [0,π/2], we have

�i,1(x) ≥ 0 and �i,2(x) ≤ 0, i = 1, 2, 3, (16)

i.e., Q1(x) ≥ sin(x) ≥ P1(x), Q2(x) ≥ cos(x) ≥ P2(x) and Q3(x) ≥ sin(2x)
2 ≥ P3(x).

(2) Secondly, we prove that �4(x) = (F(x) – L(x)) ·x2 ≥ 0, ∀x ∈ [0,π/2], which means that
F(x) ≥ L(x).

Note that li(x) and ri(x) are polynomials of degree 3 + i, i = 1, 2, polynomials P1(x), Q1(x),
P2(x), Q2(x), P3(x) and Q3(x) are of degree 12, 12, 13, 13, 15 and 15, respectively, by using
Maple software, ∀x ∈ (0,π/2), we obtain

Pi(x) > 0 and Qi(x) > 0, i = 1, 2, 3,

l1(x) · x2 > 0 and x – l2(x) · x2 > 0,

r1(x) · x2 > 0 and x – r2(x) · x2 > 0.

(17)

Combining Eq. (17) with Eq. (16), we have

�4(x) = sin(x)2 cos(x) – l1(x)x2 cos(x) +
(
x – l2(x)x2) sin(x)

≥ P3(x)P1(x) – l1(x)x2Q2(x) +
(
x – l2(x)x2)P1(x)

=
(π – 2x)2x11

2,206,700,496,000(π4 – 180π2 + 1680)2π26 H1(x), (18)

where

H1(x) =
14∑
i=0

ρ1,ixi,

and

ρ1,0 = 118,609,920
(
2π10 – 177π8 + 4935π6 – 85,050π4 + 831,600π2 – 3,175,200

)
π23

> 0,

ρ1,1 = 5265
(
40,981π19 + 8,062,512π17 – 1,200,402,000π15 + 10,812,049,920π13

+ 1,876,776,249,600π11 – 245,548,461,312,000π9 + 20,600,900,812,800π8

+ 16,840,163,450,880,000π7 – 7,416,324,292,608,000π6

– 541,159,913,226,240,000π5 + 736,688,213,065,728,000π4

+ 6,619,069,431,152,640,000π3 – 12,459,424,811,581,440,000π2

– 26,649,325,291,438,080,000π + 58,143,982,454,046,720,000
)
π13 > 0,
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ρ1,2 = –21,060
(
484π21 – 1799π19 – 31,876,698π17 + 7,133,539,980π15

– 859,925,324,160π13 + 60,601,122,187,200π11 – 27,467,867,750,400π10

– 2,219,580,715,968,000π9 + 2,419,747,474,636,800π8

+ 41,725,676,095,488,000π7 – 63,759,788,015,616,000π6

– 423,071,687,098,368,000π5 + 769,031,627,341,824,000π4

+ 2,296,485,418,106,880,000π3 – 4,672,284,304,343,040,000π2

– 5,450,998,355,066,880,000π + 12,113,329,677,926,400,000
)
π12 < 0,

ρ1,3 = 810
(
3287π21 – 9,411,072π19 + 1,953,992,280π17 – 104,047,433,280π15

– 4,486,871,592,000π13 + 792,548,506,713,600π11 – 115,307,819,827,200π10

– 41,557,678,312,550,400π9 + 48,741,731,323,084,800π8

+ 730,819,102,261,248,000π7 – 3,383,354,610,155,520,000π6

– 538,971,067,514,880,000π5 + 61,377,087,827,607,552,000π4

– 77,611,833,722,142,720,000π3 – 404,931,306,376,396,800,000π2

+ 440,925,200,276,520,960,000π + 818,861,086,227,824,640,000
)
π11 < 0,

ρ1,4 = 42,120 × (
7155π21 – 3,921,584π19 + 897,324,984π17 – 94,307,498,880π15

+ 3,633,527,540,160π13 – 7,030,466,150,400π12 + 28,926,516,326,400π11

+ 617,046,029,107,200π10 – 5,729,151,646,310,400π9

– 15,296,168,853,504,000π8 + 163,845,831,131,136,000π7

+ 158,438,094,667,776,000π6 – 2,245,772,867,272,704,000π5

– 381,528,683,053,056,000π4 + 15,718,487,320,166,400,000π3

– 5,595,204,660,756,480,000π2 – 44,819,319,808,327,680,000π

+ 33,917,323,098,193,920,000
)
π10 > 0,

ρ1,5 = –324
(
3013π23 – 1,983,240π21 + 462,480,560π19 – 40,847,734,080π17

– 668,523,878,400π15 + 303,913,241,049,600π13 – 85,019,590,656,000π12

– 14,955,232,900,608,000π11 + 33,853,738,254,336,000π10

+ 452,685,482,016,768,000π9 – 1,559,110,508,347,392,000π8

– 12,135,218,135,040,000,000π7 + 37,422,223,023,144,960,000π6

+ 196,234,567,389,020,160,000π5 – 506,271,257,654,722,560,000π4

– 1,522,241,762,859,417,600,000π3 + 3,494,407,199,470,387,200,000π2

+ 4,409,252,002,765,209,600,000π – 9,448,397,148,782,592,000,000
)
π9 > 0,
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ρ1,6 = –5616
(
523π23 – 103,800π21 – 73,486,320π19 + 32,685,822,720π17

– 4,913,000,467,200π15 – 1,798,491,340,800π14 + 336,334,858,675,200π13

+ 147,670,445,260,800π12 – 11,847,491,453,952,000π11

– 167,995,441,152,000π10 + 267,060,636,057,600,000π9

– 118,249,170,665,472,000π8 – 4,235,673,962,741,760,000π7

+ 3,896,145,366,220,800,000π6 + 43,348,415,490,293,760,000π5

– 59,726,131,636,469,760,000π4 – 242,050,284,099,993,600,000π3

+ 430,888,441,400,524,800,000π2 + 545,099,835,506,688,000,000π

– 1,162,879,649,080,934,400,000
)
π8 < 0,

ρ1,7 = 6
(
4603π17 – 1,561,248π15 + 172,972,800π13 – 1,793,381,990,400π9

+ 144,666,147,225,600π7 – 114,776,447,385,600π6

– 4,787,134,326,374,400π5 + 5,624,045,921,894,400π4

+ 74,317,749,682,176,000π3 – 128,549,621,071,872,000π2

– 385,648,863,215,616,000π + 819,503,834,333,184,000
)

× (
π4 – 180π2 + 1680

)2
π7 < 0,

ρ1,8 = 312
(
199π17 – 31,680π15 + 766,402,560π11 – 116,876,390,400π9

+ 7,035,575,500,800π7 – 4,782,351,974,400π6 – 204,560,507,289,600π5

+ 231,760,134,144,000π4 + 3,051,508,432,896,000π3

– 5,253,229,707,264,000π2 – 15,759,689,121,792,000π

+ 33,373,459,316,736,000
)(

π4 – 180π2 + 1680
)2

π6 > 0,

ρ1,9 = –12
(
37π19 – 11,232π17 + 484,323,840π13 – 94,650,716,160π11

+ 8,146,603,745,280π9 – 3,188,234,649,600π8 – 396,337,419,878,400π7

+ 267,811,710,566,400π6 + 11,398,735,930,982,400π5

– 12,854,962,107,187,200π4 – 168,721,377,656,832,000π3

+ 289,236,647,411,712,000π2 + 867,709,942,235,136,000π

– 1,831,832,100,274,176,000
)(

π4 – 180π2 + 1680
)2

π5 > 0,

ρ1,10 = –624
(
π19 – 95,040π15 + 30,412,800π13 – 4,523,904,000π11

+ 353,311,580,160π9 – 132,843,110,400π8 – 16,491,067,084,800π7

+ 11,036,196,864,000π6 + 467,704,826,265,600π5 – 525,322,970,726,400π4

– 6,875,550,646,272,000π3 + 11,742,513,463,296,000π2

+ 35,227,540,389,888,000π – 74,163,242,926,080,000
)

× (
π4 – 180π2 + 1680

)2
π4 < 0,
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ρ1,11 = 4
(
π21 – 224,640π17 + 87,429,888π15 – 16,109,383,680π13

+ 1,712,015,585,280π11 – 347,807,416,320π10 – 119,419,314,094,080π9

+ 44,635,285,094,400π8 + 5,512,856,238,489,600π7

– 3,672,846,316,339,200π6 – 155,062,980,417,945,600π5

+ 173,541,988,447,027,200π4 + 2,265,687,071,391,744,000π3

– 3,856,488,632,156,160,000π2 – 11,569,465,896,468,480,000π

+ 24,295,878,382,583,808,000
)(

π4 – 180π2 + 1680
)2

π3 < 0,

ρ1,12 = 4992
(
π19 – 597π17 + 175,968π15 – 29,516,400π13 + 3,012,992,640π11

– 603,832,320π10 – 206,228,151,360π9 + 76,640,256,000π8

+ 9,423,877,478,400π7 – 6,253,844,889,600π6 – 263,144,318,976,000π5

+ 293,562,836,582,400π4 + 3,824,042,213,376,000π3

– 6,489,283,756,032,000π2 – 19,467,851,268,096,000π

+ 40,789,783,609,344,000
)(

π4 – 180π2 + 1680
)2

π2 > 0,

ρ1,13 = –48
(
π21 – 740π19 + 257,768π17 – 52,788,672π15 + 7,093,975,680π13

– 743,178,240π12 – 678,927,674,880π11 + 135,258,439,680π10

+ 45,959,564,851,200π9 – 17,003,918,131,200π8 – 2,082,714,284,851,200π7

+ 1,377,317,368,627,200π6 + 57,780,376,554,700,800π5

– 64,274,810,535,936,000π4 – 835,572,536,967,168,000π3

+ 1,414,045,831,790,592,000π2 + 4,242,137,495,371,776,000π

– 8,869,923,853,959,168,000
)(

π4 – 180π2 + 1680
)2

π > 0,

ρ1,14 = 64
(
π9 – 576π7 + 145,152π5 – 15,482,880π3 + 464,486,400π

– 1,021,870,080
)(

π12 – 468π10 + 85,800π8 – 8,648,640π6 + 467,026,560π4

– 11,416,204,800π2 + 74,724,249,600
)(

π4 – 180π2 + 1680
)2 < 0.

Note that 0 < xi < ( π
2 )i, i = 2, 3,∀x ∈ (0,π/2), we have H1(x) ≥ (ρ1,0 +ρ1,2 · ( π

2 )2 +ρ1,3 · ( π
2 )3) +

ρ1,1x + (ρ1,4 + ρ1,6 · ( π
2 )2 + ρ1,7 · ( π

2 )3)x4 + ρ1,5x5 + (ρ1,8 + ρ1,10 · ( π
2 )2 + ρ1,11 · ( π

2 )3)x8 + ρ1,9x9 +
(ρ1,12 + ρ1,14 · ( π

2 )2)x12 + ρ1,13x13 ≈ 9.6 · 108x13 + 4.3 · 109 ∗ x12 + 1.5 · 1013x9 + 5.0 · 1013x8 +
4.2 · 1016x5 + 1.2 · 1017x4 + 1.5 · 1019x + 3.8 · 1019 > 0, ∀x ∈ (0,π/2). It leads to �4(x) ≥ 0 and
F(x) ≥ L(x), ∀x ∈ [0,π/2].

(3) Finally, we prove that �5(x) = (F(x) – R(x)) · x2 ≤ 0, ∀x ∈ [0,π/2], which means that
F(x) ≤ R(x). Combining Eq. (17) with Eq. (16), we have

�5(x) = sin(x)2 cos(x) – r1(x)x2 cos(x) +
(
x – r2(x)x2) sin(x)

≤ Q3(x)Q1(x) – r1(x)x2P2(x) +
(
x – r2(x)x2)Q1(x)

� (π – 2x)3x10

–56,582,064,000γ̄ π26 H2(x), (19)
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where

γ̄ = 5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600 ≈ –0.12 < 0,

H2(x) =
14∑
i=0

ρ2,ixi,

and

ρ2,0 = –54,743,040
(
10π14 – 1542π12 + 72,615π10 – 1,559,565π8 + 14,049,000π6

– 5,896,800π4 – 635,040,000π2 + 2,667,168,000
)
π19 < 0,

ρ2,1 = –17,820
(
187,379π19 – 27,905,634π17 + 1,101,819,840π15

+ 16,808,329,440π13 – 4,064,256,000π12 – 3,819,046,492,800π11

+ 2,599,498,137,600π10 + 167,022,175,219,200π9

– 249,629,854,924,800π8

– 3,170,509,848,576,000π7 + 5,500,206,415,872,000π6

+ 40,549,244,682,240,000π5 – 77,445,340,987,392,000π4

– 349,559,830,609,920,000π3 + 759,892,318,617,600,000π2

+ 1,297,856,751,206,400,000π – 3,114,856,202,895,360,000
)
π13 < 0,

ρ2,2 = 135
(
470,935π21 – 163,016,586π19 + 16,583,895,072π17

– 399,774,876,480π15 – 39,075,261,120,000π13

+ 7,081,559,654,400π12 + 2,891,256,628,377,600π11

– 4,039,064,115,609,600π10 – 54,681,296,556,902,400π9

+ 116,088,651,192,729,600π8 + 29,143,836,868,608,000π7

– 519,915,234,263,040,000π6 + 10,877,661,896,048,640,000π5

– 19,708,263,780,581,376,000π4 – 126,300,002,703,114,240,000π3

+ 281,041,609,068,380,160,000π2 + 445,424,437,014,036,480,000π

– 1,083,969,958,607,585,280,000
)
π12 > 0,

ρ2,3 = 3240
(
118,457π21 – 29,814,542π19 + 2,683,328,595π17 – 112,738,193,340π15

– 3,193,344,000π14 + 3,713,195,298,960π13 + 4,257,366,220,800π12

– 176,445,931,032,000π11 – 538,724,796,825,600π10

+ 5,029,126,333,862,400π9 + 12,839,971,273,113,600π8

– 58,269,701,597,184,000π7 – 255,180,783,255,552,000π6

+ 377,530,820,739,072,000π5 + 3,806,634,452,189,184,000π4

– 2,922,752,802,816,000,000π3 – 26,758,510,065,745,920,000π2

+ 14,276,424,263,270,400,000π + 63,335,409,458,872,320,000
)
π11 > 0,
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ρ2,4 = –1350
(
2579π23 – 1,304,586π21 + 190,808,712π19 – 4,857,853,680π17

– 823,686,670,080π15 + 272,839,311,360π14 + 28,966,274,628,480π13

– 219,724,548,341,760π12 + 166,206,481,943,040π11

+ 5,303,591,552,286,720π10 – 1,171,730,648,309,760π9

+ 2,317,601,341,440,000π8 – 576,193,032,614,707,200π7

– 1,263,206,036,039,270,400π6 + 15,415,077,252,995,481,600π5

+ 10,344,536,334,139,392,000π4 – 149,767,724,873,023,488,000π3

+ 25,334,163,783,548,928,000π2 + 507,098,589,831,364,608,000π

– 361,323,319,535,861,760,000
)
π10 < 0,

ρ2,5 = –43,200
(
498π23 – 177,844π21 + 26,426,133π19 – 1,772,952,897π17

+ 143,700,480π16 + 13,733,029,656π15 – 119,156,438,016π14

+ 4,355,924,207,040π13 + 7,627,468,197,888π12 – 240,282,095,518,080π11

– 77,912,484,249,600π10 + 5,350,872,626,668,800π9

– 3,604,409,633,341,440π8 – 61,395,244,517,376,000π7

+ 111,158,598,116,966,400π6 + 395,514,763,370,496,000π5

– 1,303,336,590,822,604,800π4 – 1,470,286,291,009,536,000π3

+ 7,275,723,144,560,640,000π2 + 2,725,499,177,533,440,000π

– 16,197,252,255,055,872,000
)
π9 < 0,

ρ2,6 = 36
(
3055π25 – 1,943,682π23 + 419,154,420π21 – 44,118,680,220π19

+ 2,140,947,712,800π17 – 130,288,435,200π16 + 86,530,606,128,000π15

+ 3,142,250,496,000π14 – 20,960,647,460,121,600π13

– 17,423,671,703,961,600π12 + 1,023,195,300,994,944,000π11

+ 344,467,294,617,600,000π10 – 23,018,674,839,164,928,000π9

+ 5,473,622,558,638,080,000π8 + 281,073,089,819,934,720,000π7

– 255,696,320,798,392,320,000π6 – 1,893,832,571,360,378,880,000π5

+ 3,403,944,523,821,219,840,000π4 + 6,320,191,562,160,537,600,000π3

– 20,096,013,935,679,897,600,000π2 – 7,101,872,142,601,420,800,000π

+ 44,480,146,577,345,740,800,000
)
π8 > 0,
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ρ2,7 = 864
(
5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2

– 7,257,600
)(

139π15 – 30,800π13 + 638,668,800π9 – 106,444,800π8

– 64,399,104,000π7 + 60,673,536,000π6 + 2,557,229,875,200π5

– 3,344,069,836,800π4 – 45,600,952,320,000π3 + 86,373,568,512,000π2

+ 255,365,332,992,000π – 579,400,335,360,000
)
π7 > 0,

ρ2,8 = –2
(
199π17 – 95,040π15 + 5,364,817,920π11 – 1,051,887,513,600π9

+ 91,968,307,200π8 + 77,391,330,508,800π7 – 61,250,892,595,200π6

– 2,652,044,090,572,800π5 + 3,321,895,256,064,000π4

+ 45,115,972,780,032,000π3 – 84,515,195,584,512,000π2

– 250,300,944,875,520,000π + 563,640,646,238,208,000
)(

5π10 – 558π8

+ 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600
)
π6 < 0,

ρ2,9 = –1728
(
5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600

)
× (

π17 – 129,360π13 + 33,707,520π11 – 2,956,800π10 – 3,626,515,200π9

+ 1,774,080,000π8 + 211,718,707,200π7 – 163,924,992,000π6

– 7,086,030,336,000π5 + 8,762,535,936,000π4 + 118,562,476,032,000π3

– 219,957,534,720,000π2 – 652,361,859,072,000π

+ 1,459,230,474,240,000
)
π5 < 0,

ρ2,10 = 4
(
5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600

)
× (

π19 – 475,200π15 + 212,889,600π13 – 40,715,136,000π11

+ 2,554,675,200π10 + 3,886,427,381,760π9 – 1,778,053,939,200π8

– 214,297,651,814,400π7 + 162,232,093,900,800π6

+ 6,999,156,051,148,800π5 – 8,559,674,287,718,400π4

– 115,416,546,803,712,000π3 + 212,292,282,875,904,000π2

+ 630,387,564,871,680,000π – 1,401,685,291,302,912,000
)
π4 > 0,

ρ2,11 = 4608
(
5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600

)
× (

5π17 – 2919π15 + 717,120π13 – 40,320π12 – 95,264,400π11

+ 25,724,160π10 + 7,974,046,080π9 – 3,548,160,000π8 – 429,305,184,000π7

+ 319,973,068,800π6 + 13,775,287,680,000π5 – 16,684,583,731,200π4

– 224,249,389,056,000π3 + 409,335,607,296,000π2

+ 1,216,740,704,256,000π – 2,690,992,668,672,000
)
π3 > 0,
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ρ2,12 = –96
(
5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600

)
× (

π19 – 995π17 + 410,592π15 – 88,549,200π13 + 3,870,720π12

+ 11,047,639,680π11 – 2,841,108,480π10 – 893,605,426,560π9

+ 388,310,630,400π8 + 47,103,101,337,600π7 – 34,641,395,712,000π6

– 1,488,093,194,649,600π5 + 1,787,128,145,510,400π4

+ 23,948,547,194,880,000π3 – 43,416,398,462,976,000π2

– 129,167,648,096,256,000π + 284,292,431,216,640,000
)
π2 < 0,

ρ2,13 = 256
(
5π10 – 558π8 + 12,480π6 – 177,120π4 + 1,756,800π2 – 7,257,600

)
× (

π19 – 1734π17 + 1,043,280π15 – 318,349,440π13 + 14,515,200π12

+ 56,498,601,600π11 – 11,554,099,200π10 – 6,203,534,752,800π9

+ 2,843,353,497,600π8 + 419,195,855,232,000π7 – 354,261,919,334,400π6

– 16,350,918,880,665,600π5 + 22,731,806,490,624,000π4

+ 314,092,921,798,656,000π3 – 646,147,253,993,472,000π2

– 1,856,398,674,493,440,000π + 4,477,605,791,662,080,000
)
π < 0,

ρ2,14 = –64
(
π9 – 1728π7 + 725,760π5 – 108,380,160π3 + 23,224,320π2

+ 4,180,377,600π – 10,218,700,800
)(

5π10 – 558π8 + 12,480π6 – 177,120π4

+ 1,756,800π2 – 7,257,600
)(

3π10 – 1100π8 + 166,320π6 – 11,975,040π4

+ 365,904,000π2 – 2,594,592,000
)

> 0.

Note that 0 < xi < ( π
2 )i, i = 2, 3,∀x ∈ (0,π/2), we have H2(x) ≤ (ρ2,0 +ρ2,2 · ( π

2 )2 +ρ2,3 · ( π
2 )3) +

ρ2,1x + (ρ2,4 + ρ2,6 · ( π
2 )2 + ρ2,7 · ( π

2 )3)x4 + ρ2,5x5 + (ρ2,8 + ρ2,10 · ( π
2 )2 + ρ2,11 · ( π

2 )3)x8 + ρ2,9x9 +
(ρ2,12 + ρ2,14 · ( π

2 )2)x12 + ρ2,13x13 ≈ –1.6 · 106x13 – 1.2 · 107x12 – 2.7 · 1010x9 – 1.4 · 1011x8 –
7.2 · 10–13x5 – 3.7 · 1014x4 – 2.5 · 1016x – 1.1 · 1017 < 0,∀x ∈ (0,π/2). So we have �5(x) ≤ 0
and F(x) ≤ R(x), ∀x ∈ [0,π/2].

From the above discussions, we have completed the proof. �

4 Discussions and conclusions
In principle, one can prove that Li(x) ≤ L(x) ≤ F(x) ≤ R(x) ≤ Ri(x), ∀x ∈ [0,π/2] in a sim-
ilar way, where Li(x) and Ri(x), i = 2, 3, are two bounding functions in Eq. (6) and Eq. (7),
respectively. The maximum errors between F(x) and its different bounds are listed in Ta-
ble 1. It shows that the bounds in this paper achieve a much better approximation than
those of the bounds in Eq. (6) and Eq. (7).

Table 1 Maximum errors between F(x) and its different bounds

Bounds L1(x) R1(x) L2(x) R2(x) L(x) R(x)

Error 2.8e–2 2.5e–4 2.09e–3 1.7e–3 1.37e–5 4.89e–6
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The new method can be applied to refine the Becker–Stark inequality, which is studied
in [5, 16, 24] and is known as

8
π2 – 4x2 <

tan(x)
x

<
π2

π2 – 4x2 , ∀x ∈ (0,π/2). (20)

Zhu [24] refined it as

αl(x) =
8

π2 – 4x2 +
2
π2 –

(π2 – 9)
6π4 · (π2 – 4x2) <

tan(x)
x

<
8

π2 – 4x2 +
2
π2 –

(10 – π2)
π4 · (π2 – 4x2) = αr(x), ∀x ∈

(
0,

π

2

)
, (21)

while it is refined in [16] as follows:

α2l(x) =
8 + μ(x)
π2 – 4x2 <

tan(x)
x

<
8 + μ(x) + ( 32

π3 – 8
3π

)( π
2 – x)3

π2 – 4x2 = α2r(x), ∀x ∈
(

0,
π

2

)
, (22)

where μ(x) = 8
π

( π
2 – x) + ( 16

π2 – 8
3 )( π

2 – x)2.

By applying the method in Sect. 2 and using the form
∑6

i=0 νixi

π2–4x2 , one obtains the resulting
bounds, βl(x) = κ1(x)

45π6(π2–4x2) and βr(x) = κ2(x)
3π6(π2–4x2) , where κ1(x) = 45π8 + (–2π8 – 3660π6 +

36,000π4)x2 + (16π7 + 21,000π5 – 208,800π3)x3 + (–48π6 – 49,440π4 + 492,480π2)x4 +
(64π5 + 54,240π3 – 541,440π )x5 + (–32π4 – 23,040π2 + 230,400)x6 and κ2(x) = 3π8 +
(–12π6 +π8)x2 + (5280π3 – 456π5 – 8π7x3) + (–24,768π2 + 2272π4 + 24π6)x4 + (40,704π –
3808π3 – 32π5)x5 + (–23,040 + 2176π2 + 16π4)x6, such that

βl(x) <
tan(x)

x
< βr(x), ∀x ∈

(
0,

π

2

)
.

By using the Maple software, ∀x ∈ (0, π
2 ), it can be verified that βl(x) – αl(x) = – (π–2x)3

90π6 ×
(57,600x3 – 8π4x3 – 5760π2x3 + 4920π3x2 – 48,960πx2 + 4π5x2 + 6210π2x – 630π4x –
105π5 + 1035π3) ≈ – (π–2x)3

90π6 (–28.1940986x3 – 37.4163x2 – 77.48403x – 40.57055) > 0,
βr(x) – αr(x) = 1

3π6 (π – 2x)2x2(–5760x2 + 544π2x2 + 4π4x2 + 4416πx – 408π3x – 4π5x –
216π2 + 12π4 + π6) ≈ 1

3π6 (π – 2x)2x2(–1.298840x2 – 1.36647x – 1.5362637) < 0, βl(x) –
α2l(x) = – (π–2x)3

45π6 (28,800x3 –4π4x3 –2880π2x3 –24,480πx2 +2π5x2 +2460π3x2 +3240π2x–
330π4x – 75π5 + 720π3) ≈ – (π–2x)3

45π6 (–14.0970443x3 – 18.7081400x2 – 167.48179x –
626.95716) > 0 and βl(x) – α2r(x) = (π–2x)4

3π6 (π4x2 – 1440x2 + 136π2x2 – 336πx + 34π3x –
60π2 + 6π4) ≈ (π–2x)4

3π6 (–0.324710x2 – 1.361725x – 7.7217177) < 0. So the bounds βl(x) and
βr(x) achieve a better approximation than those results in both [24] and [16].
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