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Abstract
This article mainly studies the boundary value problems for hypergenic function
vectors in Clifford analysis. Firstly, some properties of hypergenic quasi-Cauchy type
integrals are discussed. Then, by the Schauder fixed point theorem the existence of
the solution to the nonlinear boundary value problem is proved. Finally, using the
compression mapping principle the existence and uniqueness of the solution to the
linear boundary value problem are proved.
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1 Introduction

A Clifford algebra is an associative and noncommutable algebra [1]. In 1982, Brackx, De-
langhe and Sommen [2] established the theoretical basis of Clifford analysis. In recent
years, Clifford analysis has been widely used in physics and in mathematics [3–5]. Eriks-
son [6–8], Huang [9, 10], Qiao [11, 12], Xie [13–17] and Yang [18, 19] have done a lot of
work in Clifford analysis. In 1996, Huang [10] studied the nonlinear boundary value prob-
lem for biregular functions in Clifford analysis. In 2000, Cai, Huang and Qiao [20] studied
the nonlinear boundary value problem for biregular functions vector in Clifford analysis.
In 2003, Xie, Qiao and Jiao [20] studied a nonlinear boundary value problem for a gen-
eralized biregular function vector. In 2005, Qiao [11] discussed a linear boundary value
problem for hypermonogenic functions in Clifford analysis. In 2009–2010, Eriksson and
Orelma [6, 7] studied hypergenic functions in the real Clifford algebra Cln+1,0(R) and its
Cauchy integral formula was given. In 2014, Xie [14, 15] studied the Cauchy integral for
dual k-hypergenic functions and the boundary properties of the hypergenic quasi-Cauchy
integral in real Clifford analysis were given. In 2016, Xie, Zhang and Tang [17] discussed
some properties of k-hypergenic functions.

On the basis of the above, the boundary value problems for hypergenic function vectors
are proved.
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2 Preliminaries
See [6]; let Cln+1,0(R) be a real Clifford algebra and have identity element e∅ = 1 and basis
elements e0, e1, . . . , en; e0e1, . . . , en–1en; . . . ; e0e1 · · · en, and satisfy

⎧
⎨

⎩

eiej = –ejei, i �= j, i, j = 0, 1, . . . , n;

e2
j = +1, j = 0, 1, . . . , n.

Any element in Cln+1,0(R) has the form a =
∑

A aAeA, eA = eα1 eα2 · · · eαh or e∅ = 1, where
A = {α1,α2, . . . ,αh}, 0 ≤ α1 < α2 < · · · < αh ≤ n, aA ∈ R. The norm of a ∈ Cln+1,0(R) is de-
fined as |a| = (

∑
A |aA|2)

1
2 . In this paper Ji (i = 1, 2, . . . , 32) is a positive constant. For any

a, b ∈ Cln+1,0(R), we have

|a + b| ≤ |a| + |b|, |ab| ≤ J1|a||b|. (1)

If a = a0e0 + a1e1 + · · · + anen, it may be observed that a2 = |a|2 and when a �= 0 the
inverse of a is a–1 = a

|a|2 . See [6]; any element a ∈ Cln+1,0(R) can be uniquely decomposed
as a = b + e0c, where b, c ∈ Cln,0(R). As regards decomposition we can define the mappings
P0 : Cln+1,0 → Cln,0 and Q0 : Cln+1,0 → Cln,0 by P0a = b, Q0a = c, where b, c are called the
P0 part and the Q0 part of a, respectively.

Let �0 be a nonempty open connected set in Rn+1. The function f : �0 → Cln+1,0(R) is
denoted by f (x) =

∑
A fA(x)eA, where fA ∈R. The function f : �0 → Cln+1,0(R) is said to be

continuous on �0 if and only if each component fA(x) of f (x) is continuous on �0. Sup-
pose Cr(�0, Cln+1,0(R)) = {f | f : �0 → Cln+1,0(R), f (x) =

∑
A fA(x)eA, where fA is r-times

continuously differentiable on �0 and r ∈N
∗}.

For f ∈ C1(�0, Cln+1,0(R)), we introduce Dirac operators as follows [6]:

Df =
n∑

l=0

el
∂f
∂xl

.

Definition 2.1 ([15]) A Lyapunov surface S is a surface satisfying the following three con-
ditions:

(1) Through each point in S, there is a tangent plane.
(2) There is a real constant number d such that, for any N0 ∈ S, E is a ball with radius d,

centered at N0, and E is divided into two parts by S, the part of S lying in the interior
of E is denoted by S′, the other is in the exterior of S: and each straight line parallel
to the normal direction of S at N0 intersects it at one point.

(3) If the angle θ (N1, N2) between outward normal vectors through N1, N2 is an acute
angle and r is the distance between N1 and N2, then there are two numbers β , α
(0 ≤ α ≤ 1, β > 0) independent of N1, N2 such that θ (N1, N2) ≤ βrα .

Definition 2.2 ([15]) The function f : ∂�0 −→ Cln+1,0(R) is said to be Hölder continuous
on �0 if there exists a positive constant M0 such that |f (x1) – f (x2)| ≤ M0|x1 – x2|β (0 <
β < 1) holds for any x1, x2 ∈ ∂�0.

The set of all Hölder continuous functions which are defined on �0 and valued in
Cln+1,0(R) is denoted by H(β , ∂�0, Cln+1,0(R)).
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For any f ∈ H(β , ∂�0, Cln+1,0(R)), we define the norm of f as ‖f ‖β = C(f , ∂�0) +
H(f , ∂�0,β), where

C(f , ∂�0) = max
t∈∂�0

∣
∣f (t)

∣
∣, H(f , ∂�0,β) = sup

t1 �=t2
t1,t2∈∂�0

|f (t1) – f (t2)|
|t1 – t2|β .

It is easy to prove that H(β , ∂�0, Cln+1,0(R)) forms a Banach space.
For any f , g ∈ H(β , ∂�0, Cln+1,0(R)), we have

‖f + g‖β ≤ ‖f ‖β + ‖g‖β , ‖fg‖β ≤ J2‖f ‖β‖g‖β . (2)

In this paper, let � be a domain in R
n+1
+ = {x | (x0, x1, . . . , xn) ∈ R

n+1, x0 > 0}, and its
boundary ∂� be a smooth compact oriented Lyapunov surface. For any f ∈ C1(�,
Cln+1,0(R)), we introduce a modified Dirac operator as follows [6]:

Hf = Df –
n – 1

x0
Q0f .

Definition 2.3 ([6]) f (x) is said to be a hypergenic function on � if f ∈ C1(�, Cln+1,0(R))
satisfies Hf = 0 on �.

In this paper, let E1(x, y) = x–y
|x–y|n+1|x–̂y|n–1 , E2(x, y) = x̂–y

|x–y|n–1|x–̂y|n+1 , and wn+1 is the surface
area of the unit hypersphere in R

n+1.

Definition 2.4 ([15])

�f (y) =
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)f (x) –
∫

∂�

E2(x, y)d̂σ (x)f̂ (x)
]

(3)

is called a hypergenic quasi-Cauchy type integral if f ∈ H(β , ∂�, Cln+1,0(R)).

Lemma 2.1 ([14]) If y /∈ ∂�, f ∈ H(β , ∂�, Cln+1,0(R)), the hypergenic quasi-Cauchy type
integral

�f (y) =
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)f (x) –
∫

∂�

E2(x, y)d̂σ (x)f̂ (x)
]

is a hypergenic function on R
n+1
+ \∂�.

Remark 2.1 If y /∈ ∂�, f ∈ H(β , ∂�, Cln+1,0(R)), the hypergenic quasi-Cauchy type integral

�f (y) =
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)f (x) –
∫

∂�

E2(x, y)d̂σ (x)f̂ (x)
]

satisfies �f (∞) = 0.

Lemma 2.2 ([15]) If f ∈ H(β , ∂�, Cln+1,0(R)), then �f (y) is Hölder continuous on �+ ∪ ∂�

and �– ∪ ∂�.
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Let B(y, δ) be a ball with radius δ > 0, centered at y when y ∈ ∂�. ∂� is divided into two
parts by B(y, δ). The part of ∂� lying in the interior of B(y, δ) is denoted by λδ .

Definition 2.5 ([15]) I is called the Cauchy principal of the singular integral value if
limδ→0 �f (y) = I exists, and we write directly I = �f (y).

Lemma 2.3 ([15]) If y ∈ ∂�, f ∈ H(β , ∂�, Cln+1,0(R)), then the Cauchy principal values of
the singular integral (3) exist, and

�f (y) =
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)
(
f (x) – f (y)

)

–
∫

∂�

E2(x, y)d̂σ (x)
(
f̂ (x) – f (y)

)
]

+
1
2

f (y), (4)

when f = 1, we have �1(y) = 1
2 .

Lemma 2.4 ([15]) If y ∈ ∂�, f ∈ H(β , ∂�, Cln+1,0(R)), then

⎧
⎨

⎩

�+
f (y) = �f (y) + 1

2 f (y),

�–
f (y) = �f (y) – 1

2 f (y).
(5)

Lemma 2.5 ([5]) If � is a bounded domain in R
n+1
+ , 0 < α < n + 1, for any y ∈ � we have

∫

�

|x – y|–α dx ≤ M1(α,�),

where M1(α,�) is a positive constant only related to α, �.

Definition 2.6 F(x) = (f1(x), . . . , fq(x)) is called a function vector if fi(x) : � → Cln+1,0(R)
(i = 1, . . . , q).

For F(x) = (f1(x), . . . , fq(x)), K(x) = (k1(x), . . . , kq(x)), define the addition operation and
multiplication operation for function vectors as follows:

F ⊕ K = (f1 + k1, . . . , fq + kq); F ⊗ K = (f1k1, . . . , fqkq).

Let L(x) be a function valued in Clifford algebra Cln+1,0(R) and F(x) be a function vector,
then

LF = (Lf1, . . . , Lfq), FL = (f1L, . . . , fqL).

Define the model of a function vector as follows: |F(x)| = (
∑q

i=0 |fi(x)|2) 1
2 , we have

|F ⊕ K | ≤ |F| + |K |, |F ⊗ K | ≤ J1|F||K |.. (6)

Definition 2.7 F(x) = (f1(x), . . . , fq(x)) is called a hypergenic function vector when each
component fi(x) (i = 1, . . . , q) is a hypergenic function on �.
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Definition 2.8 A hypergenic function vector F is said to be Hölder continuous on ∂� if
there is a positive constant M2 such that

∣
∣F(x1) – F(x2)

∣
∣ =

( q∑

i=0

∣
∣fi(x1) – fi(x2)

∣
∣2

) 1
2

≤ M2|x1 – x2|β

holds for any x1, x2 ∈ �, where 0 < β < 1 and M2 is independent of xi (i = 1, 2).

Remark 2.2 The hypergenic function vector F(x) = (f1(x), . . . , fq(x)) is Hölder continuous
on ∂� if and only if each component fi(x) (i = 1, . . . , q) of F(x) is Hölder continuous on ∂�.

The set of all Hölder continuous function vectors which are defined on ∂� and valued in
Cln+1,0(R) is denoted by Hq(β , ∂�, Cln+1,0(R)). For any F ∈ Hq(β , ∂�, Cln+1,0(R)), the norm
of F is defined as follows: ‖F‖β = Cq(F , ∂�) + Hq(F , ∂�,β), where

Cq(F , ∂�) = max
t∈∂�

∣
∣F(t)

∣
∣, Hq(F , ∂�,β) = sup

t1 �=t2
t1,t2∈∂�

|f (t1) – f (t2)|
|t1 – t2|β .

It is easy to prove that Hq(β , ∂�, Cln+1,0(R)) forms a Banach space.
For any F , K ∈ Hq(β , ∂�, Cln+1,0(R)), we have

‖F + K‖β ≤ ‖F‖β + ‖K‖β , ‖F ⊗ K‖β ≤ J3‖F‖β‖K‖β . (7)

3 Some properties of hypergenic quasi-Cauchy type integrals
Theorem 3.1 If y /∈ ∂�, F(x) = (f1(x), . . . , fq(x)) ∈ Hq(β , ∂�, Cln+1,0(R)),

�F (y) =
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)F(x) –
∫

∂�

E2(x, y)d̂σ (x)F̂(x)
]

(8)

is a hypergenic function vector on R
n+1
+ \∂�, �F (∞) = 0, and �F (y) is Hölder continuous on

�± ∪ ∂�.

Proof

�F (y) =
(

2n–1yn–1
0

wn+1

[∫

∂�

E1(x, y) dσ (x)f1(x) –
∫

∂�

E2(x, y)d̂σ (x)f̂1(x)
]

,

· · · ,
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)fq(x) –
∫

∂�

E2(x, y)d̂σ (x)f̂q(x)
])

=
(
�f1 (y), . . . ,�fq (y)

)
.

It follows from F(x) = (f1(x), . . . , fq(x)) ∈ Hq(β , ∂�, Cln+1,0(R)) that fi ∈ Hq(β , ∂�,
Cln+1,0(R)) (i = 1, . . . , q). From Lemma 2.1, �fi (y) (i = 1, . . . , q) is a hypergenic function
on Rn+1

+ \ ∂�. Hence �F (y) is a hypergenic function vector on Rn+1
+ \ ∂�. By Lemma 2.2

and Remark 2.2 �F (y) is Hölder continuous on �± ∪ ∂�. By Remark 2.1 we conclude
�fi (∞) = 0 (i = 1, . . . , q), thus �F (∞) = 0. �
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Theorem 3.2 If y ∈ ∂�,F ∈ Hq(β , ∂�, Cln+1,0(R)), then

�F (y) =
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)
(
F(x) – F(y)

)

–
∫

∂�

E2(x, y)d̂σ (x)
(
F̂(x) – F(y)

)
]

+
1
2

F(y). (9)

From Lemma 2.4 we conclude to the following theorem.

Theorem 3.3
⎧
⎨

⎩

�+
F (y) = �F (y) + 1

2 F(y),

�–
F (y) = �F (y) – 1

2 F(y).
(10)

Lemma 3.1 ([15]) If x, y ∈ R
n+1 (n ≥ 2), m (≥ 0) is an integer, then

∣
∣
∣
∣

x
|x|m+2 –

y
|y|m+2

∣
∣
∣
∣ ≤ Pm(x, y)

|x|m+1|y|m+1 |x – y|,

where

Pm(x, y) =

⎧
⎨

⎩

∑m
l=0 |x|m–l|y|l, m �= 0;

1, m = 0.

Theorem 3.4 If y ∈ ∂�, F ∈ Hq(β , ∂�, Cln+1,0(R)), Q(y) = 1
2 F(y) – �F (y), then

∥
∥Q(y)

∥
∥

β
≤ J31‖F‖β .

Proof Similar to Ref. [15], we have

∣
∣dσ (x)

∣
∣ ≤ M3ρ

n–1 dρ,

where M3 is a positive constant.
From Theorem 3.2, Lemma 2.3 and Lemma 2.4, we get

∣
∣Q(y)

∣
∣

=
∣
∣
∣
∣
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)F(y) –
∫

∂�

E2(x, y)d̂σ (x)F(y)
]

–
2n–1yn–1

0
wn+1

[∫

∂�

E1(x, y) dσ (x)F(x) –
∫

∂�

E2(x, y)d̂σ (x)F̂(x)
]∣
∣
∣
∣

≤
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∣
∣
∣
∣

[∣
∣
∣
∣

∫

∂�

E1(x, y) dσ (x)
(
F(y) – F(x)

)
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

∂�

E2(x, y)d̂σ (x)
(
F̂(x) – F(y)

)
∣
∣
∣
∣

]

≤ J4Hq(F , ∂�,β)
∫

∂�

∣
∣E1(x, y)

∣
∣
∣
∣dσ (x)

∣
∣|y – x|β + 2 max

x∈∂�

∣
∣F(x)

∣
∣
∫

∂�

∣
∣E2(x, y)

∣
∣
∣
∣d̂σ (x)

∣
∣

≤ J5Hq(F , ∂�,β)
∫

∂�

1
|x – y|n

∣
∣dσ (x)

∣
∣|y – x|β + 2 max

x∈∂�

∣
∣F(x)

∣
∣
∫

∂�

1
|x – y|n–1

∣
∣d̂σ (x)

∣
∣
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≤ J6Hq(F , ∂�,β) + J7Cq(F , ∂�)

≤ J8‖F‖β .

So

Cq(Q, ∂�) ≤ J8‖F‖β . (11)

Next we consider Hq(Q, ∂�,β).
There is a ball with radius 3δ, centered at y1 when y1, y2 ∈ ∂� and 6δ < d, δ = |y1 – y2|.

Remark that ∂�1 is located inside the ball and the rest of ∂� is ∂�2.
From equality (9) and (1), we have

∣
∣Q

(
y1) – Q

(
y2)∣∣

=
∣
∣
∣
∣
1
2

F
(
y1) – �F

(
y1) –

(
1
2

F
(
y2) – �F

(
y2)

)∣
∣
∣
∣

=
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

[∫

∂�

E1
(
x, y1)dσ (x)

(
F
(
y1) – F(x)

)

+
∫

∂�

E2
(
x, y1)d̂σ (x)

(
F̂(x) – F

(
y1))

]

–
2n–1(y2

0)n–1

wn+1

[∫

∂�

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)

+
∫

∂�

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

]∣
∣
∣
∣

=
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

[∫

∂�1

E1
(
x, y1)dσ (x)

(
F
(
y1) – F(x)

)

+
∫

∂�1

E2
(
x, y1)d̂σ (x)

(
F̂(x) – F

(
y1))

]

+
2n–1(y1

0)n–1

wn+1

[∫

∂�2

E1
(
x, y1)dσ (x)

(
F
(
y1) – F(x)

)

+
∫

∂�2

E2
(
x, y1)d̂σ (x)

(
F̂(x) – F

(
y1))

]

–
2n–1(y2

0)n–1

wn+1

[∫

∂�1

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)

+
∫

∂�1

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

]

–
2n–1(y2

0)n–1

wn+1

[∫

∂�2

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)

+
∫

∂�2

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

]∣
∣
∣
∣

≤
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

∣
∣
∣
∣

∣
∣
∣
∣

∫

∂�1

E1
(
x, y1)dσ (x)

(
F
(
y1) – F(x)

)

+
∫

∂�1

E2
(
x, y1)d̂σ (x)

(
F̂(x) – F

(
y1))

∣
∣
∣
∣
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+
∣
∣
∣
∣
2n–1(y2

0)n–1

wn+1

∣
∣
∣
∣

∣
∣
∣
∣

∫

∂�1

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)

+
∫

∂�1

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

∣
∣
∣
∣

+
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

[∫

∂�2

E1
(
x, y1)dσ (x)

(
F
(
y1) – F(x)

)

+
∫

∂�2

E2
(
x, y1)d̂σ (x)

(
F̂(x) – F

(
y1))

]

–
2n–1(y2

0)n–1

wn+1

[∫

∂�2

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)

+
∫

∂�2

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

]∣
∣
∣
∣

= I1 + I2 + I3;

I1 ≤ J9

[∫

∂�1

∣
∣E1

(
x, y1)∣∣

∣
∣dσ (x)

∣
∣
∣
∣F

(
y1) – F(x)

∣
∣ +

∫

∂�1

∣
∣E2

(
x, y1)∣∣

∣
∣d̂σ (x)

∣
∣
∣
∣F̂(x) – F

(
y1)∣∣

]

≤ J10

∫ 3δ

0

1
|x – y1|n|x – ŷ1|n–1

ρn–1Hq(F , ∂�,β)
∣
∣y1 – x

∣
∣βdρ

+ 2J10

∫ 3δ

0

1
|x – y1|n–1|x – ŷ1|n ρn–1Cq(F , ∂�)dρ

≤ J11Hq(F , ∂�,β)
∫ 3δ

0

1
|x – y1|n–β

ρn–1 dρ + J12Cq(F , ∂�)
∫ 3δ

0

1
|x – y1|n–1 ρn–1 dρ

≤ J11Hq(F , ∂�,β)
∫ 3δ

0
ρβ–1 dρ + J12Cq(F , ∂�)

∫ 3δ

0
dρ

≤ J13
(
Hq(F , ∂�,β) + Cq(F , ∂�)

)∣
∣y1 – y2∣∣β

≤ J13‖F‖β

∣
∣y1 – y2∣∣β ,

that is,

I1 ≤ J13‖F‖β

∣
∣y1 – y2∣∣β . (12)

In a similar way, we have

I2 ≤ J14‖F‖β

∣
∣y1 – y2∣∣β , (13)

I3 =
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

∫

∂�2

[
E1

(
x, y1) – E1

(
x, y2)]dσ (x)

(
F
(
y1) – F(x)

)

+
2n–1(y1

0)n–1

wn+1

∫

∂�2

E1
(
x, y2)dσ (x)

(
F
(
y1) – F(x)

)

+
2n–1(y1

0)n–1

wn+1

∫

∂�2

[
E2

(
x, y1) – E2

(
x, y2)]d̂σ (x)

(
F̂(x) – F

(
y1))

+
2n–1(y1

0)n–1

wn+1

∫

∂�2

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y1))
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–
2n–1(y2

0)n–1

wn+1

∫

∂�2

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)

–
2n–1(y2

0)n–1

wn+1

∫

∂�2

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

∣
∣
∣
∣

≤ J15

∣
∣
∣
∣

∫

∂�2

[
E1

(
x, y1) – E1

(
x, y2)]dσ (x)

(
F
(
y1) – F(x)

)
∣
∣
∣
∣

+ J15

∣
∣
∣
∣

∫

∂�2

[
E2

(
x, y1) – E2

(
x, y2)]d̂σ (x)

(
F̂(x) – F

(
y1))

∣
∣
∣
∣

+
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

∫

∂�2

E1
(
x, y2)dσ (x)

(
F
(
y1) – F(x)

)

–
2n–1(y2

0)n–1

wn+1

∫

∂�2

E1
(
x, y2)dσ (x)

(
F
(
y2) – F(x)

)
∣
∣
∣
∣

+
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

∫

∂�2

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y1))

–
2n–1(y2

0)n–1

wn+1

∫

∂�2

E2
(
x, y2)d̂σ (x)

(
F̂(x) – F

(
y2))

∣
∣
∣
∣

= J15(I4 + I5) + I6 + I7,

that is,

I3 ≤ J15(I4 + I5) + I6 + I7. (14)

Because x ∈ ∂�2 \ λ3δ , and y1, y2 ∈ ∂�1, | x–y2

x–y1 |l+1 and | x–y1

x–y2 |l+1 (l = 0, 1, . . . , n) are contin-
uous on ∂�2, there is a positive constant J16, such that

∣
∣
∣
∣
x – y2

x – y1

∣
∣
∣
∣

l+1

≤ J16,
∣
∣
∣
∣
x – y1

x – y2

∣
∣
∣
∣

l+1

≤ J16 (l = 0, 1, . . . , n). (15)

From inequality (1), the Hile lemma and inequality (15), we get

I4 =
∣
∣
∣
∣

∫

∂�2

[
E1

(
x, y1) – E1

(
x, y2)]dσ (x)

(
F
(
y1) – F(x)

)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

∂�2

(
x – y1

|x – y1|n+1|x – ŷ1|n–1
–

x – y2

|x – y2|n+1|x – ŷ2|n–1

)

dσ (x)
(
F
(
y1) – F(x)

)
∣
∣
∣
∣

≤ J17

∫

∂�2

∣
∣
∣
∣

x – y1

|x – y1|n+1|x – ŷ1|n–1
–

x – y2

|x – y2|n+1|x – ŷ2|n–1

∣
∣
∣
∣

∣
∣dσ (x)

∣
∣
∣
∣F

(
y1) – F(x)

∣
∣

≤ J17

∫

∂�2

1
|x – ŷ1|n–1

∣
∣
∣
∣

x – y1

|x – y1|n+1 –
x – y2

|x – y2|n+1

∣
∣
∣
∣

∣
∣dσ (x)

∣
∣
∣
∣F

(
y1) – F(x)

∣
∣

+ J17

∫

∂�2

1
|x – y2|n+1

∣
∣
∣
∣

x – y2

|x – ŷ1|n–1
–

x – y2

|x – ŷ2|n–1

∣
∣
∣
∣

∣
∣dσ (x)

∣
∣
∣
∣F

(
y1) – F(x)

∣
∣

≤
∫

∂�2

(

J18

n–1∑

l=0

∣
∣
∣
∣
x – y2

x – y1

∣
∣
∣
∣

l+1 |y1 – y2|
|x – y2|n+1 + J19

|y1 – y2|
|x – y2|n

)
∣
∣dσ (x)

∣
∣
∣
∣F

(
y1) – F(x)

∣
∣

≤ J20Hq(F , ∂�,β)
∫

∂�2

(
1

|x – y2|n+1 +
1

|x – y2|n
)

∣
∣dσ (x)

∣
∣
∣
∣y1 – x

∣
∣β

∣
∣y1 – y2∣∣
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≤ Hq(Q, ∂�,β)
(

J21

∫ L

3δ

ρβ–2 dρ + J22

∫ L

3δ

ρβ–1 dρ

)
∣
∣y1 – y2∣∣

≤ J23Hq(F , ∂�,β)
∣
∣y1 – y2∣∣β

≤ J24‖F‖β

∣
∣y1 – y2∣∣β ,

that is,

I4 ≤ J24‖F‖β

∣
∣y1 – y2∣∣β . (16)

In a similar way, we have

I5 ≤ J25‖F‖β

∣
∣y1 – y2∣∣β , (17)

I6 ≤
∣
∣
∣
∣
2n–1[(y2

0)n–1 – (y1
0)n–1]

wn+1

∫

∂�2

x – y2

|x – y2|n+1|x – ŷ2|n–1
dσ (x)F(x)

∣
∣
∣
∣

+
∣
∣
∣
∣
2n–1(y1

0)n–1

wn+1

∫

∂�2

x – y2

|x – y2|n+1|x – ŷ2|n–1
dσ (x)

(
F
(
y1) – F

(
y2))

∣
∣
∣
∣

+
∣
∣
∣
∣
2n–1[(y1

0)n–1 – (y2
0)n–1]

wn+1

∫

∂�2

x – y2

|x – y2|n+1|x – ŷ2|n–1
dσ (x)F

(
y2)

∣
∣
∣
∣.

Because limδ→0
x–y2

|x–y2|n+1|x–ŷ2|n–1 exists, there is a constant δ2 > 0, when 0 < δ < δ2, such
that

∣
∣
∣
∣

∫

∂�2

(x – y2)
|x – y2|n+1|x – ŷ2|n–1

dσ (x)
∣
∣
∣
∣ ≤ J26.

Hence

I6 ≤ J27
[
2Cq(F , ∂�)

∣
∣
(
y1

0
)n–1 –

(
y2

0
)n–1∣∣ +

∣
∣F

(
y1) – F

(
y2)∣∣

]

≤ J28
[
Cq(F , ∂�) + Hq(F , ∂�,β)

]∣
∣y1 – y2∣∣β

= J28‖F‖β

∣
∣y1 – y2∣∣β ,

that is,

I6 ≤ J28‖F‖β

∣
∣y1 – y2∣∣β . (18)

In a similar way, we have

I7 ≤ J29‖F‖β

∣
∣y1 – y2∣∣β . (19)

From inequalities (14), (16), (17), (18) and (19), we have

|I3| ≤
[
J15(J24 + J25) + J28 + J29

]‖F‖β

∣
∣y1 – y2∣∣β . (20)

From inequalities (12), (13) and (20), we have

|Q(y1) – Q(y2)|
|y1 – y2|β ≤ [

J13 + J14 + J15(J24 + J25) + J28 + J29
]‖F‖β = J30‖F‖β .
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So

Hq
(
Q(y), ∂�,β

) ≤ J30‖F‖β . (21)

From inequalities (11) and (21), we have ‖Q(y)‖β ≤ (J8 + J30)‖F‖β = J31‖F‖β . �

Remark 3.1 If y ∈ ∂�, F ∈ Hq(β , ∂�, Cln+1,0(R)), then

∥
∥�F (y)

∥
∥

β
≤ J32‖F‖β .

Remark 3.2 If y ∈ ∂�, F ∈ Hq(β , ∂�, Cln+1,0(R)), then

⎧
⎨

⎩

‖�+
F (y)‖β ≤ J33‖F‖β ,

‖�–
F (y)‖β ≤ J33‖F‖β .

(22)

4 The existence of the solution to the nonlinear boundary value problem for
the hypergenic function vector

Let A(y), B(y), G(y) ∈ Hq(β , ∂�, Cln+1,0(R)) be Hölder continuous function vectors on ∂�,
we find a function vector �∗

F (y), which is hypergenic on �+ ∪�–, and continuous on �+ ∪
∂� and �– ∪ ∂�, satisfying �∗

F (∞) = 0, and the nonlinear boundary value condition:

A(y) ⊗ �∗+
F (y) + B(y) ⊗ �∗–

F (y) = G(y) ⊗ P
(
�∗+

F (y),�∗–
F (y)

)
, (23)

where P(�∗+
F (y),�∗–

F (y)) is a Hölder continuous function vector on ∂� which is related to
�∗+

F (y), �∗–
F (y).

The above problem is called the nonlinear boundary value problem SR. If P = 1, then
the above problem is called the linear boundary value problem SR.

By Theorem 3.1, �F (y) is hypergenic on �+ ∪ �–, and �F (y) is continuous on �+ ∪
∂� and �– ∪ ∂�, and �F (∞) = 0. If P(�+

F (y),�–
F (y)) satisfies equality (23) under certain

conditions, then �F (y) is a solution to the nonlinear boundary value problem SR.
Putting (10) into (23), we have

A(y) ⊗
(

�F (y) +
1
2

F(y)
)

+ B(y) ⊗
(

�F (y) –
1
2

F(y)
)

= G(y) ⊗ P
(
�+

F (y),�–
F (y)

)
. (24)

Let

NF(y) =
(
A(y) + B(y)

) ⊗
(

–
1
2

F(y) + �F (y)
)

+
(
1 + A(y)

) ⊗ F(y)

– G(y) ⊗ P
(
�+

F (y),�–
F (y)

)
, (25)

and equality (23) is transformed into the following singular integral equation:

NF = F . (26)
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Theorem 4.1 If A(y), B(y), G(y) ∈ Hq(β , ∂�, Cln+1,0(R)), for any y1, y2 ∈ ∂�, P(�+
F (y),

�–
F (y)) satisfies

∣
∣P

(
�+

F
(
y1),�–

F
(
y1)) – P

(
�+

F
(
y2),�–

F
(
y2))∣∣

≤ J34
∣
∣�+

F
(
y1) – �+

F
(
y2)∣∣ + J35

∣
∣�–

F
(
y1) – �–

F
(
y2)∣∣, (27)

where J34 and J35 are positive constants independent of yi (i = 1, 2) and F . If P(0, 0) = 0,
0 < γ = J36(‖A + B‖β + ‖1 + A‖β ) < 1, ‖G(y)‖β < δ, when 0 < δ ≤ 1–γ

J3J41
, Problem SR has at

least one solution and the integral expression of the solution is (8).

Proof Let T = {F | ‖F‖β ≤ M4 and F is uniformly Hölder continuous on ∂�, that is, to
say, there is a positive constant M2, for any x1, x2 ∈ ∂�, F ∈ Hq(β , ∂�, Cln+1,0(R)), we have
|F(x1) – F(x2)| ≤ M2|x1 – x2|β}. Obviously T is a convex subset of the continuous function
vector space Cq(∂�).

(1) We prove that N maps the set T to itself.
From inequality (7), Theorem 3.1 and Remark 3.2, it follows that

‖NF‖

≤ J3
∥
∥A(y) + B(y)

∥
∥

β

∥
∥
∥
∥–

1
2

F(y) + �F (y)
∥
∥
∥
∥

β

+ J3
∥
∥1 + A(y)

∥
∥

β
‖F‖β + J3‖G‖β‖P‖β

≤ J3
∥
∥A(y) + B(y)

∥
∥

β
J31‖F‖β + J3

∥
∥1 + A(y)

∥
∥

β
‖F‖β + J3‖G‖β‖P‖β

≤ J36
(‖A + B‖β + ‖1 + A‖β

)‖F‖β + J3‖G‖β‖P‖β

≤ γ ‖F‖β + J3δ‖P‖β .

By inequality (27) and Remark 3.2, we have

∣
∣P

(
�+

F (y),�–
F (y)

)∣
∣

=
∣
∣P

(
�+

F (y),�–
F (y)

)
– P(0, 0)

∣
∣

≤ J34
∣
∣�+

F (y)
∣
∣ + J35

∣
∣�–

F (y)
∣
∣

≤ J34J33‖F‖β + J35J33‖F‖β

= J37‖F‖β .

So

Cq(P, ∂�,β) = max
y∈∂�

|P| ≤ J37‖F‖β . (28)

By inequality (27) and Remark 3.2, we have

∣
∣P

(
�+

F
(
y1),�–

F
(
y1)) – P

(
�+

F
(
y2),�–

F
(
y2))∣∣

≤ J34
∣
∣�+

F
(
y1) – �+

F
(
y2)∣∣ + J35

∣
∣�–

F
(
y1) – �–

F
(
y2)∣∣

≤ J34Hq
(
�+

F (y), ∂�,β
)∣
∣y1 – y2∣∣β + J35Hq

(
�+

F (y), ∂�,β
)∣
∣y1 – y2∣∣β
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≤ [
J34

∥
∥�+

F (y)
∥
∥

β
+ J35

∥
∥�+

F (y)
∥
∥

β

]∣
∣y1 – y2∣∣β

≤ (
J38‖F‖β + J39‖F‖β

)∣
∣y1 – y2∣∣β

≤ J40‖F‖β

∣
∣y1 – y2∣∣β , (29)

then

Hq(P, ∂�,β) ≤ J40‖F‖β .

So

‖P‖β = Cq(P, ∂�,β) + Hq(P, ∂�,β)

≤ J37‖F‖β + J40‖F‖β

≤ J41‖F‖β . (30)

As γ = J35(‖A + B‖β + ‖1 + A‖β ) < 1,

‖NF‖β ≤ γ ‖F‖β + J3δ‖P‖β

≤ γ M4 + J3
1 – γ

J3J41
J41M4 = M4. (31)

If F is uniformly Hölder continuous on ∂�, then �F (y), �+
F , �–

F are uniformly Hölder
continuous on ∂�. So NF is uniformly Hölder continuous on ∂�.

Hence N maps the set T to itself.
(2) We prove that N is a continuous mapping.
Any Fn ∈ T , {Fn} uniformly converges to F on ∂�. As for ε > 0, when n is fully large and

|Fn – F| is sufficiently small. There is a ball with radius 3δ, centered at y when 6δ〈d, δ〉0,
and remark that ∂�1 is located inside the ball and the rest of ∂� is ∂�2

By inequality (27), Theorem 3.3, we have

∣
∣P

(
�+

Fn (y),�–
Fn (y)

)
– P

(
�+

F (y),�–
F (y)

)∣
∣

≤ J34
∣
∣�+

Fn (y) – �+
F (y)

∣
∣ + J35

∣
∣�–

Fn (y) – �–
F (y)

∣
∣

= J34

∣
∣
∣
∣�Fn (y) – �F (y) +

1
2
(
Fn(y) – F(y)

)
∣
∣
∣
∣ + J35

∣
∣
∣
∣�Fn (y) – �F (y) +

1
2
(
F(y) – Fn(y)

)
∣
∣
∣
∣

≤ (J34 + J35)
∣
∣�Fn (y) – �F (y)

∣
∣ + (J34 + J35)

∣
∣
∣
∣
1
2
(
Fn(y) – F(y)

)
∣
∣
∣
∣

≤ (J34 + J35)
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∫

∂�

E1(x, y) dσ (x)
[(

Fn(x) – Fn(y)
)

+
(
F(y) – F(x)

)]
∣
∣
∣
∣

+ (J34 + J35)
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∫

∂�

E2(x, y)d̂σ (x)
[(

F̂(x) – F̂(y)
)

+
(
F̂n(y) – F̂n(x)

)]
∣
∣
∣
∣

+ (J34 + J35)|Fn(y) – F(y)|
≤ (J34 + J35)

(
I8 + I9 + ‖Fn – F‖β

)
,
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that is,

∣
∣P

(
�+

Fn (y),�–
Fn (y)

)
– P

(
�+

F (y),�–
F (y)

)∣
∣ ≤ (J34 + J35)

(
I8 + I9 + ‖Fn – F‖β

)
, (32)

I8 ≤
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∫

∂�

E1(x, y) dσ (x)
[(

Fn(x) – Fn(y)
)

+
(
F(y) – F(x)

)]
∣
∣
∣
∣

≤
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∫

∂�1

E1(x, y) dσ (x)
[(

Fn(x) – Fn(y)
)

+
(
F(y) – F(x)

)]
∣
∣
∣
∣

+
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∫

∂�2

E1(x, y) dσ (x)
[(

Fn(x) – Fn(y)
)

+
(
F(y) – F(x)

)]
∣
∣
∣
∣

= I10 + I11;

I10 ≤ J42

∫

∂�1

∣
∣E1(x, y)

∣
∣
∣
∣dσ (x)

∣
∣|x – y|β

≤ J43

∫

∂�1

1
|x – y|n |x – y|β ∣

∣dσ (x)
∣
∣

≤ J44

∫ 3δ

0
ρβ–1 dρ

= J45δ
β ,

that is,

I10 ≤ J45δ
β , (33)

I11 =
∣
∣
∣
∣
2n–1yn–1

0
wn+1

∫

∂�2

E1(x, y) dσ (x)
[(

Fn(x) – F(x)
)

–
(
Fn(y) – F(y)

)]
∣
∣
∣
∣

≤ J46

∣
∣
∣
∣

∫

∂�2

E1(x, y) dσ (x)
∣
∣
∣
∣

[∣
∣Fn(x) – F(x)

∣
∣ +

∣
∣Fn(y) – F(y)

∣
∣
]

≤ J47‖Fn – F‖β

∣
∣
∣
∣

∫

∂�2

E1(x, y) dσ (x)
∣
∣
∣
∣

≤ J48‖Fn – F‖β ,

that is,

I11 ≤ J48‖Fn – F‖β . (34)

From inequality (33) and (34), we have

I8 ≤ J45δ
β + J48‖Fn – F‖β . (35)

In a similar way, we get

I9 ≤ J49δ
β + J50‖Fn – F‖β . (36)

From inequality (32), (35) and (36), we get

∣
∣P

(
�+

Fn (y),�–
Fn (y)

)
– P

(
�+

F (y),�–
F (y)

)∣
∣
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≤ (J34 + J35)
[
(J45 + J49)δβ + (J48 + J50)‖Fn – F‖β

]

= J51δ
β + J52‖Fn – F‖β .

Select a sufficiently small positive number δ such that J51δ
β < ε

2 ; and let n be large
enough such that J52‖Fn – F‖β < ε

2 . So for any y ∈ ∂�, we have |P(�+
Fn (y),�–

Fn (y)) –
P(�+

F (y),�–
F (y))| < ε, thus |NFn(y) – NF(y)| < ε, then N is a continuous mapping which

maps T to itself.
From the Arzela–Ascoli theorem we conclude that T is a compact set in Cq(∂�).

As the continuous mapping N maps the closed convex set T to itself, N(T) is com-
pact in Cq(∂�). From the Schauder fixed point principle it follows that there is at least
F ∈ Hq(β , ∂�, Cln+1,0(R)) that satisfies (26). Hence the nonlinear boundary value problem
SR has at least one solution �F (y), and the expression of the solution is (8). �

5 The existence and uniqueness of the solution to the linear boundary value
problem for the hypergenic function vector

Theorem 5.1 If A(y), B(y), G(y) ∈ Hq(β , ∂�, Cln+1,0(R)), when 0 < γ = J3(J32 + 1
2 )‖A + B‖β +

J3‖1 + A‖β < 1, the linear boundary value problem SR has a unique solution.

Proof Let T be as in Theorem 4.1. N is a continuous mapping which maps T to itself from
Theorem 4.1.

From inequalities (7), (25) and Remark 3.1, we get

‖NF1 – NF2‖β

≤ J3‖A + B‖β

∥
∥
∥
∥

1
2

(F2 – F1) + �F1 – �F2

∥
∥
∥
∥

β

+ J3‖1 + A‖β‖F1 – F2‖β

≤ J3‖A + B‖β

[∥
∥
∥
∥

1
2

(F1 – F2)
∥
∥
∥
∥

β

+ ‖�F1 – �F2‖β

]

+ J3‖1 + A‖β‖F1 – F2‖β

≤ J3‖A + B‖β

(
1
2

+ J31

)

‖F1 – F2‖β + J3‖1 + A‖β‖F1 – F2‖β

≤
(

J3

(

J32 +
1
2

)

‖A + B‖β + J3‖1 + A‖β

)

‖F1 – F2‖β

= γ ‖F1 – F2‖β . �

There is only one solution to the equation NF = F by the compression mapping principle.
So there is a unique solution to the linear boundary value problem SR, and the integral
expression of the solution is (8).

6 Conclusions
In this paper, we prove the existence of the solution to the nonlinear boundary value prob-
lem for the hypergenic function vector by virtue of the Arzela–Ascoli theorem and prove
the existence and uniqueness of the solution to the linear boundary value problem for the
hypergenic function vector by the compression mapping principle.
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