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Abstract
For inequality constrained optimization problem, we first propose a new smoothing
method to the lower order exact penalty function, and then show that an
approximate global solution of the original problem can be obtained by solving a
global solution of a smooth lower order exact penalty problem. We propose an
algorithm based on the smoothed lower order exact penalty function. The global
convergence of the algorithm is proved under some mild conditions. Some
numerical experiments show the efficiency of the proposed method.
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1 Introduction
Consider the following inequality constrained optimization problem:

min f0(x)

s.t. fi(x) ≤ 0, i ∈ I = {1, 2, . . . , m},
(P)

where fi : Rn → R, i = 0, 1, . . . , m, are twice continuously differentiable functions. Through-
out this paper, we use X0 = {x ∈ Rn|fi(x) ≤ 0, i ∈ I} to denote the feasible solution set.

This problem is widely applied in transportation, economics, mathematical program-
ming, regional science, etc. [1–3], and it has received extensive attention on a related
problem, for example, variational inequalities, equilibrium problem, minimizers of convex
functions, etc. (see, e.g., [4–15]).

To solve problem (P), the penalty function methods have been introduced in many lit-
erature works (see, e.g., [16–24]). Zangwill [16] introduced the classical l1 exact penalty
function

F1(x, q) = f0(x) + q
m∑

i=1

max
{

fi(x), 0
}

, (1.1)
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where q > 0 is a penalty parameter, but it is not a smooth function. The corresponding
penalty optimization problem is as follows:

min
x∈Rn

F1(x, q). (P1)

The non-smoothness of the function restricts the application of a gradient-type or
Newton-type algorithm to solving problem (P1). In order to avoid this shortcoming, the
smoothing of the l1 exact penalty function is proposed in [17, 18].

In addition, to overcome the non-smoothness of the function, the following smooth
penalty function is proposed:

F2(x, q) = f0(x) + q
m∑

i=1

max
{

fi(x), 0
}2. (1.2)

However, the function is non-exact.
Recently, Wu et al. [20] proposed the following low order penalty function:

ϕq,k(x) = f0(x) + q
m∑

i=1

(
max

{
fi(x), 0

})k , k ∈ (0, 1), (1.3)

and proved that the low order penalty function is exact under mild conditions. But this
penalty function is non-smooth, too. When k = 1, ϕq,k(x) can be seen as the classical l1

exact penalty function. The least exact penalty parameter corresponding to k ∈ (0, 1) is
much less than that of the l1 exact penalty function. This can avoid the defects of too large
parameter ρ in the algorithm. Only for k = 1

2 , the smoothing of the lower order penalty
function (1.3) is studied in [20] and [21]. In [24], a smoothing method of the low order
penalty function (1.3) is given. We hope to study a new smoothing method for the low
order penalty function (1.3) and compare it with the existing methods. With a different
segmentation method, we will give a new piecewise smooth function and propose a new
method to smooth the lower order penalty function (1.3) with k ∈ [ 1

2 , 1) in this paper.
The remainder of this paper is organized as follows. In Sect. 2, a new smoothing func-

tion is proposed. The error estimates are obtained among the optimal objective function
values of the smoothed penalty problem, the non-smooth penalty problem, and the origi-
nal problem. In Sect. 3, the corresponding algorithm is proposed to obtain an approximate
solution to (P). The global convergence of the algorithm is proved. In Sect. 4, some nu-
merical experiments are given to illustrate the efficiency of the algorithm. In Sect. 5, some
conclusions are presented.

2 A smoothing penalty function
For the lower order penalty problem

min
x∈Rn

ϕq,k(x), (LP)

in order to establish the global exact penalization, the following assumption is given in
[20]. We will consider the smoothing method under the following assumption.
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Assumption 2.1
(1) f0(x) satisfies the coercive condition

lim‖x‖→+∞ f0(x) = +∞.

(2) The optimal solution set G((P)) is a finite set.

Under Assumption 2.1, problem (P) is equivalent to the following problem:

min f0(x)

s.t. fi(x) ≤ 0, i ∈ I,

x ∈ X,

(P′)

where X is a box with int(X) �= ∅.
For any k ∈ (0, 1), penalty problem (LP) is equivalent to the following penalty problem:

min
x∈X

ϕq,k(x). (LP′)

Now we consider a new smoothing technique to the lower order penalty function (1.3).
Let pk(t) = (max{t, 0})k , then

ϕq,k(x) = f0(x) + q
m∑

i=1

pk
(
fi(x)

)
. (2.1)

Define a function pk,ε(t) (ε > 0) by

pk,ε(t) =

⎧
⎪⎨

⎪⎩

0, if t ≤ –εk ,
k
2 ε–1(t + εk)2, if –εk < t < 0,
(t + ε)k + k

2 ε2k–1 – εk , if t ≥ 0,
(2.2)

where 1
2 ≤ k < 1. It is easy to see that pk,ε(t) is continuously differentiable and

lim
ε→0+

pk,ε(t) = pk(t).

The following figure shows the process of function pk,ε(t) approaching function pk(t).
Figure 1 shows the behavior of p 3

4 ,0.01(t) (represented by the dash and dot line), p 3
4 ,0.001(t)

(represented by the dot line), p 3
4 ,0.0001(t) (represented by the dash line), and p 3

4
(t) (repre-

sented by the solid line).
Based on this, we consider the following continuously differentiable penalty function:

ϕq,k,ε(x) = f0(x) + q
m∑

i=1

pk,ε
(
fi(x)

)
, (2.3)

where limε→0+ ϕq,k,ε(x) = ϕq,k(x).
The corresponding optimization problem to ϕq,k,ε(x) is as follows:

min
x∈X

ϕq,k,ε(x). (SP)
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Figure 1 The behavior of pk,ε (t) and pk (t)

For problems (P), (LP′), and (SP), we have the following conclusion.

Lemma 2.1 For any x ∈ X, ε > 0, and q > 0, it holds that

–
k
2
ε2k–1mq ≤ ϕq,k(x) – ϕq,k,ε(x) < εkmq, k ∈

[
1
2

, 1
)

.

Proof For all i ∈ I , it holds that

pk
(
fi(x)

)
– pk,ε

(
fi(x)

)
=

⎧
⎪⎨

⎪⎩

0, if fi(x) ≤ –εk ,
– k

2 ε–1(fi(x) + εk)2, if –εk < fi(x) < 0,
fi(x)k – (fi(x) + ε)k – k

2 ε2k–1 + εk , if fi(x) ≥ 0.

Set

F(t) = tk – (t + ε)k , t ≥ 0.

Then

F ′(t) = k
[
tk–1 – (t + ε)k–1].

It is easy to see that function F(t) is monotonically increasing w.r.t. t due to that k ∈ [ 1
2 , 1).

One has

–εk ≤ fi(x)k –
(
fi(x) + ε

)k ≤ 0, if fi(x) ≥ 0.

It follows that

–
k
2
ε2k–1 ≤ pk

(
fi(x)

)
– pk,ε

(
fi(x)

) ≤ εk , if fi(x) ≥ 0.
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When –εk < fi(x) < 0, one has

–
k
2
ε2k–1 < pk

(
fi(x)

)
– pk,ε

(
fi(x)

)
< 0.

So,

–
k
2
ε2k–1 ≤ pk

(
fi(x)

)
– pk,ε

(
fi(x)

)
< εk , ∀i ∈ I. (2.4)

It follows from (2.1), (2.3), and (2.4) that

–
k
2
ε2k–1mq ≤ ϕq,k(x) – ϕq,k,ε(x) < εkmq

by the fact that q > 0. �

Theorem 2.1 For a positive sequence {εj}, which converges to 0 as j → ∞, assume that xj

is an optimal solution to minx∈X ϕq,k,εj (x) for some given q > 0, k ∈ [ 1
2 , 1). If x is an accumu-

lating point of sequence {xj}, then x̄ is an optimal solution to minx∈X ϕq,k(x).

Proof It follows from Lemma 2.1 that

–
k
2
ε2k–1

j mq ≤ ϕq,k(x) – ϕq,k,εj (x) < εk
j mq, ∀x ∈ X. (2.5)

Since xj is a solution to minx∈X ϕq,k,εj (x), one has

ϕq,k,εj (xj) ≤ ϕq,k,εj (x), ∀x ∈ X. (2.6)

It follows from (2.5) and (2.6) that

ϕq,k(xj) < ϕq,k,εj (xj) + εk
j mq

≤ ϕq,k,εj (x) + εk
j mq

≤ ϕq,k(x) + εk
j mq +

k
2
ε2k–1

j mq.

Letting j → ∞ yields

ϕq,k(x̄) ≤ ϕq,k(x).

Thus, x is an optimal solution to minx∈X ϕq,k(x). �

Theorem 2.2 Let x∗
q,k ∈ X be an optimal solution of problem (LP′), and x̄q,k,ε ∈ X be an

optimal solution of problem (SP) for some q > 0, k ∈ [ 1
2 , 1), and ε > 0. Then

–
k
2
ε2k–1mq ≤ ϕq,k

(
x∗

q,k
)

– ϕq,k,ε(x̄q,k,ε) < εkmq.
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Proof Under the hypothetical conditions, it holds that ϕq,k(x∗
q,k) ≤ ϕq,k(x) and ϕq,k,ε(x̄q,k,ε) ≤

ϕq,k,ε(x), ∀x ∈ X.
Therefore, by Lemma 2.1, one has

–
k
2
ε2k–1mq ≤ ϕq,k

(
x∗

q,k
)

– ϕq,k,ε
(
x∗

q,k
) ≤ ϕq,k

(
x∗

q,k
)

– ϕq,k,ε(x̄q,k,ε)

and

ϕq,k
(
x∗

q,k
)

– ϕq,k,ε(x̄q,k,ε) ≤ ϕq,k(x̄q,k,ε) – ϕq,k,ε(x̄q,k,ε) < εkmq.

This completes the proof. �

Corollary 2.1 Suppose that Assumption 2.1 holds, and for any x ∈ G((P)), there exists λ∗ ∈
Rm

+ such that the pair (x∗,λ∗) satisfies the second order sufficient condition (in [20]). Let x∗ ∈
X be an optimal solution of problem (P) and x̄q,k,ε ∈ X be an optimal solution of problem
(SP) for some q > 0, k ∈ [ 1

2 , 1), and ε > 0. Then there exists q∗ > 0 such that, for any q > q∗,

–
k
2
ε2k–1mq ≤ f0

(
x∗) – ϕq,k,ε(x̄q,k,ε) < εkmq.

Proof It follows from Corollary 2.3 (in [20]) that x∗ ∈ X is an optimal solution of problem
(LP′). By Theorem 2.2, one has

–
k
2
ε2k–1mq ≤ ϕq,k

(
x∗) – ϕq,k,ε(x̄q,k,ε) < εkmq.

Since
∑m

i=1 pk(fi(x∗)) = 0, it holds that

ϕq,k
(
x∗) = f0

(
x∗) + q

m∑

i=1

pk
(
fi
(
x∗)) = f0

(
x∗).

This completes the proof. �

Definition 1 For ε > 0, if x ∈ X is such that

fi(x) ≤ ε, i = 1, 2, . . . , m,

then x ∈ X is an ε-feasible solution of problem (P).

Theorem 2.3 Let x∗
q,k ∈ X be an optimal solution of problem (LP′), and x̄q,k,ε ∈ X be an

optimal solution of problem (SP) for some q > 0, k ∈ [ 1
2 , 1), and ε > 0. If x∗

q,k is a feasible
solution of problem (P), and x̄q,k,ε is an ε-feasible solution of problem (P), then

–
k
2
ε2k–1mq ≤ f0

(
x∗

q,k
)

– f0(x̄q,k,ε) <
(

2kεk +
k
2
ε2k–1

)
mq.
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Proof By (2.1), (2.3), and Theorem 2.2, one has

–
k
2
ε2k–1mq ≤ ϕq,k

(
x∗

q,k
)

– ϕq,k,ε(x̄q,k,ε)

= f0
(
x∗

q,k
)

+ q
m∑

i=1

pk
(
fi
(
x∗

q,k
))

–

(
f0(x̄q,k,ε) + q

m∑

i=1

pk,ε
(
fi(x̄q,k,ε)

)
)

< εkmq.

Since
∑m

i=1 pk(fi(x∗
q,k)) = 0, it holds that

–
k
2
ε2k–1mq + q

m∑

i=1

pk,ε
(
fi(x̄q,k,ε)

) ≤ f0
(
x∗

q,k
)

– f0(x̄q,k,ε)

< εkmq + q
m∑

i=1

pk,ε
(
fi(x̄q,k,ε)

)
. (2.7)

Note that

fi(x̄q,k,ε) ≤ ε, i ∈ I.

Thus, it follows from (2.2) that

0 ≤ q
m∑

i=1

pk,ε
(
fi(x̄q,k,ε)

) ≤
(

2kεk +
k
2
ε2k–1 – εk

)
mq. (2.8)

By (2.7) and (2.8), one has

–
k
2
ε2k–1mq ≤ f0

(
x∗

q,k
)

– f0(x̄q,k,ε) <
(

2kεk +
k
2
ε2k–1

)
mq. �

Theorems 2.1 and 2.2 show that an optimal solution of (SP) is also an approximate op-
timal solution of (LP′) when the error ε is sufficiently small. By Theorem 2.3, an optimal
solution of (SP) is an approximately optimal solution of (P) if the optimal solution of (SP)
is an ε-feasible solution of (P).

3 A smoothing method
Based on the discussion in the last section, we can design an algorithm to obtain an ap-
proximate optimal solution of (P) by solving (SP).

Algorithm 3.1
Step 1. Take x0, ε0 > 0, 0 < a < 1, q0 > 0, b > 1, ε > 0, and k ∈ [ 1

2 , 1), let j = 0 and go to
Step 2.

Step 2. Solve minx∈Rn ϕqj ,k,εj (x) starting at xj. Let xj+1 be the optimal solution (xj+1 can be
obtained by a quasi-Newton method).

Step 3. Let εj+1 = aεj, qj+1 = bqj, and j = j + 1, then go to Step 2.

Remark Since 0 < a < 1 and b > 1, let a2k–1b < 1, as j → +∞, the sequence {εj} is gradually
decreased to 0, the sequence {qj} is gradually increased to +∞ and {ε2k–1

j qj} is gradually
decreased to 0.
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Under some mild conditions, the following conclusion shows the global convergence of
Algorithm 3.1.

Theorem 3.1 Suppose that Assumption 2.1 holds, and for any ε ∈ (0, ε0], q ∈ [q0, +∞),
the solution set of minx∈Rn ϕq,k,ε(x) is nonempty. If {xj+1} is the sequence generated by Algo-
rithm 3.1 satisfying a2k–1b < 1, and the sequence {ϕqj ,k,εj (xj+1)} is bounded, then

(1) {xj+1} is bounded.
(2) Any limit point of {xj+1} is an optimal solution of (P).

Proof (1) It follows from (2.3) that

ϕqj ,k,εj

(
xj+1) = f0

(
xj+1) + qj

m∑

i=1

pk,εj

(
fi
(
xj+1)), j = 0, 1, 2, . . . . (3.1)

By hypothesis, there exists some number L such that

L > ϕqj ,k,εj

(
xj+1), j = 0, 1, 2, . . . . (3.2)

For the sake of contradiction, suppose that {xj+1} is unbounded. Without loss of generality,
we assume that ‖xj+1‖ → ∞ as j → ∞.

By (2.2), (3.1), and (3.2), one has

L > f0
(
xj+1), j = 0, 1, 2, . . . ,

which results in a contradiction with Assumption 2.1(1).
(2) Without loss of generality, we assume xj+1 → x∗ as j → ∞.
To prove x∗ is the optimal solution of (P), it is only needed to show that x∗ ∈ X0 and

f0(x∗) ≤ f0(x), ∀x ∈ X0.
To show that x∗ ∈ X0, we outline a proof by contradiction. We presuppose that x∗ /∈ X0,

then there exist δ0 > 0, i0 ∈ I , and the subset J ⊂ N such that

fi0
(
xj+1) ≥ δ0 > εj, ∀j ∈ J ,

where N is the natural number set.
By Step 2, (2.2), and (2.3), for any x ∈ X0, one has

f0
(
xj+1) + qj

(
(δ0 + εj)k +

k
2
ε2k–1

j – εk
j

)
≤ ϕqj ,k,εj

(
xj+1)

≤ ϕqj ,k,εj (x)

≤ f0(x) + m
k
2
ε2k–1

j qj.

It follows that

f0
(
xj+1) + qj

(
(δ0 + εj)k – εk

j
) ≤ f0(x) + (m – 1)

k
2
ε2k–1

j qj, ∀x ∈ X0,

which contradicts with qj → +∞, εj → 0, and ε2k–1
j qj → 0, as j → ∞. Then we have that

x∗ ∈ X0.
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Next, we show that f0(x∗) ≤ f0(x), ∀x ∈ X0.
For this, by Step 2, (2.2), and (2.3), it holds that

f0
(
xj+1) ≤ ϕqj ,k,εj

(
xj+1) ≤ ϕqj ,k,εj (x) ≤ f0(x) + m

k
2
ε2k–1

j qj, ∀x ∈ X0.

Letting j → ∞ yields that

f0
(
x∗) ≤ f0(x).

Therefore, any limit point of {xj+1} is an optimal solution of (P). �

4 Numerical examples
In this section, we will do some numerical experiments to show the efficiency of Algo-
rithm 3.1.

Example 4.1 Consider the following optimization problem considered in [18, 22, 23]:

min f0(x) = x2
1 + x2

2 + 2x2
3 + x2

4 – 5x1 – 5x2 – 21x3 + 7x4

s.t. f1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 – 5 ≤ 0,

f3(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 – x2 + x3 – x4 – 8 ≤ 0,

f3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 – x1 – x4 – 10 ≤ 0.

For this problem, we let k = 3
4 , ε0 = 0.01, a = 0.01, q0 = 1, b = 2, ε = 10–16. With different

starting points, numerical results of Algorithm 3.1 are shown in Tables 1, 2, and 3.
From Tables 1, 2, 3, we know that the obtained approximate optimal solutions are similar,

which shows that the numerical result of Algorithm 3.1 does not depend on the section of
the starting points for this example. In [18], the objective function value f0(x∗) = –44.23040
was obtained in the forth iteration. From the numerical results given in [22], we know that
the optimal solution is x∗ = (0.1585001, 0.8339736, 2.014753, –0.959688) with the objec-
tive function value f0(x∗) = –44.22965. In [23], the objective function value obtained in

Table 1 Numerical results for Example 4.1 with x0 = (0, 0, 0, 0)

j xj+1 qj εj f1(xj+1) f2(xj+1) f3(xj+1) f0(xj+1)

0 (0.185009, 0.804369, 2.015460, –0.952409) 1 0.01 –4.797079 –0.00109 –2.028111 –44.225926
1 (0.169902, 0.835670, 2.008151, –0.965196) 2 0.0001 –9.748052 –9.337847 –1.883271 –44.231252

Table 2 Numerical results for Example 4.1 with x0 = (2, 0, 3.5, 0)

j xj+1 qj εj f1(xj+1) f2(xj+1) f3(xj+1) f0(xj+1)

0 (0.169693, 0.835634, 2.008291, –0.965082) 1 0.01 –9.502428 –8.676884 –1.883244 –44.231403

Table 3 Numerical results for Example 4.1 with x0 = (2, 2, 2, 0.5)

j xj+1 qj εj f1(xj+1) f2(xj+1) f3(xj+1) f0(xj+1)

0 (0.169691, 0.835633, 2.008294, –0.965080) 1 0.01 –9.502279 –8.676796 –1.883249 –44.231403
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Table 4 Numerical results for Example 4.2 with k = 3
4

j xj+1 qj εj f1(xj+1) f2(xj+1) f0(xj+1)

0 (3.4217, 2.7082) 2 0.001 4.1300 –0.0053 –15.2492
1 (0.8022, 1.1978) 20 0.000001 0.0000 –0.4066 –7.1999

Table 5 Numerical results for Example 4.2 with k = 3
5

j xj+1 qj εj f1(xj+1) f2(xj+1) f0(xj+1)

0 (4.0607, 3.0227) 2 0.001 5.0834 –0.0153 –16.0434
1 (0.8027, 1.1971) 20 0.000001 –0.0003 –0.4086 –7.1992

Table 6 Numerical results for Example 4.2 with k = 8
9

j xj+1 qj εj f1(xj+1) f2(xj+1) f0(xj+1)

0 (2.6356, 2.3168) 2 0.001 2.9523 –0.0020 –13.7027
1 (0.8005, 1.1995) 20 0.000001 0.0000 –0.4015 –7.2000

the 25th iteration is f0(x∗) = –44. Hence, the numerical results obtained by Algorithm 3.1
are better than the numerical results given in [18, 22, 23] for this example.

Example 4.2 Consider the following problem considered in [17]:

min f0(x) = –2x1 – 6x2 + x2
1 – 2x1x2 + 2x2

2

s.t. f1(x) = x1 + x2 – 2 ≤ 0,

f2(x) = –x1 + 2x2 – 2 ≤ 0,

x1, x2 ≥ 0.

For this problem, we let x0 = (0, 0), ε0 = 0.001, a = 0.001, q0 = 2, b = 10, ε = 10–16. With
different k, numerical results of Algorithm 3.1 are shown in Tables 4, 5, and 6.

From Tables 4, 5, 6, we can see that almost the same approximate optimal solutions
are obtained for different k in this example. The objective function value is similar to the
objective function value f0(x∗) = –7.2000 with x∗ = (0.8000, 1.2000) obtained in the forth
iteration in [17].

Example 4.3 Consider the following problem considered in [24] and [25] (Test Problem 6
in Sect. 4.6):

min f0(x) = –x1 – x2

s.t. f1(x) = x2 – 2x4
1 + 8x3

1 – 8x2
1 – 2 ≤ 0,

f2(x) = x2 – 4x4
1 + 32x3

1 – 88x2
1 + 96x1 – 36 ≤ 0,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

For this problem, we set k = 2
3 , x0 = (0, 0), ε0 = 0.01, a = 0.01, q0 = 5, b = 2, ε = 10–16. The

numerical results of Algorithm 3.1 are shown in Table 7.
We set k = 8

9 , x0 = (1.0, 1.5), ε0 = 0.1, a = 0.1, q0 = 5, b = 3, ε = 10–16. The numerical
results of Algorithm 3.1 are shown in Table 8.
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Table 7 Numerical results for Example 4.3 with x0 = (0, 0)

j xj+1 qj εj f1(xj+1) f2(xj+1) f0(xj+1)

0 (2.329795, 3.133729) 5 10–2 –0.047009 –0.043471 –5.463524
1 (2.329238, 3.173320) 10 10–4 –0.002868 –0.006501 –5.502557
2 (2.329452, 3.177637) 20 10–6 –0.000302 –0.001176 –5.507089
3 (2.329626, 3.177558) 40 10–8 –0.001802 –0.000436 –5.507185

Table 8 Numerical results for Example 4.3 with x0 = (1.0, 1.5)

j xj+1 qj εj f1(xj+1) f2(xj+1) f0(xj+1)

0 (2.330261, 3.061875) 5 10–1 –0.1226776 –0.1131323 –5.392137
1 (2.329664, 3.161611) 15 10–2 –0.018055 –0.016207 –5.491275
2 (2.329639, 3.171941) 45 10–3 –0.007524 –0.005993 –5.501580
3 (2.329560, 3.177804) 135 10–4 –0.001013 –0.000503 –5.507363
4 (2.329593, 3.177793) 405 10–5 –0.001297 –0.000357 –5.507386
5 (2.329622, 3.177781) 1215 10–6 –0.001544 –0.000234 –5.507403

Table 9 Numerical results for Example 4.3 with x0 = (2, 0.5)

j xj+1 qj εj f1(xj+1) f2(xj+1) f0(xj+1)

0 (2.330460, 3.179900) 2 10–5 –0.006287 0.005832 –5.510360
1 (2.329672, 3.179735) 20 10–8 –0.000001 0.001957 –5.509408
2 (2.329672, 3.179735) 200 10–11 –0.000000 0.001957 –5.509407
3 (2.329541, 3.178391) 2000 10–14 –0.000000 –0.000000 –5.507933

We set k = 3
4 , x0 = (2, 0.5), ε0 = 0.00001, a = 0.001, q0 = 2, b = 10, ε = 10–16. The numerical

results of Algorithm 3.1 are shown in Table 9.
In [24], with three different starting points, similar numerical results are given with

k = 2
3 . The optimal solution (2.329517, 3.178421) is given with the objective function value

–5.507938. In [25], the optimal solution (2.3295, 3.1783) is given with the objective func-
tion value –5.5079. The numerical results of Example 4.3 are similar to the numerical
results of [24] and [25] in this example.

From Tables 7, 8, 9, we can see that we need to adjust the parameters q0, ε0, a, b to get
the better numerical results with different k and x0. Usually, ε0 may be 0.5, 0.1, 0.01, 0.001,
or smaller digits, and a = 0.5, 0.1, 0.01, or 0.001. q0 may be 1, 2, 3, 5, 10, 100, or larger digits,
and b = 2, 3, 5, 10, or 100.

5 Concluding remarks
In this paper, we proposed a method to smooth the lower order exact penalty function
with k ∈ [ 1

2 , 1) for inequality constrained optimization. Furthermore, we proved that the
algorithm based on the smoothed penalty functions is globally convergent under mild
conditions. The given numerical experiments show that the algorithm is effective.
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