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Abstract
In the paper, the authors present some inequalities involving the extended gamma
function and the Kummer confluent hypergeometric k-function via some classical
inequalities such as Chebychev’s inequality for synchronous (or asynchronous,
respectively) mappings, give a new proof of the log-convexity of the extended
gamma function by using the Hölder inequality, and introduce a Turán type mean
inequality for the Kummer confluent k-hypergeometric function.
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1 Introduction
The gamma function � can be defined [24, 28, 31, 32] by

�(z) =
∫ ∞

0
tz–1e–t dt, �(z) > 0.

Alternatively, it can also be defined [20] by

�(z) = lim
n→∞

n!nz–1

(z)n
,

where (z)n for z �= 0 is the Pochhammer symbol defined [27] as

(z)n =

⎧⎨
⎩

z(z + 1)(z + 2) · · · (z + n – 1), n ≥ 1;

1, n = 0.

The relation between (z)n and �(z) is

(z)n =
�(z + n)

�(z)
.

The beta function B(x, y) can be defined [18, 21, 22] by

B(x, y) =
∫ 1

0
tx–1(1 – t)y–1 dt, �(x),�(y) > 0
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and can be expressed by

B(x, y) =
�(x)�(y)
�(x + y)

, �(x),�(y) > 0.

In 1995, Chaudhry and Zubair [4] introduced the extended gamma function,

�b(z) =
∫ ∞

0
tz–1e–t–bt–1

dt, �(z) > 0, b ≥ 0. (1.1)

If b = 0, then �b becomes the classical gamma function �.
In 1997, Chaudhry et al. [3] introduced the extended beta function,

Bb(x, y) =
∫ 1

0
tx–1(1 – t)y–1e–b/t(1–t) dt, �(b),�(x),�(y) > 0.

It is clear that B0(x, y) = B(x, y).
In 2009, Barnard et al. [1] established three inequalities

[
φ(a, a + b, x)

]2 > φ(a + v, a + b, x)φ(a – v, a + b, x),
[
φ(a, c, x)

]2 > φ(a + v, c, x)φ(a – v, c, x),

and

A
(
φ(a + v, a + b, x),φ(a – v, a + b, x)

)
> φ(a, a + b, x)

> G
(
φ(a + v, a + b, x),φ(a – v, a + b, x)

)
,

where A(α,β) = α+β

2 and G(α,β) =
√

αβ are the arithmetic and geometric means and

φ(a, b, x) =
∞∑

n=0

(a)n

(b)n

xn

n!

is the Kummer confluent hypergeometric function [25, 28].
The Kummer confluent hypergeometric k-function is defined by

φk(a, b, x) =
∞∑

n=0

(a)n,k

(b)n,k

xn

n!
,

where

(a)n,k = a(a + k)(a + 2k) · · · [a + (n – 1)k
]

for n ≥ 1 and k > 0 with (a)0,k = 1 is the Pochhammer k-symbol, which can also be rewrit-
ten as

(a)n,k =
�k(a + nk)

�k(a)
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and the gamma k-function �k(a) is defined [6] by

�k(a) =
∫ ∞

0
ta–1e–tk /k dt.

In 2012, Mubeen [15] introduced the k-analogue of Kummer’s transformation as

φk(a, b, x) = exφk(a, b – a, –x). (1.2)

In Sect. 2, we prepare two lemmas. In Sect. 3, we discuss applications of some integral
inequalities such as Chebychev’s integral inequality. In Sect. 4, we prove the logarithmic
convexity of the extended gamma function. In the last section, we introduce a mean in-
equality of Turán type for the Kummer confluent hypergeometric k-function.

2 Lemmas
In order to obtain our main results, we need the following lemmas.

Lemma 2.1 (Chebychev’s integral inequality [7, 8, 12, 23]) Let f , g, h : I ⊆R →R be map-
pings such that h(x) ≥ 0, h(x)f (x)g(x), h(x)f (x), and h(x)g(x) are integrable on I . If f (x) and
g(x) are synchronous (or asynchronous, respectively) on I , that is,

[
f (x) – f (y)

][
g(x) – g(y)

]
� 0

for all x, y ∈ I , then

∫
I
h(x) dx

∫
I
h(x)f (x)g(x) dx �

∫
I
h(x)f (x) dx

∫
I
h(x)g(x) dx.

Lemma 2.2 (Hölder’s inequality [29, 30]) Let p and q be positive real numbers such that
1
p + 1

q = 1 and f , g : [c, d] →R be integrable functions. Then

∣∣∣∣
∫ d

c
f (x)g(x) dx

∣∣∣∣ ≤
[∫ d

c

∣∣f (x)
∣∣p dx

]1/p[∫ d

c

∣∣g(z)
∣∣q dx

]1/q

.

3 Inequalities involving the extended gamma function via Chebychev’s
integral inequality

In this section, we prove some inequalities involving the extended gamma function via
Chebychev’s integral inequality in Lemma 2.1.

Theorem 3.1 Let m, p and r be positive real numbers such that p > r > –m. If r(p–m–r) �
0, then

�b(m)�b(p) � �b(p – r)�b(m + r). (3.1)

Proof Let us define the mappings f , g, h : [0,∞) → [0,∞) given by

f (t) = tp–r–m, g(t) = tr , and h(t) = tm–1e–t–bt–1
.
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If r(p – m – r) � 0, then we can claim that the mappings f and g are synchronous (asyn-
chronous) on (0,∞). Thus, by applying Chebychev’s inequality on I = (0,∞) to the func-
tions f , g and h defined above, we can write

∫ ∞

0
tm–1e–t–bt–1

dt
∫ ∞

0
tp–r–mtrtm–1e–t–bt–1

dt

�
∫ ∞

0
tp–r–mtm–1e–t–bt–1

dt
∫ ∞

0
trtm–1e–t–bt–1

dt.

This implies that

∫ ∞

0
tm–1e–t–bt–1

dt
∫ ∞

0
tp–1e–t–bt–1

dt

�
∫ ∞

0
tp–r–1e–t–bt–1 dt

∫ ∞

0
tm+r–1e–t–bt–1 dt.

By (1.1), we acquire the required inequality (3.1). �

Corollary 3.1 If p > 0 and q ∈ R with |q| < p, then

�b(p) ≤ [
�b(p – q)�b(p + q)

]1/2.

Proof By setting m = p and r = q in Theorem 3.1, we obtain r(p – m – r) = –q2 ≤ 0 and
then the inequality (3.1) provides the desired Corollary 3.1. �

Theorem 3.2 If m, n > 0 are similarly (oppositely) unitary, then

�b(m + n + b) � �b(m + b + 1)�b(n + b + 1)
�b(b + 2)

.

Proof Consider the mappings f , g, h : [0,∞) → [0,∞) defined by

f (t) = tm–1, g(t) = tn–1, and h(t) = tb+1e–t–bt–1
.

Now if the condition (m – 1)(n – 1) � 0 holds, then Chebychev’s integral inequality applied
to the functions f , g , and h means

∫ ∞

0
tb+1e–t–bt–1

dt
∫ ∞

0
tm–1tn–1tb+1e–t–bt–1

dt

�
∫ ∞

0
tm–1tb+1e–t–bt–1

dt
∫ ∞

0
tn–1tb+1e–t–bt–1

dt.

This implies that

∫ ∞

0
tb+1e–t–bt–1 dt

∫ ∞

0
tm+n+b–1e–t–bt–1 dt

�
∫ ∞

0
tm+be–t–bt–1

dt
∫ ∞

0
tn+be–t–bt–1

dt.
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By the definition of the extended gamma function, we have

�b(b + 2)�b(m + n + b) � �b(m + b + 1)�b(n + b + 1),

or

�b(m + n + b) � �b(m + b + 1)�b(n + b + 1)
�b(b + 2)

.

The required proof is complete. �

Corollary 3.2 If b = 0, then

�(m + n) � mn�(m)�(n).

Theorem 3.3 If m and n are positive real numbers such that m and n are similarly (oppo-
sitely) unitary, then

�b(b + 1)�b(m + n + b + 1) � �b((m + b + 1)�b(n + b + 1), b ≥ 0.

Proof Consider the mappings f , g, h : [0,∞) → [0,∞) defined by

f (t) = tm, g(t) = tn, and h(t) = tbe–t–bt–1
.

If the conditions of Theorem 3.1 hold, then the mappings f and g are synchronous (asyn-
chronous) on [0,∞). Thus, by applying Chebychev’s integral inequality in Lemma 2.1 to
the functions f , g and h defined above, we have

∫ ∞

0
tbe–t–bt–1 dt

∫ ∞

0
tmtntbe–t–bt–1 dt

�
∫ ∞

0
tmtbe–t–bt–1

dt
∫ ∞

0
tntbe–t–bt–1

dt.

This implies that

∫ ∞

0
tbe–t–bt–1

dt
∫ ∞

0
tm+n+be–t–bt–1

dt

�
∫ ∞

0
tm+be–t–bt–1

dt
∫ ∞

0
tn+be–t–bt–1

dt.

Thus by the definition of extended gamma function, we have

�b(b + 1)�b(m + n + b + 1) � �b(m + b + 1)�b(n + b + 1).

The required proof is complete. �

Corollary 3.3 If b = 0, then

�(m + n) � mn�(m)�(n)
m + n

.
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4 Log-convexity of the extended gamma function
It is well known that, if f > 0 and ln f is convex, then f is said to be a logarithmically convex
function. Every logarithmically convex must be convex. See [16] and [19, Remark 1.9]. In
this section, we verify the log-convexity of extended gamma function.

Theorem 4.1 The extended gamma function �b : (0,∞) →R is logarithmically convex.

Proof Let p and q be positive numbers such that 1
p + 1

q = 1. Since

�b

(
x
p

+
y
q

)
≤ [

�b(x)
]1/p[

�b(y)
]1/q,

see [5], letting λ = 1
p and (1 – λ) = 1

q leads to

�b
[
λx + (1 – λ)y

] ≤ [
�b(x)

]λ[
�b(y)

](1–λ).

As a result, the function �b is logarithmically convex. �

5 A mean inequality of the Turán type for the Kummer confluent
hypergeometric k-function

In this section, we present a mean inequality involving the confluent hypergeometric k-
function. For this purpose, we consider the relation

φk(a + k, b, x) – φk(a, b, x) =
kx
b

φk(a + k, b + k, x), k > 0. (5.1)

Theorem 5.1 For a, b, k > 0 and v ∈N with a, b ≥ v – k, the inequality

[
φk(a, a + b, x)

]2 > φk(a + v, a + b, x)φk(a – v, a + b, x) (5.2)

is valid for all nonzero x ∈R.

First proof Assume that x > 0. For c �= 0, –1, –2, . . . , define

fv,k(x) =
[
φk(a, c, x)

]2 – φk(a + v, c, x)φk(a – v, a + b, x)

and

fv+k,k(x) = φk(a, c, x)2 – φk(a + v + k, c, x)φk(a – v – k, a + b, x).

From (5.1), it follows that

fv+k,k(x) – fv,k(x) = φk(a + v, c, x)φk(a – v, c, x)

– φk(a + v + k, c, x)φk(a – v – k, c, x)

= φk(a – v, c, x)
[
φk(a + v, c, x) – φk(a + v + k, c, x)

]

+ φk(a + v + k, c, x)
[
φk(a – v, c, x) – φk(a – v – k, c, x)

]
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= φk(a – v, c, x)
(

–kx
c

)
φk(a + v + k, c + k, x)

+ φk(a + v + k, c, x)
(

kx
c

)
φk(a – v, c + k, x)

=
kx
c

gv,k(x),

where

gv,k(x) = φk(a + v + k, c, x)φk(a – v, c + k, x)

– φk(a – v, c, x)φk(a + v + k, c + k, x).

Accordingly, by the Cauchy product, we have

gv,k(x) =
∞∑
s=0

s∑
r=0

(a + v + k)s,k(a – v)s–r,k

r!(s – r)!

×
[

1
(c)s,k(c + k)s–r,k

–
1

(c)s–r,k(c + k)s,k

]
xs

=
∞∑
s=0

s∑
r=0

(a + v + k)s,k(a – v)s–r,k

r!(s – r)!

[
(c + mk) – (c + nk – mk)

c(c + k)s,k(c + k)s–r,k

]
xs

=
k
c

∞∑
s=0

s∑
r=0

Ts,r,k(2r – s)xs,

where

Ts,r,k =
(a + v + k)s,k(a – v)s–r,k

r!(s – r)!(c + k)s,k(c + k)s–r,k
.

If s is even, then

s∑
r=0

Ts,r,k(2r – s) =
s/2–1∑
r=0

Ts,r,k(2r – s) +
s∑

r=s/2+1

Ts,r,k(2r – s)

=
s/2–1∑
r=0

Ts,r,k(2r – s) +
s/2–1∑
r=0

Ts,s–r,k
(
2(s – r) – s

)

=
�(s–1)/2�∑

r=0

(Ts,s–r,k – Ts,r,k)(s – 2r),

where �x� denotes the ceiling function whose value is the greatest integer not more than x.
Similarly, if s is odd,

s∑
r=0

Ts,r,k(2r – s) =
�(s–1)/2�∑

r=0

(Ts,s–r,k – Ts,r,k)(s – 2r).
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Accordingly,

fv+k,k(x) – fv,k(x) =
kx
c

gv,k(x)

=
k2x
c2

∞∑
s=1

�(s–1)/2�∑
r=0

(Ts,s–r,k – Ts,r,k)(s – 2r)xs. (5.3)

Carefully simplifying gives

Ts,s–r,k – Ts,r,k =
(a + v + k)s,k(a – v)s,k – (a + v + 1)s,k(a – v)s,k

r!(s – r)!(c + k)s–r,k(c + k)s,k

=
(a + v + k)s,k(a – v)s,k

r!(s – r)!(c + k)s–r,k(c + k)s,k

[
(a + v + k)s–r,k

(a + v + k)s,k
–

(a – v)s–r,k

(a – v)s,k

]

=
(a + v + k)s,k(a – v)s,k

r!(s – r)!(c + k)s–r,k(c + k)s,k

[
hk(a + v + k) – hk(a – v)

]
, (5.4)

where hk(x) = (x)s–r,k
(x)s,k

. For x > 0 and s – r > r, that is, [ s–1
2 ] ≥ r, the logarithmic derivatives of

hk is

h′
k(x)

hk(x)
= ψk

(
x + (s – r)k

)
– ψk(x + nk) > 0,

where ψk = �′
k

�k
is the digamma k-function (see [6, 11, 16]). Hence, the function hk is in-

creasing under the condition stated. This fact together with the aid of (5.3) and (5.4) yields

fv+k,k(x) – fv,k(x) =
kx
c

gv,k(x)

=
k2x
c2

∞∑
s=1

�(s–1)/2�∑
r=0

(Ts,s–r,k – Ts,r,k)(s – 2r)xs > 0, (5.5)

where a ≥ v ≥ 0, x > 0, c + k > 0, and c �= 0. Consequently, from (5.5), it follows that

fv+k,k(x) =
[
fv+k,k(x) – fv,k(x)

]
+

[
fv,k(x) – fv–k,k(x)

]
+ · · · +

[
f1,k(x) – f0,k(x)

]

is positive for a ≥ v ≥ v – k ≥ v – 2k ≥ · · · ≥ 0 and f0,k(x) = 0. Now replacing v by v – k
shows that

fv,k(x) > 0, x > 0, v ∈N, a ≥ v – k. (5.6)

Therefore, the function fv,k is absolutely monotonic on (0,∞), that is, f (�)
v,k (x) > 0 for � =

0, 1, 2, . . . . This proves Theorem 5.1 for the case x > 0.
Now suppose that x < 0, a, b > 0, and v ∈N with a, b ≥ v – k. Since φk(a, c, x) is symmetric

in a and b, by interchanging a and b in Theorem 5.1, we obtain

φk(b, a + b, –x)2 – φk(b + v, a + b, –x)φk(b – v, a + b, –x) > 0.
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By using Kummer’s transformation (1.2), we have

e–2xφk(a, a + b, x)2 – e–2xφk(a – v, a + b, x)φk(a + v, a + b, x) > 0.

Thus, Theorem 5.1 also holds for x < 0. �

Second proof Since

(a)n,k = a(a + k)(a + 2k) · · · (a + (n – 1)k
)

= kn a
k

(
a
k

+ 1
)(

a
k

+ 2
)

· · ·
(

a
k

+ (n – 1)
)

= kn
(

a
k

)
n
,

it follows that

φk(a, b; x) =
∞∑

n=0

(a)n,k

(b)n,k

xn

n!
=

∞∑
n=0

kn(a/k)n

kn(b/k)n

xn

n!
= φ

(
a
k

,
b
k

, x
)

.

Replacing a and b by a
k and b

k , respectively, gives Theorem 5.1. �

Corollary 5.1 If a > 0 and c + k > 0 with c �= 0, then the inequality

[
φk(a, c, x)

]2 ≥ φk(a – v, c, x)φk(a + v, c, x)

holds for any v ∈ N with a ≥ v – k.

Proof This follows directly from the proof of Theorem 5.1 and the fact that Eq. (5.6) holds
under the conditions c + k > 0 and c �= 0. �

Corollary 5.2 If v ∈ N and a, b ≥ v, then

A
(
φk(a + v, a + b, x),φk(a – v, a + b, x)

)
> φk(a, a + b, x)

> G
(
φk(a + v, a + b, x),φk(a – v, a + b, x)

)
(5.7)

for all nonzero x ∈R, where A and G are, respectively, the arithmetic and geometric means.

Proof First assume x ≥ 0 and a, b ≥ v for v ∈N. Then the left hand side inequality in (5.7)
is a direct consequence of the facts that

A
(
(a + v)s,k , (a – v)s,k

)
= (a)s,k

for s = 0, 1 and

A
(
(a + v)s,k , (a – v)s,k

)
> (a)s,k



Nisar et al. Journal of Inequalities and Applications  (2018) 2018:135 Page 10 of 12

for s ≥ 2. Hence, by induction, we have

A
(
φk(a + v, a + b, x),φk(a – v, a + b, x)

)
=

∞∑
s=0

A((a + v)s,k , (a – v)s,k)xs

(a + b)s,ks!

>
∞∑
s=0

(a)s,kxs

(a + b)s,ks!
= φk(a, a + b, x).

For x ≥ 0, the right hand side inequality in (5.7) follows from taking square root of (5.2).
The proof of Corollary 5.2 for x ≥ 0 is thus complete.

Now assume x < 0 with a, b ≥ v. Interchanging a and b in (5.7) one arrives at

A
(
φk(b + v, a + b, –x),φk(b – v, a + b, –x)

)
> φk(b, a + b, –x)

> G
(
φk(b + v, a + b, –x),φk(b – v, a + b, –x)

)
.

Making use of the k-analogue of Kummer’s transformation and the homogeneity of A and
G acquires

e–xA
(
φk(a – v, a + b, x),φk(a + v, a + b, x)

)
> e–xφk(a, a + b, x)

> e–xG
(
φk(a – v, a + b, x),φk(a + v, a + b, x)

)
.

Consequently, Theorem (5.7) also follows for x < 0. �

Remark 5.1 In Sect. 5, we have established a Turán type and mean inequality for k-
analogue of the Kummer confluent hypergeometric function. If we let k → 1, then we
can conclude to the corresponding inequalities of the confluent hypergeometric function.

Remark 5.2 In [2], some inequalities of the Turán type for confluent hypergeometric func-
tions of the second kind were also discovered.

Remark 5.3 By the way, we note that Refs. [9, 10, 13, 14, 26, 32, 33] belong to the same
series in which inequalities and complete monotonicity for functions involving the gamma
function �(x) and the logarithmic function ln(1 + x) were discussed.

Remark 5.4 This paper is a slightly revised version of the preprint [17].

6 Conclusions
In this paper, we present some inequalities involving the extended gamma function �b(z)
via some classical inequalities such as Chebychev’s inequality for synchronous (or asyn-
chronous, respectively) mappings, give a new proof of the log-convexity of the extended
gamma function �b(z) by using the Hölder inequality, and introduce a Turán type mean
inequality for the Kummer confluent k-hypergeometric function φ(z).
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