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Abstract
In this paper, we introduce an iterative scheme using the gradient projection method
with a new step size, which is not depend on the related matrix inverses and the
largest eigenvalue (or the spectral radius of the self-adjoint operator) of the related
matrix, based on Moudafi’s viscosity approximation method for solving the split
feasibility problem (SFP), which is to find a point in a given closed convex subset of a
real Hilbert space such that its image under a bounded linear operator belongs to a
given closed convex subset of another real Hilbert space. We suggest and analyze this
iterative scheme under some appropriate conditions imposed on the parameters
such that another strong convergence theorems for the SFP are obtained. The results
presented in this paper improve and extend the main results of Tian and Zhang
(J. Inequal. Appl. 2017:Article ID 13, 2017), and Tang et al. (Acta Math. Sci.
36B(2):602–613, 2016) (in a single-step regularized method) with a new step size, and
many others. The examples of the proposed SFP are also shown through numerical
results.
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1 Introduction
Throughout this paper, we always assume that C and Q be closed convex subsets of two
real Hilbert spaces H and K , respectively with inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let A : H → K be a bounded linear operator. The split feasibility
problem (SFP) which was first introduced by Censor and Elfving [3] is to find

x∗ ∈ C such that Ax∗ ∈ Q. (1.1)

Suppose that PC and PQ are the orthogonal projections onto the sets C and Q, respectively.
Assume that SFP (1.1) is consistent. We observe that x∗ ∈ C solves the SFP (1.1) if and only
if it solves the fixed point equation

x∗ = PC
(
I – γ A∗(I – PQ)A

)
x∗,

where γ > 0 is any positive constant, I is the identity operator on H or K , and A∗ denotes
the adjoint of A. To solve SFP (1.1) in the setting of a finite-dimensional real Hilbert space
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case, Byrne [4] proposed the so-called CQ algorithm based on the Picard iteration method
as follows:

xn+1 = PC
(
I – γ At(I – PQ)A

)
xn, ∀n = 0, 1, 2, . . . , (1.2)

where γ ∈ (0, 2
L ) such that L being the largest eigenvalue of the matrix AtA as At stands for

matrix transposition of A. He proved that the sequence {xn} generated by (1.2) converges
strongly to the SFP (1.1).

In [5], Yang presented a relaxed CQ algorithm for solving the SFP (1.1), where he used
two halfspaces Cn and Qn in place of C and Q, respectively, and at the nth iteration, the
orthogonal projections onto Cn and Qn are easily executed.

Both the CQ algorithm and the relaxed CQ algorithm used a fixed step size related to
the largest eigenvalue of the matrix A∗A or the spectral radius of the self-adjoint operator
A∗A, which sometimes affects convergence of the algorithms. In [6], Qu and Xiu presented
a modification of the CQ algorithm and the relaxed CQ algorithm by adopting the Armijo-
like searches, which need not to compute the matrix inverses and the largest eigenvalue
of the matrix A∗A. The CQ-like algorithms are also proposed subsequently [3, 7–10].

In all these CQ-like algorithms for the SFP (1.1), in order to get the step size, one has to
compute the largest eigenvalue of the related matrix or use some line search scheme which
usually requires many inner iterations to search for a suitable step size in every iteration.

We note that a point x solves the SFP (1.1) means that there is an element x ∈ C such
that Ax – x∗ = 0 for some x∗ ∈ Q. This motivates us to consider the distance function
d(Ax, x∗) = ‖Ax – x∗‖ for all x ∈ C, and the constrained convex minimization problem:

min
x∈C,x∗∈Q

1
2
∥
∥Ax – x∗∥∥2

such that minimizing with respect to x∗ ∈ Q. Let g : C →R be a continuous differentiable
function. First makes us consider the minimization:

min
x∈C

g(x) :=
1
2
‖Ax – PQAx‖2 (1.3)

is ill-posed. Therefore, Xu [11] considered the following Tikhonov regularization problem:

min
x∈C

gε(x) := g(x) +
ε

2
‖x‖2 =

1
2
‖Ax – PQAx‖2 +

ε

2
‖x‖2,

where ε > 0 is the regularization parameter. We know that the gradient ∇gε of gε as

∇gε(x) = ∇g(x) + εI = A∗(I – PQ)A + εI, ∀x ∈ C,

such that ∇gε(x) is (ε + ‖A‖2)-Lipschitzian continuous (that is, ‖∇gε(x) – ∇gε(y)‖ ≤
(ε +‖A‖2)‖x–y‖ for all x, y ∈ C) and ε-strongly monotone (that is, 〈∇gε(x)–∇gε(y), x–y〉 ≥
ε‖x – y‖2 for all x, y ∈ C).

Assume that the constrained convex minimization problem (1.3) is consistent. In [11],
Xu suggested a single-step regularized method based on the Picard iteration method in
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the setting of an infinite-dimensional real Hilbert space as follows:

xn+1 = PC(I – γn∇gεn )xn

= PC
(
I – γn

(
A∗(I – PQ)A + εnI

))
xn, ∀n = 0, 1, 2, . . . . (1.4)

He proved that the sequence {xn} generated by (1.4) converges in norm to the minimum-
norm solution (1.3) of the SFP (1.1), provided the parameters {εn}, {γn} ⊂ (0, 1) satisfy the
following conditions:

(i) limn→∞ εn = 0 and 0 < γn ≤ εn
‖A‖2+εn

,
(ii)

∑∞
n=0 εnγn = ∞,

(iii) limn→∞ |γn+1–γn|+γn|εn+1–εn|
(εn+1γn+1)2 = 0.

In [1], Tian and Zhang suggested a single-step regularized method based on the Picard
iteration method in the setting of an infinite-dimensional real Hilbert space as follows:

xn+1 = PC(I – λ∇gεn )xn

= PC
(
I – λ

(
A∗(I – PQ)A + εnI

))
xn, ∀n = 0, 1, 2, . . . . (1.5)

They proved that the sequence {xn} generated by (1.5) converges in norm to the minimum-
norm solution (1.3) of the SFP (1.1), provided the parameters {εn} ⊂ (0, 1) and λ satisfy the
following conditions:

(i) 0 < λ < 2
‖A‖2+2 ,

(ii) limn→∞ εn = 0 and
∑∞

n=0 εn = ∞,
(iii)

∑∞
n=0 |εn+1 – εn| < ∞.

We observe that in the proof of their proposed results,
∑∞

n=0 |εn+1 – εn| < ∞ of the control
condition (iii) can be removed using the NST-condition (II) [12] (see also [13, 14]).

The SFP (1.1) is an important and has been widely studied because it plays a prominent
role in the signal processing and image reconstruction problem. Initiated by the SFP, sev-
eral split type problems have been investigated and studied, for examples, the split vari-
ational inequality problem (SVIP) (see [15]) and the split common null point problem
(SCNP). We will consolidate these problems. Let S : H → H and T : K → K be two oper-
ators with nonempty fixed point sets Fix(S) := {x ∈ H : x = S(x)} and Fix(T), respectively.
If S be a nonexpansive mapping (that is, ‖Sx – Sy‖ ≤ ‖x – y‖ for all x, y ∈ H), then Fix(S) is
closed and convex (see [16]). The split common fixed point problem (SCFP) is to find

x∗ ∈ Fix(S) such that Ax∗ ∈ Fix(T). (1.6)

If S = PC and T = PQ then Fix(S) = C and Fix(T) = Q, and hence the SCFP (1.6) immedi-
ately reduces to the SFP (1.1).

Assume that the SCFP (1.6) is consistent. In [17], Censor and Segal proposed and proved
a strong convergence theorem for the SCFP (1.6) based on the Picard iteration method,
in the case that the directed operators S (that is, 〈x – Sx, Sx – y〉 ≥ 0 for all y ∈ Fix(S) and
x ∈ H , for instance S = PC) and T , still in a finite-dimensional real Hilbert space to extend
the iteration method (1.2) of Byrne as follows:

xn+1 = S
(
I – γ At(I – T)A

)
xn, ∀n = 0, 1, 2, . . . ,

where γ ∈ (0, 2
L ).
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In [18], Kraikaew and Saejung proposed and proved a strong convergence theorem
for the SCFP (1.6) based on the Halpern iteration method, in the case that the quasi-
nonexpansive mappings S (that is, ‖Sx – p‖ ≤ ‖x – p‖ for all x ∈ H and p ∈ Fix(S)) and
T such that both I – S and I – T are demiclosed at zero on an infinite-dimensional real
Hilbert space as follows:

xn+1 = αnx0 + (1 – αn)S
(
I – γ A∗(I – T)A

)
xn, ∀n = 0, 1, 2, . . . ,

where γ ∈ (0, 1
L ), {αn} ⊂ (0, 1), limn→∞ αn = 0 and

∑∞
n=0 αn = ∞.

In [2], Tang et al. proposed and proved a strong convergence theorem for the SCFP (1.6)
based on the viscosity approximation method, in the case that the firmly nonexpansive
mappings S (that is, ‖Sx – Sy‖2 ≤ ‖x – y‖2 –‖(I – S)x – (I – S)y‖2 for all x, y ∈ H) and T such
that both I – S and I – T are demiclosed at zero, and an α-contraction mapping h : H → H
with α ∈ (0, 1) (that is, ‖h(x) – h(y)‖ ≤ α‖x – y‖ for all x, y ∈ H) on an infinite-dimensional
real Hilbert space in a single-step regularized method as follows:

xn+1 = αnxn + βnh(xn) + γnS
(
I – ξnA∗(I – T)A

)
xn, ∀n = 0, 1, 2, . . . ,

where αn + βn + γn = 1, ξn = ρn‖(I–T)Axn‖2

2‖A∗(I–T)Axn‖2 , {ρn} ⊂ (0, 4), {αn}, {βn}, {γn} ⊂ (0, 1) satisfy the
following conditions:

(i) limn→∞ βn = 0 and
∑∞

n=0 βn = ∞,
(ii) lim infn→∞ αnγn > 0.

We observe that in the proof of their proposed results, the sequence {ξn} may not con-
verges to the zero, for instance if A = I and ρn = 2 for all n = 0, 1, 2, . . . then the sequence
{ξn} converges to the integer 1. The relaxed CQ-like algorithms are also proposed subse-
quently [19–21].

In this paper, we modify in all these algorithms to solve the SCFP (1.6) and also solve
the SFP (1.1) based on Moudafi’s viscosity approximation method [22], in the case that the
firmly nonexpansive mappings S and T such that both I – S and I – T are demiclosed at
zero, and an α-contraction mapping h : H → H with α ∈ (0, 1) on an infinite-dimensional
real Hilbert space in a single-step regularized method with the regularization parameter
as follows:

xn+1 = αnxn + βnh(xn) + γnS
(
I – λn

(
A∗(I – T)A + εnI

))
xn, ∀n = 0, 1, 2, . . . . (1.7)

We suggest and analyze this iterative scheme (1.7) under some appropriate conditions
imposed on the parameters with a new step size, which is not depend on the related matrix
inverses and the largest eigenvalue (or the spectral radius of the self-adjoint operator) of
the related matrix such that another strong convergence theorems for the SCFP (1.6) and
the SFP (1.1) are obtained.

2 Preliminaries
Let H and K be two real Hilbert spaces, A : H → K be a bounded linear operator, A∗

denotes the adjoint of A and let I be the identity operator on H or K . If f : H → R is a
differentiable function, then we denote ∇f the gradient of the function f . We will also use
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the notation: → to denote the strong convergency, ⇀ to denote the weak convergency,

ωw(xn) =
{

x : ∃{xnk } ⊂ {xn} such that xnk ⇀ x
}

to denote the weak limit set of {xn} and Fix(T) = {x : x = Tx} to denote the fixed point set
of the mapping T .

Let C be a nonempty closed convex subset of a real Hilbert space H . Recall that the
metric projection PC : H → C is defined as follows: for each x ∈ H , PCx is the unique
point in C satisfying

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}
.

Let f : H →R be a function. Recall that a function f is called convex if

f
(
λx + (1 – λ)y

) ≤ λf (x) + (1 – λ)f (y), ∀λ ∈ [0, 1],∀x, y ∈ H .

A differentiable function f is convex if and only if for each x ∈ H , we have the inequality:

f (z) ≥ f (x) +
〈∇f (x), z – x

〉
, ∀z ∈ H .

An element g ∈ H is said to be a subgradient of f at x ∈ H if we have the subdifferentiable
inequality

f (z) ≥ f (x) + 〈g, z – x〉, ∀z ∈ H .

A function f is said to be subdifferentiable at x ∈ H , if it has at least one subgradient at x.
The set of subgradients of f at x ∈ H is called the subdifferentiable of f at x, and it is de-
noted by ∂f (x). A function f is called subdifferentiable, if it is subdifferentiable at all x ∈ H .
If a function f is differentiable and convex, then its gradient and subgradient coincide.
A function f is called lower semi-continuous (lsc) for all x ∈ H if for each a ∈ R, the set
{x ∈ H : f (x) ≤ a} is a closed set, and a function f is called weakly lower semi-continuous
(w-lsc) at x ∈ H if f is lsc at x for a sequence {xn} ⊂ H such that xn ⇀ x.

We collect some known lemmas and definitions which are our main tools in proving the
our results.

Lemma 2.1 Let H be a real Hilbert space. Then, for all x, y ∈ H ,
(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2,

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.2 ([23]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Then:

(i) z = PCx ⇔ 〈x – z, z – y〉 ≥ 0, ∀x ∈ H , y ∈ C,
(ii) z = PCx ⇔ ‖x – z‖2 ≤ ‖x – y‖2 – ‖y – z‖2, ∀x ∈ H , y ∈ C,

(iii) ‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H .

Definition 2.3 Let H be a real Hilbert space. The operator T : H → H is called:
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(i) monotone if

〈x – y, Tx – Ty〉 ≥ 0, ∀x, y ∈ H ,

(ii) L-Lipschitzian with L > 0 if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H ,

(iii) α-contraction if it is α-Lipschitzian with α ∈ (0, 1),
(iv) nonexpansive if it is 1-Lipschitzian,
(v) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ H .

Lemma 2.4 ([24]) Let H and K be two real Hilbert spaces and let T : K → K be a firmly
nonexpansive mapping such that ‖(I – T)x‖ is a convex function from K to R = [–∞, +∞].
Let A : H → K be a bounded linear operator and f (x) = 1

2‖(I – T)Ax‖2 for all x ∈ H . Then:
(i) ∇f (x) = A∗(I – T)Ax, ∀x ∈ H ,

(ii) ∇f is ‖A‖2-Lipschitzian.

Lemma 2.5 ([24]) Let H be a real Hilbert space and T : H → H be an operator. The fol-
lowing statements are equivalent:

(i) T is firmly nonexpansive,
(ii) ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H ,

(iii) I – T is firmly nonexpansive.

Lemma 2.6 ([25]) Let H be a real Hilbert space and let {xn} be a sequence in H . Then, for
any given sequence {λn}∞n=1 ⊂ (0, 1) with

∑∞
n=1 λn = 1 and for any positive integer i, j with

i < j,

∥∥
∥∥
∥

∞∑

i=1

λnxn

∥∥
∥∥
∥

2

≤
∞∑

i=1

λn‖xn‖2 – λiλj‖xi – xj‖2.

Lemma 2.7 ([26]) Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 – γn)an + γnσn, ∀n = 0, 1, 2, . . . ,

where {γn} is a sequence in (0, 1) and {σn} is a sequence in R such that
(i)

∑∞
n=0 γn = ∞,

(ii) lim supn→∞ σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.
Then limn→∞ an = 0.

Lemma 2.8 ([27]) Let {tn} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that tni < tni+1 for all i ∈ N. Then there exists a nondecreasing se-
quence {τ (n)} ⊂ N such that τ (n) → ∞, and the following properties are satisfied by all
(sufficiently large) numbers n ∈N:

tτ (n) ≤ tτ (n)+1, tn ≤ tτ (n)+1.
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In fact,

τ (n) = max{k ≤ n : tk < tk+1}.

Lemma 2.9 ([28] (Demiclosedness principle)) Let C be a nonempty closed convex subset
of a real Hilbert space H and let S : C → C be a nonexpansive mapping with Fix(S) �= ∅. If
the sequence {xn} ⊂ C converges weakly to x and the sequence {(I – S)xn} converges strongly
to y. Then (I – S)x = y; in particular, if y = 0 then x ∈ Fix(S).

Lemma 2.10 ([16]) Let C be a nonempty closed convex subset of a Hilbert space H and
let f be a proper convex lower semi-continuous function of C into (–∞,∞]. If {xn} be a
bounded sequence of C such that xn ⇀ x0. Then f (x0) ≤ lim infn→∞ f (xn).

3 Main result
Throughout this paper, we let � := {x ∈ Fix(S) : Ax ∈ Fix(T)}. It is clear that � is closed
and convex.

Theorem 3.1 Let H and K be two real Hilbert spaces and let S : H → H and T : K → K
be two firmly nonexpansive mappings such that both I – S and I – T are demiclosed at
zero. Let ‖(I – T)x‖ be a convex function from K to R and A : H → K be a bounded linear
operator, and let h : H → H be an α-contraction mapping. Assume that the SCFP (1.6) has
a nonempty solution set � and let {xn} ⊂ H be a sequence generated by

⎧
⎨

⎩
x0 ∈ H ,

xn+1 = αnxn + βnh(xn) + γnS(xn – λn∇gεn (xn)), ∀n = 0, 1, 2, . . . ,

where αn + βn + γn = 1 and gεn (xn) = 1
2‖(I – T)Axn‖2 + εn

2 ‖xn‖2 such that

∇gεn (xn) = A∗(I – T)Axn + εnxn �= 0, λn =
ρngεn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)

for all n = 0, 1, 2, . . . . If the sequences {ρn} ⊂ [a, b] for some a, b ∈ (0, 2), {αn} ⊂ [c, d] for some
c, d ∈ (0, 1) and {βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

(i) 0 ≤ εn ≤ β2m
n such that m > 1 for all n = 0, 1, 2, . . . ,

(ii) limn→∞ βn = 0 and
∑∞

n=0 βn = ∞,
then the sequence {xn} converges strongly to x∗ ∈ � where x∗ = P�h(x∗).

Proof Fix n ∈N∪ {0}. Note that gεn (x) = 1
2‖(I – T)Ax‖2 + εn

2 ‖x‖2 is Gáteaux differentiable
by the convexity of ‖(I – T)Ax‖ for all x ∈ H . First, we show that {xn} is bounded. Pick
p ∈ �. We have p ∈ Fix(S) and Ap ∈ Fix(T). Observing that I – T is firmly nonexpansive,
by Lemma 2.5 we have

〈
xn – p,∇gεn (xn)

〉
=

〈
xn – p, A∗(I – T)Axn + εnxn

〉

=
〈
xn – p, A∗(I – T)Axn

〉
+ εn〈xn – p, xn〉

=
〈
Axn – Ap, (I – T)Axn – (I – T)Ap

〉
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+
εn

2
(‖xn – p‖2 + ‖xn‖2 – ‖p‖2)

≥ ∥∥(I – T)Axn – (I – T)Ap
∥∥2 +

εn

2
(‖xn‖2 – ‖p‖2)

≥ 1
2
∥
∥(I – T)Axn

∥
∥2 +

εn

2
(‖xn‖2 – ‖p‖2)

≥ gεn (xn) –
β2m

n
2

‖p‖2. (3.1)

Therefore, by the nonexpansiveness of S we have

∥
∥S

(
xn – λn∇gεn (xn)

)
– p

∥
∥2

=
∥
∥S

(
xn – λn∇gεn (xn)

)
– Sp

∥
∥2

≤ ∥
∥xn – λn∇gεn (xn) – p

∥
∥2

= ‖xn – p‖2 + λ2
n
∥
∥∇gεn (xn)

∥
∥2 – 2λn

〈
xn – p,∇gεn (xn)

〉

≤ ‖xn – p‖2 + λ2
n
∥
∥∇gεn (xn)

∥
∥2 – 2λngεn (xn) + λnβ

2m
n ‖p‖2

≤ ‖xn – p‖2 +
ρ2

ng2
εn (xn)(‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn))
(‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn))2

–
2ρng2

εn (xn)
‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)

+ β2m
n ‖p‖2

= ‖xn – p‖2 – ρn(2 – ρn)
g2
εn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)
+ β2m

n ‖p‖2

≤ ‖xn – p‖2 + β2m
n ‖p‖2

≤ (‖xn – p‖ + βm
n ‖p‖)2. (3.2)

This implies that

∥∥S
(
xn – λn∇gεn (xn)

)
– p

∥∥ ≤ ‖xn – p‖ + βm
n ‖p‖. (3.3)

Hence,

‖xn+1 – p‖ =
∥∥αnxn + βnh(xn) + γnS

(
xn – λn∇gεn (xn)

)
– p

∥∥

≤ αn‖xn – p‖ + βn
∥∥h(xn) – p

∥∥ + γn
∥∥S

(
xn – λn∇gεn (xn)

)
– p

∥∥

≤ αn‖xn – p‖ + βn
∥∥h(xn) – h(p)

∥∥ + βn
∥∥h(p) – p

∥∥

+ γn
(‖xn – p‖ + βm

n ‖p‖)

≤ αn‖xn – p‖ + βnα‖xn – p‖ + βn
∥∥h(p) – p

∥∥ + γn‖xn – p‖ + βn‖p‖

=
(
1 – (1 – α)βn

)‖xn – p‖ + (1 – α)βn
‖h(p) – p‖ + ‖p‖

1 – α

≤ max

{
‖xn – p‖,

‖h(p) – p‖ + ‖p‖
1 – α

}
.
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By induction, we have

‖xn – p‖ ≤ max

{
‖x0 – p‖,

‖h(p) – p‖ + ‖p‖
1 – α

}
.

This implies that {xn} is bounded, and so are {h(xn)} and {gεn (xn)}. Using Lemma 2.6 and
(3.2), we have

‖xn+1 – p‖2 =
∥∥αnxn + βnh(xn) + γnS

(
xn – λn∇gεn (xn)

)
– p

∥∥2

=
∥
∥αn(xn – p) + βn

(
h(xn) – p

)
+ γn

(
S
(
xn – λn∇gεn (xn)

)
– p

)∥∥2

≤ αn‖xn – p‖2 + βn
∥
∥h(xn) – p

∥
∥2 + γn

∥
∥S

(
xn – λn∇gεn (xn)

)
– p

∥
∥2

– αnγn
∥
∥S

(
xn – λn∇gεn (xn)

)
– xn

∥
∥2

≤ αn‖xn – p‖2 + βn
∥∥h(xn) – p

∥∥2 + γn

(
‖xn – p‖2

– ρn(2 – ρn)
g2
εn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)
+ β2m

n ‖p‖2
)

– αnγn
∥∥S

(
xn – λn∇gεn (xn)

)
– xn

∥∥2

≤ ‖xn – p‖2 + βn
∥∥h(xn) – p

∥∥2

– γnρn(2 – ρn)
g2
εn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)
+ βn‖p‖2

– αnγn
∥
∥S

(
xn – λn∇gεn (xn)

)
– xn

∥
∥2.

Therefore,

γnρn(2 – ρn)
g2
εn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)

+ αnγn
∥∥S

(
xn – λn∇gεn (xn)

)
– xn

∥∥2

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + βn
∥∥h(xn) – p

∥∥2 + βn‖p‖2. (3.4)

Since P�h is a contraction on H , by the Banach contraction principle there exists a unique
element x∗ ∈ H such that x∗ = P�h(x∗). That is x∗ ∈ �. Now, we show that xn → x∗ as
n → ∞. We consider into two cases.

Case 1. Assume that {‖xn – p‖} is a monotone sequence. In other words, for n0 large
enough, {‖xn –p‖}n≥n0 is either nondecreasing or nonincreasing. As {‖xn –p‖} is bounded,
so {‖xn – p‖} is convergent. Therefore, by (3.4) we have

lim
n→∞γnρn(2 – ρn)

g2
εn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)
= 0 (3.5)

and

lim
n→∞αnγn

∥∥S
(
xn – λn∇gεn (xn)

)
– xn

∥∥2 = 0. (3.6)
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By Lemma 2.4, we have

∥∥∇gεn (xn)
∥∥ ≤ ∥∥∇gεn (xn) – ∇gεn (p)

∥∥ +
∥∥∇gεn (p)

∥∥

≤ ∥∥A∗(I – T)Axn – A∗(I – T)Ap
∥∥ + εn‖xn – p‖ +

∥∥∇gεn (p)
∥∥

≤ (‖A‖2 + εn
)‖xn – p‖ +

∥∥∇gεn (p)
∥∥

≤ (‖A‖2 + 1
)‖xn – p‖ +

∥∥∇gεn (p)
∥∥.

This implies that {‖∇gεn (xn)‖} is bounded, and so is {‖∇gεn (xn)‖2 +‖∇gεn (xn)‖+ρngεn (xn)}.
Hence, ‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn) < δ for some δ > 0. Since

(1 – d – βn)a(2 – b)
g2
εn (xn)

δ

≤ γnρn(2 – ρn)
g2
εn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)
,

by (3.5) we have

lim
n→∞ gεn (xn) = 0. (3.7)

Since

c(1 – d – βn)
∥∥S

(
xn – λn∇gεn (xn)

)
– xn

∥∥2 ≤ αnγn
∥∥S

(
xn – λn∇gεn (xn)

)
– xn

∥∥2,

by (3.6) we have

lim
n→∞

∥∥S
(
xn – λn∇gεn (xn)

)
– xn

∥∥ = 0. (3.8)

Here we have limn→∞ εn = 0 by the condition (ii). Therefore, in the same way, we have

lim
n→∞

∥
∥(I – T)Axn

∥
∥ = 0.

Consider a subsequence {xnk } of {xn}. As {xn} is bounded, so {xnk } is bounded, there exists
a subsequence {xnkl

} of {xnk } which converges weakly to w ∈ H . Without loss of generality,
we can assume that xnk ⇀ w as k → ∞. Therefore, Axnk ⇀ Aw as k → ∞ and

lim
k→∞

∥
∥(I – T)Axnk

∥
∥ = 0.

By the demiclosedness at zero, we have Aw ∈ Fix(T). Next, we show that w ∈ Fix(S). By
Lemma 2.1(2), the firmly nonexpansiveness of S and (3.3), we have

∥
∥S

(
xn – λn∇gεn (xn)

)
– p

∥
∥2

=
∥
∥(

S
(
xn – λn∇gεn (xn)

)
– Sxn

)
+ (Sxn – Sp)

∥
∥2

≤ ‖Sxn – Sp‖2 + 2
〈
S
(
xn – λn∇gεn (xn)

)
– Sxn, S

(
xn – λn∇gεn (xn)

)
– p

〉

≤ ‖xn – p‖2 –
∥∥(I – S)xn – (I – S)p

∥∥2
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+ 2
∥∥S

(
xn – λn∇gεn (xn)

)
– Sxn

∥∥∥∥S
(
xn – λn∇gεn (xn)

)
– p

∥∥

≤ ‖xn – p‖2 –
∥∥(I – S)xn

∥∥2 + 2λn
∥∥∇gεn (xn)

∥∥(‖xn – p‖ + βm
n ‖p‖).

Therefore,

∥∥(I – S)xn
∥∥2

≤ ‖xn – p‖2 –
∥
∥S

(
xn – λn∇gεn (xn)

)
– p

∥
∥2 + 2λn

∥
∥∇gεn (xn)

∥
∥(‖xn – p‖ + βm

n ‖p‖)

≤ ‖xn – p‖2 –
(∥∥S

(
xn – λn∇gεn (xn)

)
– xn

∥
∥ – ‖xn – p‖)2

+ 2λn
∥
∥∇gεn (xn)

∥
∥(‖xn – p‖ + βn‖p‖)

≤ 2
∥
∥S

(
xn – λn∇gεn (xn)

)
– xn

∥
∥‖xn – p‖ + 2λn

∥
∥∇gεn (xn)

∥
∥(‖xn – p‖ + βn‖p‖)

= 2
∥
∥S

(
xn – λn∇gεn (xn)

)
– xn

∥
∥‖xn – p‖

+
2ρngεn (xn)‖∇gεn (xn)‖

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)
(‖xn – p‖ + βn‖p‖)

≤ 2
∥
∥S

(
xn – λn∇gεn (xn)

)
– xn

∥
∥‖xn – p‖ + 4gεn (xn)

(‖xn – p‖ + βn‖p‖).

It follows by (3.7) and (3.8) that

lim
n→∞

∥
∥(I – S)xn

∥
∥ = 0.

Hence, limk→∞ ‖(I – S)xnk ‖ = 0. Therefore, by the demiclosedness at zero, we have w ∈
Fix(S). That is w ∈ �. Applying the characteristic of P� in Lemma 2.2(i) and x∗ = P�h(x∗),
we have

lim sup
n→∞

〈
h
(
x∗) – x∗, xn+1 – x∗〉 = max

w∈ωw(xn)

〈
h
(
x∗) – x∗, w – x∗〉 ≤ 0.

Finally, we show that xn → x∗ as n → ∞. By Lemma 2.1(ii) and (3.3), we have

∥∥xn+1 – x∗∥∥2 =
∥∥αnxn + βnh(xn) + γnS

(
xn – λn∇gεn (xn)

)
– x∗∥∥2

=
∥∥αn

(
xn – x∗) + βn

(
h(xn) – x∗) + γn

(
S
(
xn – λn∇gεn (xn)

)
– x∗)∥∥2

≤ ∥∥αn
(
xn – x∗) + γn

(
S
(
xn – λn∇gεn (xn)

)
– x∗)∥∥2

+ 2βn
〈
h(xn) – x∗, xn+1 – x∗〉

≤ (
αn

∥∥xn – x∗∥∥ + γn
∥∥S

(
xn – λn∇gεn (xn)

)
– x∗∥∥)2

+ 2βn
〈
h(xn) – h

(
x∗), xn+1 – x∗〉 + 2βn

〈
h
(
x∗) – x∗, xn+1 – x∗〉

≤ (
αn

∥∥xn – x∗∥∥ + γn
(∥∥xn – x∗∥∥ + βm

n
∥∥x∗∥∥))2

+ 2βnα
∥∥xn – x∗∥∥∥∥xn+1 – x∗∥∥ + 2βn

〈
h
(
x∗) – x∗, xn+1 – x∗〉

≤ (
(1 – βn)

∥∥xn – x∗∥∥ + βm
n

∥∥x∗∥∥)2 + βnα
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2)

+ 2βn
〈
h
(
x∗) – x∗, xn+1 – x∗〉.
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This implies that

∥
∥xn+1 – x∗∥∥2 ≤ (1 – βn)2 + βnα

1 – βnα

∥
∥xn – x∗∥∥2 +

1
1 – βnα

(
2(1 – βn)βm

n
∥
∥xn – x∗∥∥∥

∥x∗∥∥

+ β2m
n

∥∥x∗∥∥2 + 2βn
〈
h
(
x∗) – x∗, xn+1 – x∗〉)

≤
(

1 –
2(1 – α)βn

1 – βnα

)∥
∥xn – x∗∥∥2 +

(1 – α)βn

1 – βnα

(
βn

1 – α

∥
∥xn – x∗∥∥2

+
2βm–1

n
1 – α

∥
∥xn – x∗∥∥∥

∥x∗∥∥ +
β2m–1

n
1 – α

∥
∥x∗∥∥2 +

2
1 – α

〈
h
(
x∗) – x∗, xn+1 – x∗〉

)

≤
(

1 –
(1 – α)βn

1 – βnα

)∥∥xn – x∗∥∥2 +
(1 – α)βn

1 – βnα

(
βn

1 – α
M2

+
2βm–1

n
1 – α

M
∥∥x∗∥∥ +

β2m–1
n

1 – α

∥∥x∗∥∥2 +
2

1 – α

〈
h
(
x∗) – x∗, xn+1 – x∗〉

)

= (1 – ηn)
∥∥xn – x∗∥∥2 + ηnδn,

where M = supn≥0 ‖xn – x∗‖ < ∞, ηn = (1–α)βn
1–βnα

∈ (0, 1) and

δn =
βn

1 – α
M2 +

2βm–1
n

1 – α
M

∥∥x∗∥∥ +
β2m–1

n
1 – α

∥∥x∗∥∥2 +
2

1 – α

〈
h
(
x∗) – x∗, xn+1 – x∗〉.

It is easy to see that
∑∞

n=0 ηn = ∞ and lim supn→∞ δn ≤ 0. Hence, by Lemma 2.7, the se-
quence {xn} converges strongly to x∗ = P�h(x∗).

Case 2. Assume that {‖xn – p‖} is not a monotone sequence. Then we can define an
integer sequence {τ (n)} for all n ≥ n0 (for some n0 large enough) by

τ (n) = max
{

k ∈N, k ≤ n : ‖xk – p‖ < ‖xk+1 – p‖}.

Clearly, {τ (n)} is a nondecreasing sequence such that τ (n) → ∞ as n → ∞, and for all
n ≥ n0 we have

∥∥xτ (n) – x∗∥∥ <
∥∥xτ (n)+1 – x∗∥∥.

From (3.4), we obtain

γτ (n)ρτ (n)(2 – ρτ (n))
g2
ετ (n)

(xτ (n))
‖∇gετ (n) (xτ (n))‖2 + ‖∇gετ (n) (xτ (n))‖ + ρτ (n)gετ (n) (xτ (n))

+ ατ (n)γτ (n)
∥
∥S

(
xτ (n) – λτ (n)∇gετ (n) (xτ (n))

)
– xτ (n)

∥
∥2

≤ ∥∥xτ (n) – x∗∥∥2 –
∥∥xτ (n)+1 – x∗∥∥2 + βτ (n)

∥∥h(xτ (n)) – x∗∥∥2 + βτ (n)
∥∥x∗∥∥2

≤ βτ (n)
∥∥h(xτ (n)) – x∗∥∥2 + βτ (n)

∥∥x∗∥∥2.

As limn→∞ βτ (n) = 0 and {h(xτ (n))} is bounded, we get

lim
n→∞γτ (n)ρτ (n)(2 – ρτ (n))

g2
ετ (n)

(xτ (n))

‖∇gετ (n) (xτ (n))‖2 + ‖∇gετ (n) (xτ (n))‖ + ρτ (n)gετ (n) (xτ (n))
= 0
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and

lim
n→∞ατ (n)γτ (n)

∥∥S
(
xτ (n) – λτ (n)∇gετ (n) (xτ (n))

)
– xτ (n)

∥∥2 = 0.

Following similar arguments to that in Case 1, we have ωw(xτ (n)) ⊂ �. Applying the char-
acteristic of P� in Lemma 2.2(i) and x∗ = P�h(x∗), we have

lim sup
n→∞

〈
h
(
x∗) – x∗, xτ (n)+1 – x∗〉 = max

w∈ωw(xτ (n))

〈
h
(
x∗) – x∗, w – x∗〉 ≤ 0,

and by similar arguments, we have

∥∥xτ (n)+1 – x∗∥∥2 ≤ (1 – ητ (n))
∥∥xτ (n) – x∗∥∥2 + ητ (n)δτ (n),

where ητ (n) ∈ (0, 1),
∑∞

τ (n) ητ (n) = ∞ and lim supn→∞ δτ (n) ≤ 0. Hence, by Lemma 2.7, we
have limn→∞ ‖xτ (n) – x∗‖ = 0, and then limn→∞ ‖xτ (n)+1 – x∗‖ = 0. Thus, by Lemma 2.8, we
have

0 ≤ ∥
∥xn – x∗∥∥ ≤ max

{∥∥xτ (n) – x∗∥∥,
∥
∥xn – x∗∥∥} ≤ ∥

∥xτ (n)+1 – x∗∥∥.

Therefore, the sequence {xn} converges strongly to x∗ = P�h(x∗). This completes the
proof. �

Corollary 3.2 Let H and K be two real Hilbert spaces and let S : H → H and T : K → K
be two firmly nonexpansive mappings such that both I – S and I – T are demiclosed at
zero. Let ‖(I – T)x‖ be a convex function from K to R and A : H → K be a bounded linear
operator, and let h : H → H be an α-contraction mapping. Assume that the SCFP (1.6) has
a nonempty solution set � and let {xn} ⊂ H be a sequence generated by

⎧
⎨

⎩
x0 ∈ H ,

xn+1 = αnxn + βnh(xn) + γnS(xn – λn∇g(xn)), ∀n = 0, 1, 2, . . . ,

where αn + βn + γn = 1 and g(xn) = 1
2‖(I – T)Axn‖2 such that

∇g(xn) = A∗(I – T)Axn �= 0, λn =
ρng(xn)

‖∇g(xn)‖2 + ‖∇g(xn)‖ + ρng(xn)

for all n = 0, 1, 2, . . . . If the sequences {ρn} ⊂ [a, b] for some a, b ∈ (0, 2), {αn} ⊂ [c, d] for
some c, d ∈ (0, 1) and {βn}, {γn} ⊂ (0, 1) satisfy the following conditions: limn→∞ βn = 0 and
∑∞

n=0 βn = ∞, then the sequence {xn} converges strongly to x∗ ∈ � where x∗ = P�h(x∗).

Let � := {x ∈ C : Ax ∈ Q}. It is clear that � is closed and convex. Take S = PC and T = PQ

into Theorem 3.1. We have the following consequences.

Corollary 3.3 Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H and K , respectively. Let A : H → K be a bounded linear operator and h : H → H be an
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α-contraction mapping. Assume that the SFP (1.1) has a nonempty solution set � and let
{xn} ⊂ H be a sequence generated by

⎧
⎨

⎩
x0 ∈ H ,

xn+1 = αnxn + βnh(xn) + γnPC(xn – λn∇gεn (xn)), ∀n = 0, 1, 2, . . . ,

where αn + βn + γn = 1 and gεn (xn) = 1
2‖(I – PQ)Axn‖2 + εn

2 ‖xn‖2 such that

∇gεn (xn) = A∗(I – PQ)Axn + εnxn �= 0, λn =
ρngεn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)

for all n = 0, 1, 2, . . . . If the sequences {ρn} ⊂ [a, b] for some a, b ∈ (0, 2), {αn} ⊂ [c, d] for some
c, d ∈ (0, 1) and {βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

(i) 0 ≤ εn ≤ β2m
n such that m > 1 for all n = 0, 1, 2, . . . ,

(ii) limn→∞ βn = 0 and
∑∞

n=0 βn = ∞,
then the sequence {xn} converges strongly to x∗ ∈ � where x∗ = P�h(x∗).

Corollary 3.4 Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H and K , respectively. Let A : H → K be a bounded linear operator and h : H → H be an
α-contraction mapping. Assume that the SFP (1.1) has a nonempty solution set � and let
{xn} ⊂ H be a sequence generated by

⎧
⎨

⎩
x0 ∈ H ,

xn+1 = αnxn + βnh(xn) + γnPC(xn – λn∇g(xn)), ∀n = 0, 1, 2, . . . ,

where αn + βn + γn = 1 and g(xn) = 1
2‖(I – PQ)Axn‖2 such that

∇g(xn) = A∗(I – PQ)Axn �= 0, λn =
ρng(xn)

‖∇g(xn)‖2 + ‖∇g(xn)‖ + ρng(xn)

for all n = 0, 1, 2, . . . . If the sequences {ρn} ⊂ [a, b] for some a, b ∈ (0, 2), {αn} ⊂ [c, d] for
some c, d ∈ (0, 1) and {βn}, {γn} ⊂ (0, 1) satisfy the following conditions: limn→∞ βn = 0 and
∑∞

n=0 βn = ∞, then the sequence {xn} converges strongly to x∗ ∈ � where x∗ = P�h(x∗).

4 Applications
In this section, assuming that the projections PC and PQ are not easily calculated. We
present a perturbation technique. Carefully speaking, the convex sets C and Q satisfy the
following assumptions:

(H1) The sets C and Q are given by

C =
{

x ∈ H : c(x) ≤ 0
} �= ∅,

Q =
{

y ∈ K : q(y) ≤ 0
} �= ∅,

where c : H →R and q : K →R are two convex (not necessarily differentiable)
functions.
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(H2) For any x ∈ H , at least one subgradient ξ ∈ ∂c(x) can be calculated, and for any
y ∈ K , at least one subgradient η ∈ ∂q(y) can be calculated, where ∂c(x) and ∂q(y)
are a generalized gradient of c(x) at x and a generalized gradient of q(y) at y,
respectively, which are defined as follows:

∂c(x) =
{
ξ ∈ H : c(z) ≥ c(x) + 〈ξ , z – x〉,∀z ∈ H

}
,

∂q(y) =
{
η ∈ K : q(u) ≥ q(y) + 〈η, u – y〉,∀u ∈ K

}
.

We note that in (H1), the differentiability of c and q are not assumed. The representations
of C and Q in (H1) are therefore general enough, because any system of inequalities ci(x) ≤
0, i ∈ I and any system of inequalities qj(y) ≤ 0, j ∈ J , where ci, qj are convex (not necessarily
differentiable) functions, and I , J are two arbitrary index sets, can be reformulated as the
single inequality c(x) ≤ 0 and the single inequality q(y) ≤ 0 with c(x) = sup{ci(x) : i ∈ I}
and q(y) = sup{qj(y) : j ∈ J}, respectively. Moreover, every convex functions defined on a
finite-dimensional Hilbert space is subdifferentiable and its subdifferential operator is a
bounded operator on any bounded subset in Hilbert space (see [29]).

Theorem 4.1 Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H and K , respectively, satisfy the conditions (H1) and (H2). Let A : H → K be a bounded
linear operator and h : H → H be an α-contraction mapping. Assume that the SFP (1.1)
has a nonempty solution set � and let {xn} ⊂ H be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

Cn = {x ∈ H : c(xn) + 〈ξn, x – xn〉 ≤ 0},
Qn = {y ∈ K : q(Axn) + 〈ηn, y – Axn〉 ≤ 0},
xn+1 = αnxn + βnh(xn) + γnPCn (xn – λn∇gεn (xn)), ∀n = 0, 1, 2, . . . ,

where ξn ∈ ∂c(xn), ηn ∈ ∂q(Axn), αn + βn + γn = 1 and

gεn (xn) =
1
2
∥∥(I – PQn )Axn

∥∥2 +
εn

2
‖xn‖2,

∇gεn (xn) = A∗(I – PQn )Axn + εnxn �= 0, λn =
ρngεn (xn)

‖∇gεn (xn)‖2 + ‖∇gεn (xn)‖ + ρngεn (xn)

for all n = 0, 1, 2, . . . . If the sequences {ρn} ⊂ [a, b] for some a, b ∈ (0, 2), {αn} ⊂ [c, d] for some
c, d ∈ (0, 1) and {βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

(i) 0 ≤ εn ≤ β2m
n such that m > 1 for all n = 0, 1, 2, . . . ,

(ii) limn→∞ βn = 0 and
∑∞

n=0 βn = ∞,
then the sequence {xn} converges strongly to x∗ ∈ � where x∗ = P�h(x∗).

Proof Fix n ∈ N∪ {0}. Observe that the halfspaces Cn and Qn are closed and convex sets,
and contain C and Q, respectively. Pick p ∈ �. We have p ∈ C ⊂ Cn and Ap ∈ Q ⊂ Qn.
Taking PCn and PQn in place of S and T , respectively, in similar arguments to that of the
proof in Theorem 3.1, we have {xn} is bounded, and by similar arguments, there exists a
unique element x∗ ∈ H such that x∗ = P�h(x∗). That is x∗ ∈ �. We consider into two cases.
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Case 1. Assume that {‖xn – p‖} is a monotone sequence. By similar arguments, there
exists a subsequence {xnk } of {xn} which converges weakly to w ∈ H , and we have

lim
k→∞

∥
∥(I – PQnk

)Axnk

∥
∥ = 0, lim

k→∞
∥
∥(I – PCnk

)xnk

∥
∥ = 0.

By the definitions of Cnk and Qnk we have

c(xnk ) ≤ 〈ξnk , xnk – PCnk
xnk 〉 ≤ ξ

∥∥(I – PCnk
)xnk

∥∥

and

q(Axnk ) ≤ 〈
ηnk , Axnk – PQnk

(Axnk )
〉 ≤ η

∥
∥(I – PQnk

)Axnk

∥
∥,

where ‖ξn‖ ≤ ξ < ∞ and ‖ηn‖ ≤ η < ∞ for all n = 0, 1, 2, . . . . Hence,

lim
k→∞

c(xnk ) ≤ 0, lim
k→∞

q(Axnk ) ≤ 0.

Therefore, by the w-lsc of c and q at w and Aw, respectively, applying Lemma 2.10, we have

c(w) ≤ lim inf
k→∞

c(xnk ) ≤ 0, q(Aw) ≤ lim inf
k→∞

q(Axnk ) ≤ 0.

It follows that w ∈ C and Aw ∈ Q. That is, w ∈ �. By similar arguments, we have the se-
quence {xn} converges strongly to x∗ = P�h(x∗).

Case 2. Assume that {‖xn –p‖} is not a monotone sequence. Following similar arguments
to those in Case 1 and Case 2 of the proof in Theorem 3.1, we have ωw(xτ (n)) ⊂ �. By similar
arguments, we have the sequence {xn} converging strongly to x∗ = P�h(x∗). This completes
the proof. �

Corollary 4.2 Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H and K , respectively, satisfy the conditions (H1) and (H2). Let A : H → K be a bounded
linear operator and h : H → H be an α-contraction mapping. Assume that the SFP (1.1)
has a nonempty solution set � and let {xn} ⊂ H be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

Cn = {x ∈ H : c(xn) + 〈ξn, x – xn〉 ≤ 0},
Qn = {y ∈ K : q(Axn) + 〈ηn, y – Axn〉 ≤ 0},
xn+1 = αnxn + βnh(xn) + γnPCn (xn – λn∇g(xn)), ∀n = 0, 1, 2, . . . ,

where ξn ∈ ∂c(xn), ηn ∈ ∂q(Axn), αn + βn + γn = 1 and g(xn) = 1
2‖(I – PQn )Axn‖2,

∇g(xn) = A∗(I – PQn )Axn �= 0, λn =
ρng(xn)

‖∇g(xn)‖2 + ‖∇g(xn)‖ + ρng(xn)

for all n = 0, 1, 2, . . . . If the sequences {ρn} ⊂ [a, b] for some a, b ∈ (0, 2), {αn} ⊂ [c, d] for
some c, d ∈ (0, 1) and {βn}, {γn} ⊂ (0, 1) satisfy the following conditions: limn→∞ βn = 0 and
∑∞

n=0 βn = ∞, then the sequence {xn} converges strongly to x∗ ∈ � where x∗ = P�h(x∗).
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5 Numerical results
In this section, we give some insight into the behavior of the algorithms presented in
Corollary 3.4 and Corollary 4.2. We implemented them in Mathematica to solve and run
on a computer Pentium(R) mobile processor 1.50 GHz. We use ‖xn+1 – xn‖2 < ε as the
stopping criterion.

Throughout the computational experiments, the parameters used in those algorithms
were sets as ε = 10–6, ρn = 1, αn = 1

2 , βn = 1
n+3 and γn = 1 – αn – βn for all n = 0, 1, 2, . . . . In

the results report below, all CPU times reported are in seconds. The approximate solution
is referred to the last iteration.

In the computation, the projection PC where C is a closed ball in R
N , and in the projec-

tions PCn and PQn where Cn and Qn are the halfspaces in R
N and R

M , respectively, we use
the formulation as follows.

Proposition 5.1 For ρ > 0 and C = {x ∈R
N : ‖x‖2 ≤ ρ}, we have

PCx =

⎧
⎨

⎩

ρx
‖x‖2

, x /∈ C;

x, x ∈ C.

Proposition 5.2 ([30, 31]) Let H = (RN ,‖ · ‖2) and K = (RM,‖ · ‖2). Assume that C and Q
satisfy the conditions (H1) and (H2), and define the halfspaces Cn and Qn as algorithm in
Corollary 4.2. For any z ∈R

N and for each n = 0, 1, 2, . . . we have

PCn (z) =

⎧
⎨

⎩
z – c(xn)+〈ξn ,z–xn〉

‖ξn‖2 ξn, c(xn) + 〈ξn, z – xn〉 > 0;

z, c(xn) + 〈ξn, z – xn〉 ≤ 0,

and

PQn (Az) =

⎧
⎨

⎩
Az – q(Axn)+〈ηn ,Az–Axn〉

‖ηn‖2 ηn, q(Axn) + 〈ηn, Az – Axn〉 > 0;

Az, q(Axn) + 〈ηn, Az – Axn〉 ≤ 0.

Example 5.3 (A projection point problem) Let C = {a ∈R
4 : ‖a‖2 ≤ 3} and u ∈R

4 chosen
arbitrarily. Find a unique solution x∗ ∈ C which is nearest the point u and satisfies the
following system of linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

x + 2y + 3z + w = 1,

x – y + z – 2w = 2,

x + y – 2z + w = 3,

where x, y, z, w ∈R.
Let H = (R4,‖ · ‖2) and K = (R3,‖ · ‖2). Take

A =

⎛

⎜
⎝

1 2 3 1
1 –1 1 –2
1 1 –2 1

⎞

⎟
⎠ , Q =

{
b : b = (1, 2, 3)T}
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Table 1 Results for Example 5.3 using the algorithm in Corollary 3.4

Choiceness u Starting
points x0

Number of
iterations

CPU (s) Approximate solution x∗ (approximates of Ax∗ and ‖x∗‖2)

(0, 0, 0, 0)T (0, 0, 0, 0)T 9500 5.317 (1.974662, 0.512779, –0.498849, –0.508389)T

(0, 0, 0, 0)T (1, 1, 1, 1)T 9501 5.187 (1.974695, 0.512718, –0.498837, –0.508336)T

(0, 0, 0, 0)T (1, 2, 3, 4)T 9505 5.217 (1.974803, 0.512523, –0.498798, –0.508168)T

Ax∗ = (0.99528, 1.97981, 2.97675)T , ‖x∗‖2 = 2.16091

(1, 1, 1, 1)T (0, 0, 0, 0)T 9406 5.488 (2.130245, 0.226710, –0.439453, –0.255758)T

(1, 1, 1, 1)T (1, 1, 1, 1)T 9406 5.888 (2.130278, 0.226649, –0.439440, –0.255705)T

(1, 1, 1, 1)T (1, 2, 3, 4)T 9409 5.568 (2.130386, 0.226451, –0.439402, –0.255534)T

Ax∗ = (1.00955, 1.97560, 2.98010)T , ‖x∗‖2 = 2.20179

(1, 2, 3, 4)T (0, 0, 0, 0)T 12,180 4.977 (2.641308, –0.734424, –0.244857, 0.583179)T

(1, 2, 3, 4)T (1, 1, 1, 1)T 12,179 5.127 (2.641332, –0.734471, –0.244847, 0.583221)T

(1, 2, 3, 4)T (1, 2, 3, 4)T 12,178 5.387 (2.641411, –0.734620, –0.244817, 0.583350)T

Ax∗ = (1.02107, 1.96452, 2.97978)T , ‖x∗‖2 = 2.81353

and

h(x) = u

for all x ∈R
4 into Corollary 3.4, we have

⎧
⎨

⎩
x0 ∈ R

4 chosen arbitrarily,

xn+1 = αnxn + βnu + γnPC(xn – λn(A∗Axn – A∗b)), ∀n = 0, 1, 2, . . . ,

where b = (1, 2, 3)T , λn = ‖Axn–b‖2

2‖A∗Axn–A∗b‖2+2‖A∗Axn–A∗b‖+‖Axn–b‖2 if Axn �= b and λn = 0 if Axn = b
for all n = 0, 1, 2, . . . . As n → ∞, we have xn → x∗ such that x∗ is the our solution, which de-
pends on the point u and x0. The numerical results are listed in Table 1 using the different
points u and the different starting points x0.

Example 5.4 (A split feasibility problem) Let

A =

⎛

⎜
⎝

2 –1 3
4 2 5
2 0 2

⎞

⎟
⎠ , C =

{
(x, y, z) ∈R

3 : x + y2 + 2z ≤ 0
}

and

Q =
{

(x, y, z) ∈R
3 : x2 + y – z ≤ 0

}
.

Find some point x∗ ∈ C with Ax∗ ∈ Q.
Let H = (R3,‖ · ‖2) and K = (R3,‖ · ‖2). Take c(x, y, z) = x + y2 + 2z, q(x, y, z) = x2 + y – z

and h(x, y, z) = 0 for all x, y, z ∈R into Corollary 4.2, we have
⎧
⎨

⎩
x0 ∈ R

3 chosen arbitrarily,

xn+1 = αnxn + γnPCn (xn – λn(A∗Axn – A∗PQn (Axn))), ∀n = 0, 1, 2, . . . ,

where λn = ‖Axn–PQn (Axn)‖2

2‖A∗Axn–A∗PQn (Axn)‖2+2‖A∗Axn–A∗PQn (Axn)‖+‖Axn–PQn (Axn)‖2 if Axn /∈ Qn and λn = 0 if
Axn ∈ Qn for all n = 0, 1, 2, . . . . As n → ∞, we have xn → x∗ such that x∗ is the our solution,
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Table 2 Results for Example 5.4 using Qu and Xiu method in [7]

Starting points x0 Number of
iterations

CPU (s) Approximate solution x∗ Approximate
of c(x∗)

Approximate
of q(Ax∗)

(1, 2, 3, 0, 0, 0)T 1890 2.7740 (–0.1203, 0.0285, 0.0582)T –0.00308775 –0.0152279
(1, 1, 1, 1, 1, 1)T 2978 4.2860 (0.8603, –0.1658, –0.5073)T –0.12681 1.08162
(1, 2, 3, 4, 5, 6)T 3317 4.8570 (3.6522, –0.1526, –2.3719)T –1.06831 15.5579

Table 3 Results for Example 5.4 using Qu and Xiu method in [6]

Starting points x0 Number of
iterations

CPU (s) Approximate solution x∗ Approximate
of c(x∗)

Approximate
of q(Ax∗)

(1, 2, 3)T 64 0.1570 (–0.4019, 0.0674, 0.1967)T –0.00395724 0.0322236
(1, 1, 1)T 81 0.0940 (0.3568, 0.0343, –0.2652)T –0.172424 0.426806
rand(3, 1) ∗ 10 105 0.0940 (0.8747, 0.0795, –0.6876)T –0.49418 1.5322

Table 4 Results for Example 5.4 using Li method in Algorithm 1 [8]

Starting points x0 Number of
iterations

CPU (s) Approximate solution x∗ Approximate
of c(x∗)

Approximate
of q(Ax∗)

(1, 2, 3)T 4 0.1410 (–0.4024, 0.0658, 0.1958)T –0.00647036 0.0319258
(1, 1, 1)T 5 0.0940 (0.3532, 0.0392, –0.2707)T –0.186663 0.43465
rand(3, 1) ∗ 10 8 0.0940 (0.8768, 0.0604, –0.6844)T –0.488352 1.51358

Table 5 Results for Example 5.4 using Algorithm in Corollary 4.2

Starting points x0 Number of
iterations

CPU (s) Approximate solution x∗ Approximate
of c(x∗)

Approximate
of q(Ax∗)

(1, 2, 3)T 1220 1.492 (–0.0009, 0.0007, 0.0002)T –0.00049951 0.00050081
(1, 1, 1)T 1062 1.342 (0.0004, 0.0007, –0.0006)T –0.00079951 0.00130016
(4, 5, 6)T 1225 1.642 (0.0006, 0.0007, –0.0007)T –0.00079951 0.00140036
rand(3, 1) ∗ 10 1197 1.832 (0.0008, 0.0004, –0.0007)T –0.00059984 0.00110064

(6, 5, 4)T 2569 4.346 (0.0020, 0.0004, –0.0015)T –0.00099984 0.00190400
(2, 2, 2)T 1365 2.083 (0.0007, 0.0006, –0.0008)T –0.00089964 0.00140049
(3, 2, 1)T 2093 3.525 (0.0015, 0.0005, –0.0013)T –0.00109975 0.00180225

which depends on the zero point and x0. The numerical results are listed in Table 5 using
the different starting points x0, and we compare the results of Qu and Xiu [6, 7], and Li
[8], which are listed in Table 2, Table 3 and Table 4, respectively. We found that in the
calculation approximate value of q(Ax∗) using the our algorithm method was fit to the
solution than the algorithms method of Qu and Xiu, and Li.

Example 5.5 (A convex feasibility problem) Let C = {a ∈ R
3 : 2 ≤ ‖a‖2 ≤ 3}. Find some

point x∗ ∈ C which satisfies the following system of nonlinear inequalities:

⎧
⎨

⎩
y2 + z2 – 4 ≤ 0,

–x2 + z – 1 ≤ 0,

where x, y, z ∈ R.
Let H = (R3,‖ · ‖2), K = (R3,‖ · ‖2) and u ∈ C. Take A = I , h(x, y, z) = u and

C =
{

(x, y, z) ∈R
3 : c(x, y, z) = sup

{
c1(x, y, z), c2(x, y, z)

} ≤ 0
}

,

Q =
{

(x, y, z) ∈R
3 : q(x, y, z) = sup

{
q1(x, y, z), q2(x, y, z)

} ≤ 0
}

,
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Table 6 Results for Example 5.5 using Algorithm in Corollary 4.2

Choiceness u Starting
points x0

Number of
iterations

CPU (s) Approximate solution x∗ Approximate
of q1(x∗)

Approximate
of q2(x∗)

Approximate
of ‖x∗‖2

(2, 0, 0)T (1, 1, 1)T 1901 3.295 (1.999999, 0.001343, 0.001343)T –4.00000 –4.99865 2.00000
(2, 0, 0)T (2, 2, 2)T 2336 4.486 (1.999998, 0.001651, 0.001651)T –3.99999 –4.99834 2.00000
(2, 0, 0)T (1, 2, 3)T 2716 4.576 (1.999998, 0.001506, 0.002259)T –3.99999 –4.99773 2.00000

(3, 0, 0)T (1, 1, 1)T 2209 3.935 (2.998244, 0.000948, 0.000948)T –4.00000 –9.98852 2.99824
(3, 0, 0)T (2, 2, 2)T 2417 3.505 (2.999133, 0.001595, 0.001595)T –3.99999 –9.99320 2.99913
(3, 0, 0)T (1, 2, 3)T 2821 3.955 (2.998563, 0.001346, 0.002019)T –3.99999 –9.98936 2.99856

(1, 2, 0)T (1, 1, 1)T 1667 3.375 (1.000131, 1.998964, 0.001299)T –0.00414 –1.99896 2.23520
(1, 2, 0)T (2, 2, 2)T 2068 3.745 (1.000919, 1.999901, 0.001849)T –0.00039 –1.99999 2.23639
(1, 2, 0)T (1, 2, 3)T 2363 4.566 (0.999977, 1.999833, 0.002357)T –0.00066 –1.99760 2.23591

such that c1(x, y, z) = x2 + y2 + z2 – 9, c2(x, y, z) = –x2 – y2 – z2 + 4, q1(x, y, z) = y2 + z2 – 4 and
q2(x, y, z) = –x2 + z – 1 for all x, y, z ∈ R into Corollary 4.2, we have

⎧
⎨

⎩
x0 ∈ R

3 chosen arbitrarily,

xn+1 = αnxn + βnu + γnPCn (xn – λn(xn – PQn xn)), ∀n = 0, 1, 2, . . . ,

where λn = ‖xn–PQn xn‖
3‖xn–PQn xn‖+2 for all n = 0, 1, 2, . . . . As n → ∞, we have xn → x∗ such that x∗ is

the our solution, which depends on the point u and x0. The numerical results are listed in
Table 6 using the different points u ∈ C and the different starting points x0.

Example 5.6 (A convex minimization problem) Find minimize of f (x, y, z) = (x – 2)2 +
(y – 2)2 + (z – 3)2 subject to the constraint g(x, y, z) = x2 + y2 + z2 – 4 = 0 where x, y, z ∈R.

Define the Lagrange function L(x, y, z,λ) as follows:

L(x, y, z,λ) = f (x, y, z) + λg(x, y, z)

= (x – 2)2 + (y – 2)2 + (z – 3)2 + λ
(
x2 + y2 + z2 – 4

)
,

where x, y, z,λ ∈ R. Hence, the our solution set is equivalent to the solution set of the
following system of nonlinear equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(x – 2) + 2λx = Lx = 0,

2(y – 2) + 2λy = Ly = 0,

2(z – 3) + 2λz = Lz = 0,

x2 + y2 + z2 – 4 = Lλ = 0.

Let H = (R4,‖ · ‖2) and K = (R4,‖ · ‖2). Take A = I , h(x, y, z,λ) = 0 and

C =
{

(x, y, z,λ) ∈R
4 : c(x, y, z,λ) = sup

1≤i≤4
–qi(x, y, z,λ) ≤ 0

}
,

Q =
{

(x, y, z,λ) ∈R
4 : q(x, y, z,λ) = sup

1≤i≤4
qi(x, y, z,λ) ≤ 0

}
,

such that

q1(x, y, z,λ) = 2(x – 2) + 2λx, q2(x, y, z,λ) = 2(y – 2) + 2λy,

q3(x, y, z,λ) = 2(z – 3) + 2λz, q4(x, y, z,λ) = x2 + y2 + z2 – 4,
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Table 7 Results for Example 5.6 using Algorithm in Corollary 4.2

Starting
points x0

Number of
iterations

CPU (s) Approximate solution Lagrange
multiplier

(1, 2, 1, 0)T 15,562 17.745 (0.969812, 0.969905, 1.455039)T 1.061319
(2, 2, 2, 0)T 15,566 14.511 (0.969905, 0.969812, 1.455039)T 1.061319
(1, 2, 3, 0)T 15,567 11.666 (0.969812, 0.969905, 1.455039)T 1.061319
(4, 5, 6, 0)T 15,566 17.495 (0.969812, 0.969905, 1.455039)T 1.061319

for all x, y, z,λ ∈R into Corollary 4.2, we have

⎧
⎨

⎩
x0 ∈ R

4 chosen arbitrarily,

xn+1 = αnxn + γnPCn (xn – λn(xn – PQn xn)), ∀n = 0, 1, 2, . . . ,

where λn = ‖xn–PQn xn‖
3‖xn–PQn xn‖+2 for all n = 0, 1, 2, . . . . As n → ∞, we have xn → x∗ such that the

our solution is 2√
17 (2, 2, 3)T with some Lagrange multiplier λ, which depends on the zero

point and x0. The numerical results are listed in Table 7 using the different starting points
x0, and we switch the stopping criterion ε to 10–4 for the verification to the our solution.

6 Conclusion
In this paper, we obtain an iterative scheme using the gradient projection method with a
new step size, which is not depend on the related matrix inverses and the largest eigen-
value (or the spectral radius of the self-adjoint operator) of the related matrix, based on
Moudafi’s viscosity approximation method for solving the split common fixed point prob-
lem (SCFP) for two firmly nonexpansive mappings and also solving the split feasibility
problem (SFP) such that other strong convergence theorems for the SCFP and the SFP are
obtained.
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