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1 Introduction
Let a > 0. Then the generalized Euler–Mascheroni constant γ (a) [1] is given by

γ (a) = lim
n→∞

[
1
a

+
1

a + 1
+ · · · +

1
a + n – 1

– log

(
a + n – 1

a

)]
.

We clearly see that the generalized Euler–Mascheroni constant γ (a) is the natural gen-
eralization of the classical Euler–Mascheroni constant [2–5]

γ = γ (1) = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · +
1
n

– log n
)

= 0.577215664901 . . . .

Recently, the two bounds for γ and γ (a) have attracted the attention of many mathe-
maticians. In particular, many remarkable inequalities and asymptotic formulas for γ and
γ (a) can be found in the literature [6–10].

Let

γn = 1 +
1
2

+
1
3

+ · · · +
1
n

– log n,

Rn = 1 +
1
2

+
1
3

+ · · · +
1
n

– log

(
n +

1
2

)
,

Sn = 1 +
1
2

+
1
3

+ · · · +
1

n – 1
+

1
2n

– log n,

Tn = 1 +
1
2

+
1
3

+ · · · +
1
n

– log

(
n +

1
2

+
1

24n

)
,

yn(a) =
1
a

+
1

a + 1
+ · · · +

1
a + n – 1

– log

(
a + n – 1

a

)
,
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αn(a) =
1
a

+
1

a + 1
+ · · · +

1
a + n – 2

+
1

2(a + n – 1)
– log

(
a + n – 1

a

)
, (1.1)

βn(a) =
1
a

+
1

a + 1
+

1
a + n – 1

– log

(
a + n – 1/2

a

)
, (1.2)

λn(a) =
1
a

+
1

a + 1
+

1
a + n – 1

– log

(
a + n – 1/2

a
+

1
24a(a + n – 1)

)
, (1.3)

μn(a) = yn(a) –
1

2(a + n – 1)
+

1
12(a + n – 1)2 –

1
120(a + n – 1)4 . (1.4)

Negoi [11] proved that the two-sided inequality

1
48(n + 1)3 ≤ γ – Tn ≤ 1

48n3 (1.5)

is valid for n ≥ 1.
Qiu and Vuorinen [12] proved that the two-sided inequality

1
2n

–
λ

n2 < γn – γ ≤ 1
2n

–
μ

n2 (1.6)

is valid for n ≥ 1 if and only if λ ≥ 1/12 and μ ≤ γ – 1/2.
In [13], DeTemple proved that the double inequality

1
24(n + 1)2 ≤ Rn – γ ≤ 1

24n2 (1.7)

holds for all n ≥ 1.
Chen [14] proved that α = 1/

√
12γ – 6 – 1 and β = 0 are the best possible constants such

that the double inequality

1
12(n + α)2 ≤ γ – Sn ≤ 1

12(n + β)2 (1.8)

holds for n ≥ 1.
Sîntămărian [15], and Berinde and Mortici [16] proved that the double inequalities

1
2(n + a)

≤ yn(a) – γ (a) ≤ 1
2(n + a – 1)

, (1.9)

1
24(n + a)2 ≤ βn(a) – γ (a) ≤ 1

24(n + a – 1)2 (1.10)

are valid for all a > 0 and n ≥ 1.
The main purpose of this article is to find the best possible constants α1, α2, α3, α4, β1,

β2, β3 and β4 such that the double inequalities

1
12(a + n – α1)2 ≤ γ (a) – αn(a) <

1
12(a + n – β1)2 ,

1
24(a + n – α2)2 ≤ βn(a) – γ (a) <

1
24(a + n – β2)2 ,

1
48(a + n – α3)3 ≤ γ (a) – λn(a) <

1
48(a + n – β3)3 ,
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α4

(a + n – 1)6 ≤ γ (a) – μn(a) <
β4

(a + n – 1)6

hold for all a > 0 and n ≥ n0 and improve the bounds for the Euler–Mascheroni constant.

2 Main results
In order to prove our main results, we need several formulas and lemmas which we present
in this section.

For x > 0, the classical gamma function � and its logarithmic derivative, the so-called
psi function ψ are defined [17–24] as

�(x) =
∫ ∞

0
tx–1e–tdt, ψ(x) =

�′(x)
�(x)

,

respectively.
The psi function ψ has the recurrence and asymptotic formulas [25] as follows:

ψ(x + 1) = ψ(x) +
1
x

, (2.1)

ψ(x) ∼ log x –
1

2x
–

1
12x2 +

1
120x4 –

1
252x6 + · · · (x → ∞). (2.2)

Lemma 2.1 (See [14, Proof of Theorem 1]) The function

f1(x) =
1√

12(log x – ψ(x + 1) + 1
2x )

– x (2.3)

is strictly decreasing on [2,∞) with f1(∞) = 0.

Lemma 2.2 (See [26, Proof of Theorem 1], [27, Remark 4]) The function

f2(x) =
1√

24(ψ(x + 1) – log(x + 1/2))
– x (2.4)

is strictly decreasing on [2,∞) with f2(∞) = 1/2.

Lemma 2.3 (See [28, Proof of Theorem 2]) The function

f3(x) =
1

3
√

48[log(x + 1
2 + 1

24x ) – ψ(x + 1)]
– x (2.5)

is strictly decreasing on [5,∞) with f3(∞) = 83/360.

Lemma 2.4 (See [29, Theorem 1.2(2)]) The function

f4(x) =
x2

120
–

(
ψ(x) – log x +

1
2x

+
1

12x2

)
x6 (2.6)

is strictly increasing from (0,∞) onto (0, 1/252).
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Theorem 2.5 Let αn(a) and f1(x) be, respectively, defined by (1.1) and (2.3). Then α1 =
1 – f1(a + 2) and β1 = 1 are the best possible constants such that the double inequality

1
12(a + n – α1)2 ≤ γ (a) – αn(a) <

1
12(a + n – β1)2 (2.7)

holds for all a > 0 and n ≥ 3.

Proof It follows from (1.1), (2.1) and (2.2) that

γ (a) – αn(a) = lim
n→∞

[
ψ(n + a) – ψ(a) – log

(
a + n – 1

a

)]

–
[
ψ(n + a) – ψ(a) –

1
2(a + n – 1)

– log

(
a + n – 1

a

)]

= lim
n→∞

[
ψ(n + a) – log(a + n – 1)

]

– ψ(n + a) +
1

2(a + n – 1)
+ log(a + n – 1)

= log(a + n – 1) – ψ(n + a) +
1

2(a + n – 1)
. (2.8)

From (2.3) and (2.8) we clearly see that inequality (2.7) is equivalent to

α1 ≤ 1 – f1(n + a – 1) < β1. (2.9)

Therefore, Theorem 2.5 follows easily from Lemma 2.1 and (2.19). �

Theorem 2.6 Let βn(a) and f2(x) be, respectively, defined by (1.2) and (2.4). Then α2 =
1 – f2(a + 2) and β2 = 1/2 are the best possible constants such that the double inequality

1
24(a + n – α2)2 ≤ βn(a) – γ (a) <

1
24(a + n – β2)2 (2.10)

holds for all a > 0 and n ≥ 3.

Proof It follows from (1.2), (2.1) and (2.2) that

βn(a) – γ (a) = ψ(n + a) – log

(
a + n –

1
2

)
. (2.11)

From (2.4) and (2.11) we clearly see that inequality (2.10) can be rewritten as

α2 ≤ 1 – f2(n + a – 1) < β2. (2.12)

Therefore, Theorem 2.6 follows easily from Lemma 2.2 and (2.12). �

Remark 2.1 We clearly see that both the upper and the lower bounds given in (2.10)
for βn(a) – γ (a) are better than that given in (1.10) for n ≥ 3 due to 1 – f2(2) = 3 –
1/

√
36 – 24(γ + log 5 – log 2) = 0.466904841516 . . . .
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Theorem 2.7 Let λn(a) and f3(x) be, respectively, defined by (1.3) and (2.5). Then α3 =
1– f3(a+5) and β3 = 277/360 are the best possible constants such that the double inequality

1
48(a + n – α3)3 ≤ γ (a) – λn(a) <

1
48(a + n – β3)3 (2.13)

holds for all a > 0 and n ≥ 6.

Proof From (1.3), (2.1) and (2.2) we have

γ (a) – λn(a) = log

(
a + n –

1
2

+
1

24(a + n – 1)

)
– ψ(a + n). (2.14)

It follows from (2.5) and (2.14) that inequality (2.13) can be rewritten as

α3 ≤ 1 – f3(a + n – 1) < β3. (2.15)

Therefore, Theorem 2.7 follows easily from Lemma 2.3 and (2.15). �

Theorem 2.8 Let μn(a) and f4(x) be, respectively, defined by (1.4) and (2.6). Then α4 = f4(a)
and β4 = 1/252 are the best possible constants such that the double inequality

α4

(a + n – 1)6 ≤ γ (a) – μn(a) <
β4

(a + n – 1)6 (2.16)

holds for all a > 0 and n ≥ 1.

Proof It follows from (1.4), (2.1) and (2.2) that

γ (a) – μn(a)

=
1

120(n + a – 1)4

–
[
ψ(n + a – 1) – log(n + a – 1) +

1
2(n + a – 1)

+
1

12(n + a – 1)2

]
. (2.17)

From (2.6) and (2.17) we clearly see that inequality (2.16) is equivalent to

α4 ≤ f4(n + a – 1) < β4. (2.18)

Therefore, Theorem 2.8 follows easily from Lemma 2.4 and (2.18). �

Remark 2.2 Note that

αn(a) = yn(a) –
1

2(a + n – 1)
. (2.19)

It follows from (1.4), Theorem 2.5, Theorem 2.8 and (2.19) that α1 = 1 – f1(a + 2), β1 = 1,
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α4 = f4(a) and β4 = 1/252 are the best possible constants such that the double inequalities

1
2(a + n – 1)

–
1

12(a + n – β1)2 < yn(a) – γ (a)

≤ 1
2(a + n – 1)

–
1

12(a + n – α1)2 , (2.20)

1
2(a + n – 1)

–
1

12(a + n – 1)2 +
1

120(a + n – 1)4 –
β4

(a + n – 1)6

< yn(a) – γ (a)

≤ 1
2(a + n – 1)

–
1

12(a + n – 1)2 +
1

120(a + n – 1)4 –
α4

(a + n – 1)6 , (2.21)

hold for all a > 0 and n ≥ 3.
We clearly see that the two inequalities (2.20) and (2.21) are the improvements of the

inequality (1.9) for n ≥ 3.
Let a = 1 and

c1 = f1(3) = 1/
√

12(γ + log 3) – 20 – 3 = 0.015998 . . . ,

c2 = f2(3) = 1/
√

44 – 24(γ + log 7 – log 2) – 3 = 0.5242567 . . . ,

c3 = f3(6) = –6 + 1/ 3
√

48(γ – 49/20 + log 937 – log 144) = 0.242347 . . .

and

c4 = f4(1) = γ – 23/40 = 0.00221566 . . . .

Then

γ (1) = γ , αn(1) = γn –
1

2n
= Sn, βn(1) = Rn,

λn(1) = Tn, μn(1) = γn –
1

2n
+

1
12n2 –

1
120n4 .

Therefore, Theorems 2.5–2.8 lead to Corollaries 2.1–2.5 immediately.

Corollary 2.1 The double inequality

1
2n

–
1

12n2 < γn – γ ≤ 1
2n

–
1

12(n + c1)2 (2.22)

holds for all n ≥ 3.

Corollary 2.2 The double inequality

1
12(n + c1)2 ≤ γ – Sn <

1
12n2 (2.23)

holds for all n ≥ 3.
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Corollary 2.3 The double inequality

1
24(n + c2)2 ≤ Rn – γ <

1
24(n + 1/2)2 (2.24)

holds for all n ≥ 3.

Corollary 2.4 The double inequality

1
48(n + c3)2 ≤ γ – Tn <

1
48(n + 83/360)2 (2.25)

holds for all n ≥ 6.

Corollary 2.5 The double inequality

1
2n

–
1

12n2 +
1

120n4 –
1

252n6 < γn – γ ≤ 1
2n

–
1

12n2 +
1

120n4 –
c4

n6 (2.26)

holds for all n ≥ 1.

Remark 2.3 We clearly see that the upper bound given in (2.22) is better than that given in
(1.6) for n ≥ 3 due to n >

√
12(γ – 1/2)c1/(1 –

√
12(γ – 1/2)) = 0.4117 . . . is the solution of

the inequality 1/[12(n + c1)2] > (γ – 1/2)/n2, the lower bound given in (2.23) is better than
that given in (1.8) for n ≥ 3 due to c1 < 1

√
12γ – 6 – 1 = 0.03885914 . . . , both the upper

and the lower bounds given in (2.24) are improvements of that given in (1.7) for n ≥ 3,
inequality (2.25) is stronger than inequality (1.5) for n ≥ 6, the lower bound given in (2.26)
is better than that given in (1.6) for n ≥ 1, and the upper bound given in (2.26) is stronger
than that given in (1.6) for n ≥ 2 due to

n >
(

1 +
√

1 – 4800[1 – 12(γ – 1/2)]c4

20[1 – 12(γ – 1/2)]

)1/2

= 1.00000000006823 . . .

being the solution of the inequality

1
2n

–
1

12n2 +
1

120n4 –
c4

n6 <
1

2n
–

γ – 1/2
n2 .

3 Results and discussion
As the natural generalization of the Euler–Mascheroni constant

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · +
1
n

– log n
)

= 0.5772156649 . . . ,

the generalized Euler–Mascheroni constant is defined by

γ (a) = lim
n→∞

[
1
a

+
1

a + 1
+ · · · +

1
a + n – 1

– log

(
a + n – 1

a

)]

for a > 0.
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Recently, the evaluations for γ and γ (a) have been the subject of intensive research. In
the article, we provide several sharp upper and lower bounds for the generalized Euler–
Mascheroni constant γ (a). As applications, we improve some previously results on the
Euler–Mascheroni constant γ . The idea presented may stimulate further research in the
theory of special function.

4 Conclusion
In this paper, we present several best possible approximations for the generalized Euler–
Mascheroni constant

γ (a) = lim
n→∞

[
1
a

+
1

a + 1
+ · · · +

1
a + n – 1

– log

(
a + n – 1

a

)]

and improve some well-known bounds for the Euler–Mascheroni constant,

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · +
1
n

– log n
)

= 0.5772156649 . . . .
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