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Abstract
The present study is concerned with the following fractional p-Laplacian equation
involving a critical Sobolev exponent of Kirchhoff type:

[
a + b

(∫

R2N

|u(x) – u(y)|p
|x – y|N+ps dx dy

)θ–1]
(–�)spu = |u|p∗

s –2u + λf (x)|u|q–2u in R
N ,

where a,b > 0, θ = (N – ps/2)/(N – ps) and q ∈ (1,p) are constants, and (–�)sp is the
fractional p-Laplacian operator with 0 < s < 1 < p <∞ and ps < N. For suitable f (x), the
above equation possesses at least two nontrivial solutions by variational method for
any a,b > 0. Moreover, we regard a > 0 and b > 0 as parameters to obtain convergent
properties of solutions for the given problem as a ↘ 0+ and b ↘ 0+, respectively.
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1 Introduction and main results
In this paper, we consider the following fractional p-Laplacian equation involving critical
Sobolev exponent of Kirchhoff type:

[
a + b

(∫

R2N

|u(x) – u(y)|p
|x – y|N+ps dx dy

)θ–1]
(–�)s

pu = |u|p∗
s –2u + λf (x)|u|q–2u in R

N , (1.1)

where a, b > 0 and θ = (N – ps/2)/(N – ps) are constants, p∗
s = Np/(N – ps) is the critical

Sobolev exponent, and (–�)s
p is the fractional p-Laplacian operator with 0 < s < 1 < q < p <

∞ and ps < N which, up to normalization factors, works on the Riesz potential as

(–�)s
pϕ = 2 lim

σ→0+

∫

Bc
σ (x)

|ϕ(x) – ϕ(y)|p–2(ϕ(x) – ϕ(y))
|x – y|N+ps dy,

where Bc
σ (x) is the complement set in R

N of Bσ (x) := {y ∈ R
N : |y – x| < σ }. As for some

recent results on the p-Laplacian, we refer to [1–6] and the references therein.
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We call Eq. (1.1) a Kirchhoff-type p-fractional Schrödinger equation because of the ap-
pearance of the term b(

∫
R2N |u(x) – u(y)|p/|x – y|N+ps dx dy)θ–1. Indeed, if we choose p = 2,

s = 1, N = 3 and let |u|p∗
s –2u + f (x)|u|q–2u = k(x, u) – V (x)u, then (1.1) transforms to the

following classical Kirchhoff-type equation:

–
(

a + b
∫

R3
|∇u|2 dx

)
�u + V (x)u = k(x, u), (1.2)

which is degenerate if b = 0 and non-degenerate otherwise. Equation (1.2) arises in an
interesting physical context. In fact, if we set V (x) = 0 and replaceR3 by a bounded domain
� ⊂R

3 in (1.2), then we get the following Kirchhoff Dirichlet problem:

–
(

a + b
∫

�

|∇u|2 dx
)

�u = k(x, u),

which is related to the stationary analog of the equation

ρ
∂2u
∂t2 –

(
P0

h
–

E
2L

∫ L

0

∣∣∣∣
∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0,

proposed by Kirchhoff in [7] as an extension of the classical D’Alembert wave equation
for free vibrations of elastic strings. This model takes the changes in length of the string
produced by transverse vibrations into account. After Lions in his pioneering work [8] pre-
sented an abstract functional analysis framework to use for (1.2), this problem has been
widely studied in extensive literature such as [9–13]. In view of the above facts, it is rea-
sonable to consider the p-fractional Kirchhoff equation.

When a = 1, b = 0, p = 2 and let |u|p∗
s –2u + f (x)|u|q–2u = k(x, u) – V (x)u, then (1.1) can be

reduced to the following fractional Schrödinger equation:

(–�)su + V (x)u = k(x, u), x ∈R
N , (1.3)

which was used to study the standing wave solutions ψ(x, t) = u(x)e–iωt for the equation

i�
∂ψ

∂t
= �

2(–�)αψ + W (x)ψ – k(x,ψ), x ∈R
N ,

where � is the Planck constant, W : RN → R is an external potential and k is a suitable non-
linearity. Since the fractional Schrödinger equation appears in problems involving nonlin-
ear optics, plasma physics and condensed matter physics, it is one of the main objects of
fractional quantum mechanics. To learn more, the reader can refer to [14–23] and the
references therein.

Very recently, great attention has been paid to the study of fractional p-Laplacian prob-
lems. For example, Pucci–Xiang–Zhang [2] were concerned with the nonhomogeneous
Schrödinger equations involving the fractional p-Laplacian of Kirchhoff type

M
(∫

R2N

|u(x) – u(y)|p
|x – y|N+ps dx dy

)
(–�)s

pu + V (x)|u|p–2u = k(x, u) + g(x) in R
N , (1.4)

where M is the so-called Kirchhoff function, k(x, u) satisfies the subcritical growth. They
employed the mountain-pass theorem and Ekeland’s variational principle to prove that the
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existence of at least two solutions for (1.4). In [24], Xiang–Zhang–Zhang studied problem
(1.1) with q = 1 and they obtained infinitely many solutions when λ = 0 and for differ-
ent a, b, θ . They also proved the existence of multiple solutions for suitable λ > 0. Sub-
sequently, if k(x, u) + g(x) = ξ |u|p∗

s –2u + τ f (x)|u|q–2u, Wang–Zhang [25] established the
existence of infinitely many solutions which tend to zero for suitable positive parameters
ξ and τ by the Kajikiya version of the symmetric mountain-pass theorem. Some other
important and meaningful results on the p-fractional Schrödinger equation of Kirchhoff
type can be found in [26–30] and the references therein.

Before stating our main results, we introduce some useful notations and definitions. Let
Ds,p(RN ) denote the completion of C∞

0 (RN ) with respect to the norm

‖u‖ =
(∫

R2N

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p

and Cc(RN ) = {u ∈ C(RN ) : supp u is a compact subset of RN }. We write C0(RN ) for the
closure of Cc(RN ) with respect to the norm |η|∞ = supx∈RN |η(x)|. Since a finite measure
on R

N is a continuous linear functional on C0(RN ), for a measure μ we write

‖μ‖0 = sup
η∈C0(RN ),|η|∞=1

∣∣(μ,η)
∣∣ = sup

η∈C0(RN ),|η|∞=1

∣∣∣∣
∫

RN
η dμ

∣∣∣∣.

Throughout this paper we shall denote C and Ci (i = 1, 2, . . .) for various positive constants
whose exact value may change from line to line but are not essential to the analysis of the
problem. Lr(RN ) (1 ≤ r ≤ +∞) is the usual Lebesgue space with the standard norm |u|r .
We use “→” and “⇀” to denote the strong and weak convergence in the related function
spaces, respectively. Let (X,‖ · ‖) be a Banach space with its dual space (X∗,‖ · ‖∗), and �

be its functional on X. The Palais–Smale sequence at level d ∈ R ((PS)d sequence in short)
corresponding to � satisfies �(xn) → d and � ′(xn) → 0 as n → ∞, where {xn} ⊂ X.

Motivated by all the work mentioned above, we are interested in the multiplicity and
asymptotic behavior of solutions for problem (1.1) whose natural variational functional is
given by

J(u) =
a
p
‖u‖p +

b
θp

‖u‖θp –
1
p∗

s

∫

RN
|u|p∗

s dx –
λ

q

∫

RN
f (x)|u|q dx.

Note that we can employ the idea used in [31] (or [2]) to prove that J(u) is well defined
on Ds,p(RN ) and of class C1. Furthermore, any solution of (1.1) is a critical point of J(u).
Hence we obtain the solutions of it by finding the critical point of the functional J(u). To
this aim, we assume the following condition:

(F) f ∈ Lp∗
s /(p∗

s –q)(RN ) with f (x) ≥ 0 and f (x) ≡ 0.

Definition 1.1 We say that u ∈ Ds,p(RN ) is a (weak) solution of (1.1) if

(
a + b‖u‖(θ–1)p)

∫

R2N

|u(x) – u(y)|p–2(u(x) – u(y))(v(x) – v(y))
|x – y|N+ps dx dy

=
∫

RN
|u|p∗

s –2uv dx + λ

∫

RN
f (x)|u|q–2uv dx

for all v ∈ Ds,p(RN ).
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Our first result is as follows.

Theorem 1.2 Assume (F) and q ∈ (1, p), then for any a, b > 0 there exists a constant λ∗ > 0
such that Eq. (1.1) has at least two nontrivial solutions, u1 and u2, satisfying

J(u2) < 0 < J(u1), ∀λ ∈ (0,λ∗).

Remark 1.3 We point out here that if q = 1 in (1.1), the results in Theorem 1.2 can be
seen as a part of [24]. Although the generalization in this sense is trivial, the main interest
of this paper is not here, but more attention is paid to the relation between the solutions
obtained in Theorem 1.2 and the parameters a > 0 and b > 0, and the convergent properties
(see Theorems 1.5 and 1.7 below) of the solutions are given. Also, our results extend the
results of [32] to fractional Kirchhoff type. Briefly speaking, if a = s = 1, b = 0 and p ≥ 2 in
(1.1), the results in Theorem 1.2 can be found in [32].

Remark 1.4 When the nontrivial solutions of (1.1) are obtained, we can prove that the
existence of ground state solutions of it. In fact, with Theorem 1.2 in hand, we know that
N = {u ∈ Ds,p(RN )\{0} : 〈J ′(u), u〉 = 0} = ∅ and m = infu∈N J(u) are well defined. Hence any
minimizing sequence of m is bounded, then by Lemmas 2.6–2.7 below we derive that m
is attained by some function and it is a ground state solution.

It is worth mentioning that the idea of proving the asymptotic behavior of solutions to
(1.1) comes from [12, 33]. Since the solutions u1 and u2 obtained in Theorem 1.2 depend
on the parameter b, we next denote u1 and u2 by u1

b and u2
b to emphasize this dependence,

respectively. By analyzing the convergence property of u1
b and u2

b as b → 0+, we establish
one of the following main results in this paper.

Theorem 1.5 Assume (F) and q ∈ (1, p), let λ ∈ (0,λ∗) and a > 0 be fixed constants, if {u1
b}

and {u2
b} are nontrivial solutions of (1.1) obtained in Theorem 1.2, there exist subsequences

still denoted by themselves {u1
b} and {u2

b} such that ui
b → ui in Ds,p(RN ) as b ↘ 0+ for i ∈

{1, 2}, where u1 and u2 are two nontrivial solutions of

a(–�)s
pu = |u|p∗

s –2u + λf (x)|u|q–2u in R
N . (1.5)

Remark 1.6 If the whole space RN is replaced with a bounded domain � and assume b > 0
suffciently small, Lei–Liu–Guo [13] proved that problem (1.1) admits at least two nontriv-
ial solutions when p = 2, s = 1, N = 3 and f (x) ≡ 1. In a more general case, Theorem 1.5
tells us that the solutions of problem (1.1) are actually the solutions of problem (1.5) if the
positive parameter b is small enough.

Inspired by Theorem 1.5, the solutions of problem (1.1) also depend on the parameter
a > 0 and then we have the following result.

Theorem 1.7 Assume (F) and q ∈ (1, p), then there exists λ∗∗ > 0 such that the problem
(1.1) admits at least two nontrivial solutions. Furthermore if we let λ ∈ (0,λ∗∗) and b > 0 be
fixed constants and denote {u11

a } and {u22
a } are nontrivial solutions of (1.1) obtained above,
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then there exist subsequences still denoted by themselves {u11
a } and {u22

a } such that uii
a → uii

in Ds,p(RN ) as a ↘ 0+ for i ∈ {1, 2}, where u11 and u22 are two nontrivial solutions of

b
(∫

R2N

|u(x) – u(y)|p
|x – y|N+ps dx dy

)θ–1

(–�)s
pu = |u|p∗

s –2u + λf (x)|u|q–2u in R
N . (1.6)

Remark 1.8 In this paper, we only consider the convergence of the solutions with a > 0 and
b > 0 as the parameters, respectively. It is natural to raise the following two open problems:
(i) Do our results still remain valid when b < 0 and b ↗ 0–? (ii) If we take λ > 0 as the
parameter and let the positive constants a and b be fixed, does the convergent property of
the solutions still exist when λ ↘ 0+? Xiang–Zhang–Zhang [24] studied the existence of
solutions for problem (1.1) with q = 1 and λ = 0, but from our point of view, it seems to be
different when it comes to taking λ > 0 as a parameter.

We note that, to the best of our knowledge, there is no result on asymptotic behavior
of solutions of critical Kirchhoff-type equations involving the fractional p-Laplacian. We
now sketch our proofs of Theorems 1.2, 1.5 and 1.7 based on variational method. What
makes the proof of Theorem 1.2 more complicated is not only the lack of compactness
imbedding of Ds,p(RN ) into Lp∗

s (RN ), but also how to estimate the critical value. To deal
with the difficulties mentioned above, some arguments are in order. Using the idea of the
well-known Brézis–Nirenberg argument [34], we obtain the threshold value

c∗ = a
(

1
p

–
1
p∗

s

)
S

N
ps

(
bS 2θ–1

2 +
√

b2S2θ–1 + 4a
2

) 1
θ–1

+ b
(

1
θp

–
1
p∗

s

)
S

Nθ
ps

(
bS 2θ–1

2 +
√

b2S2θ–1 + 4a
2

) θ
θ–1

(1.7)

by solving a quadratic algebra equation with one unknown, where S > 0 is the best Sobolev
constant, that is,

S = inf

{∫

R2N

|u(x) – u(y)|p
|x – y|N+ps dx dy : u ∈ Ds,p(

R
N)

and |u|p∗
s = 1

}
. (1.8)

After pulling the mountain-pass energy level down below the critical value, we use the
celebrated concentration–compactness principle developed by Lions [35] and extended
to the fractional Sobolev space Ds,p(RN ) at some level by Xiang–Zhang–Zhang [24] to
show that any (PS) sequence of J(u) contains a strongly convergent subsequence. As to
the proof of Theorem 1.5, Although most difficult, the lack of compactness imbedding
of Ds,p(RN ) into Lp∗

s (RN ) has been solved, we cannot draw the conclusion that the two
sequences of solutions of (1.1) converge to some functions which are nontrivial solutions
of (1.5). To overcome it, we have to further estimate the mountain-pass value and local
minimum carefully; see (4.3) below for example. Compared with the proof of Theorem 1.5,
there are some necessary modifications. For example, Lemma 2.5 below which plays a vital
role in the proof Theorem 1.2 can never take positive effect when we take a ∈ (0, 1] as a
parameter. Therefore, we can successfully prove Theorems 1.2, 1.5 and 1.7 step by step.

The outline of this paper is as follows. In Sect. 2, we present some preliminary results
for Theorem 1.2. In Sect. 3, we obtain the existence of two nontrivial solutions of prob-



Shen Journal of Inequalities and Applications  (2018) 2018:110 Page 6 of 19

lem (1.1). In Sects. 4 and 5, we prove the convergent properties on the parameters b > 0
and a > 0, respectively.

2 Some preliminaries
In this section, we first recall the concentration–compactness principle in the setting of the
fractional p-Laplacian and then investigate the mountain-pass geometry and the behavior
of the (PS) sequence. The following definition can be found in [31].

Definition 2.1 Let M(RN ) denote the finite nonnegative Borel measure space on R
N .

For any μ ∈M(RN ), μ(RN ) = ‖μ‖0. We say that μn ⇀ μ weakly ∗ in M(RN ), if (μn,η) →
(μ,η) holds for all η ∈ C0(RN ) as n → ∞.

The proofs of the Propositions 2.2–2.4 can be found in [24].

Proposition 2.2 Let {un} ⊂ Ds,p(RN ) with upper bound M0 > 0 for all n ≥ 1 and

un ⇀ u in Ds,p(
R

N)
,

∫

RN

|un(x) – un(y)|p
|x – y|N+ps dy ⇀ μ weak ∗ in M

(
R

N)
,

∣∣un(x)
∣∣p∗

s ⇀ ν weak ∗ in M
(
R

N)
.

Then

μ =
∫

RN

|u(x) – u(y)|p
|x – y|N+ps dy +

∑
j∈J

μjδxj + μ, μ
(
R

N) ≤ Mp
0 ,

ν = |u|p∗
s +

∑
j∈J

νjδxj , ν
(
R

N) ≤ Sp∗
s Mp

0 ,

where J is at most countable, {μj}, {νj} are positive constants, {δxj} is the Dirac mass centered
at xj, μ is a non-atomic measure, S > 0 is given by (1.8) and

ν
(
R

N) ≤ S– p∗s
p μ

(
R

N) p∗s
p , νj ≤ S– p∗s

p μ

p∗s
p

j for all j ∈ J . (2.1)

Proposition 2.3 Let {un} ⊂ Ds,p(RN ) be a bounded sequence such that

∫

RN

|un(x) – un(y)|p
|x – y|N+ps dy ⇀ μ weak ∗ in M

(
R

N)
,

∣∣un(x)
∣∣p∗

s ⇀ ν weak ∗ in M
(
R

N)
,

and for any R > 0 we define

μ∞ := lim
R→∞ lim sup

n→∞

∫

{x∈RN :|x|>R}

∫

RN

|un(x) – un(y)|p
|x – y|N+ps dy dx,

ν∞ := lim
R→∞ lim sup

n→∞

∫

{x∈RN :|x|>R}

∣∣un(x)
∣∣p∗

s dx.
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Then the quantities μ∞ and ν∞ are well defined and satisfy

lim sup
n→∞

∫

R2N

|un(x) – un(y)|p
|x – y|N+ps dy dx = μ

(
R

N)
+ μ∞,

lim sup
n→∞

∫

RN

∣∣un(x)
∣∣p∗

s dx = ν
(
R

N)
+ ν∞.

Moreover,

ν∞ ≤ S
– p

p∗s μ

p
p∗s∞ .

Proposition 2.4 Assume that {un} ⊂ Ds,p(RN ) is the sequence given by Proposition 2.2,
let x0 ∈ R

N be fixed and φ be a smooth cut-off function such that 0 ≤ φ ≤ 1, φ ≡ 0 when
x ∈ Bc

2(0), φ ≡ 1 when x ∈ B1(0) and |∇φ| ≤ 4. For any ε > 0, we set φε
x0 (x) = φ( x–x0

ε
) for any

x ∈R
N , then

lim
ε→0

lim sup
n→∞

∫

R2N

|φε
x0 (x) – φε

x0 (y)|p|un(x)|p
|x – y|N+ps dx dy = 0.

Now we will verify that the functional J exhibits the mountain-pass geometry.

Lemma 2.5 There exists λ0 > 0 such that the functional J(u) satisfies the mountain-pass
geometry around 0 ∈ Ds,p(RN ) for any λ ∈ (0,λ0), that is,

(i) there exist α,ρ > 0 such that J(u) ≥ α > 0 when ‖u‖ = ρ and λ ∈ (0,λ0);
(ii) there exists e ∈ Ds,p(RN ) with ‖e‖ > ρ such that J(e) < 0.

Proof (i) It follows from (1.8) and Hölder’s inequality that

J(u) ≥ a
p
‖u‖p –

1
p∗

s
S– p∗s

p ‖u‖p∗
s –

λ

q
|f | p∗s

p∗s –q
S– q

p ‖u‖q

= ‖u‖q
(

a
p
‖u‖p–q –

1
p∗

s
S– p∗s

p ‖u‖p∗
s –q –

λ

q
|f | p∗s

p∗s –q
S– q

p

)

≥
[

ap∗
s S

p∗s
p (p – q)

p(p∗
s – q)

] q
p∗s –p

{
a(p∗

s – p)
p(p∗

s – q)

[
ap∗

s S
p∗s
p (p – q)

p(p∗
s – q)

] p–q
p∗s –p

–
λ

q
|f | p∗s

p∗s –q
S– q

p

}
.

Therefore if we set

ρ =
[

ap∗
s S

p∗s
p (p – q)

p(p∗
s – q)

] 1
p∗s –p

> 0 and λ0 =
aqS

q
p (p∗

s – p)
p|f | p∗s

p∗s –q
(p∗

s – q)

[
ap∗

s S
p∗s
p (p – q)

p(p∗
s – q)

] p–q
p∗s –p

> 0,

then there exists α > 0 such that J(u) ≥ α > 0 when ‖u‖ = ρ > 0 for any λ ∈ (0,λ0).
(ii) Choosing u0 ∈ Ds,p(RN )\{0}, then since θp < p∗

s and f (x) is nonnegative one has

J(tu0) ≤ a
p

tp‖u0‖p +
b
θp

tθp‖u0‖θp –
tp∗

s

p∗
s

∫

RN
|u0|p∗

s dx → –∞ as t → +∞.

Hence letting e = t0u0 ∈ Ds,p(RN )\{0} with t0 sufficiently large, we have ‖e‖ > ρ and J(e) < 0.
The proof is complete. �
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By Lemma 2.5, and the mountain-pass theorem in [31], a (PS) sequence of the functional
J(u) at the level

c := inf
γ∈�

max
t∈[0,1]

J
(
γ (t)

) ≥ α > 0 (2.2)

can be constructed, where the set of paths is defined as

� :=
{
γ ∈ C

(
[0, 1], Ds,p(

R
N))

: γ (0) = 0, J
(
γ (1)

)
< 0

}
.

In other words, there exists a sequence {un} ⊂ Ds,p(RN ) such that

J(un) → c, J ′(un) → 0 as n → ∞. (2.3)

As the existence of the critical Sobolev exponent in (1.1), we have to estimate the
mountain-pass value given by (2.2) carefully. Thanks to the results in [36], there exists
a positive function U(x) satisfying

(–�)s
pu = up∗

s –1 in R
N

and ‖U‖p = |U|p∗
s

p∗
s

= SN/ps.

Lemma 2.6 There exists λ∗ > 0 such that the mountain-pass value satisfies

c < c∗ – C0λ
p

p–q , where C0 =
a(θ – 1)(p – q)

qθp

[ (θp – q)|f |p∗
s /(p∗

s –q)

a(θ – 1)pS
q
p

] p
p–q

> 0

for any λ ∈ (0,λ∗), c∗ and S are given by (1.7) and (1.8), respectively.

Proof It is obvious that there exists λ1 > 0 independent of b such that

c∗ – C0λ
p

p–q > 0 for any λ ∈ (0,λ1).

We then claim that

J(tU) ≤ c∗ for any t ≥ 0. (2.4)

Indeed, let us define

g(t) =
a
p

tp‖U‖p +
b
θp

tθp‖U‖θp –
tp∗

s

p∗
s

∫

RN
|U|p∗

s dx := C1tp + C2tθp – C3tp∗
s , t ≥ 0,

where

C1 =
a
p
‖U‖p =

a
p

S
N
ps , C2 =

b
θp

‖U‖θp =
b
θp

S
Nθ
ps ,

C3 =
1
p∗

s

∫

RN
|U|p∗

s dx =
1
p∗

s
S

N
ps .
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By some elementary calculations, we have

g ′(t) = C1ptp–1 + C2θptθp–1 – C3p∗
s tp∗

s –1 = 0, t ≥ 0,

which is equivalent to

C1p + C2θptθp–p – C3p∗
s tp∗

s –p = 0, t ≥ 0.

Since p∗
s – p = 2(θp – p), we know that g ′(t) = 0 has a unique root, that is,

t0 =
(C2θp +

√
C2

2θ
2p2 + 4C1C3p∗

s p

2C3p∗
s

) 1
θp–p

=
(

bS 2θ–1
2 +

√
b2S2θ–1 + 4a
2

) 1
θp–p

> 0,

where we use the fact that θ = (N – ps/2)/(N – ps). Therefore we can conclude that

max
t≥0

g(t) = g(t0) = C1tp
0 + C2tθp

0 –
C1ptp

0 + C2θptθp
0

p∗
s

= a
(

1
p

–
1
p∗

s

)
S

N
ps tp

0 + b
(

1
θp

–
1
p∗

s

)
S

Nθ
ps tθp

0 = c∗, (2.5)

which together with the fact f (x) is nonnegative gives (2.4).
Since J(0) = 0, there exists t1 ∈ (0, 1) such that

max
0≤t≤t1

J(tU) < c∗ – C0λ
p

p–q for any λ ∈ (0,λ1).

On the other hand, the facts

J(tU) = g(t) –
tq

q
λ

∫

RN
f (x)|U|q dx ≤ max

t≥0
g(t) –

tq

q
λ

∫

RN
f (x)|U|q dx

and (2.5) show that

max
t≥t1

J(tU) ≤ c∗ –
tq
1
q

λ

∫

R3
f (x)|U|q dx.

Taking

λ2 =
( tq

1
∫
RN f (x)|U|q dx

C0q

) p–q
q

> 0,

then we have

max
t≥t1

J(tU) < c∗ – C0λ
p

p–q for any 0 < λ < λ2.

Finally, choosing λ∗ = min{λ0,λ1,λ2} > 0 we can deduce that

max
t≥0

J(tU) < c∗ – C0λ
p

p–q for any 0 < λ < λ∗,

which yields the proof of this lemma. �
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The following lemma provides the interval where the (PS) condition holds for J(u).

Lemma 2.7 If λ ∈ (0,λ∗), any sequence satisfying (2.2) contains a strongly convergent sub-
sequence whenever c < c∗ – C0λ

p
p–q , where c∗ is given by (1.7).

Proof Let {un} ⊂ Ds,p(RN ) be a sequence verifying (2.3) and we conclude that {un} is
bounded in Ds,p(RN ). Recalling that θ = (N – ps/2)/(N – ps) > 1, then we have

c + 1 + o(1)‖un‖ ≥ J(un) –
1
θp

〈
J ′(un), un

〉

≥ a
(

1
p

–
1
θp

)
‖un‖p –

(
1
q

–
1
θp

)
λ|f | p∗s

p∗s –q
S– q

p ‖un‖q,

which shows that {un} is bounded in Ds,p(RN ) since p > q > 1. Up to a subsequence if nec-
essary, there exists u ∈ Ds,p(RN ) such that un ⇀ u in Ds,p(RN ), un → u in Lr

loc(RN ) for
r ∈ [1, p∗

s ) and un → u a.e. in R
N . Obviously, the conclusions in Proposition 2.2 are true in

the sense of a subsequence. Now we prove that un → u in Ds,p(RN ).
To do it, we first claim that the set J given by Proposition 2.2 is an empty set. Arguing it by

contradiction, for some j ∈ J and for any ε > 0 choosing φε
j to be a smooth cut-off function

such that 0 ≤ φε
j ≤ 1, φε

j ≡ 0 when x ∈ Bc
ε(xj), φε

j ≡ 1 when x ∈ Bε/2(xj) and |∇φε
j | ≤ 4/ε. It

follows from Proposition 2.2 that

lim
ε→0

lim
n→∞

(
a + b‖un‖(θ–1)p)

∫

R2N

|un(x) – un(y)|pφε
j (y)

|x – y|N+ps dx dy

≥ lim
ε→0

lim
n→∞

[
a

∫

R2N

|un(x) – un(y)|pφε
j (y)

|x – y|N+ps dx dy

+ b
(∫

R2N

|un(x) – un(y)|pφε
j (y)

|x – y|N+ps dx dy
)θ]

= aμj + bμθ
j

and
∣∣∣∣
(
a + b‖un‖(θ–1)p)

∫

R2N

|un(x) – un(y)|p–2(un(x) – un(y))(φε
j (x) – φε

j (y))un(x)
|x – y|N+ps dx dy

∣∣∣∣

≤ C
(∫

R2N

|un(x) – un(y)|p
|x – y|N+ps dx dy

) p–1
p

(∫

R2N

|φε
j (x) – φε

j (y)|p|un(x)|p
|x – y|N+ps dx dy

) 1
p

≤ C
(∫

R2N

|φε
j (x) – φε

j (y)|p|un(x)|p
|x – y|N+ps dx dy

) 1
p

→ 0 as ε → 0 and n → ∞,

where we have used Proposition 2.4. We also know that

lim
ε→0

lim
n→∞

∫

RN
|un|p∗

s φε
j dx = lim

ε→0
lim

n→∞

∫

Bε (xj)
|un|p∗

s φε
j dx + νj = νj

and

lim
ε→0

lim
n→∞

∫

RN
f (x)|un|qφε

j dx = lim
ε→0

lim
n→∞

∫

Bε (xj)
f (x)|un|qφε

j dx = 0.
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Since unφ
ε
j ∈ Ds,p(RN ) is bounded, we have 〈J ′(un), unφ

ε
j 〉 = o(1), that is,

(
a + b‖un‖(θ–1)p)

∫

R2N

|un(x) – un(y)|p–2(un(x) – un(y))(un(x)φε
j (x) – un(y)φε

j (y))
|x – y|N+ps dx dy

=
∫

RN
|un|p∗

s φε
j dx +

∫

RN
f (x)|un|qφε

j dx + o(1).

It is easy to see that

∣∣un(x) – un(y)
∣∣p–2(un(x) – un(y)

)(
un(x)φε

j (x) – un(y)φε
j (y)

)

=
∣∣un(x) – un(y)

∣∣p
φε

j (y)

+
∣∣un(x) – un(y)

∣∣p–2(un(x) – un(y)
)(

φε
j (x) – φε

j (y)
)
un(x).

Coming the above six formulas, we have νj ≥ aμj + bμθ
j . In view of (2.1) and p∗

s /p = 2θ – 1,
we obtain

S–(2θ–1)μ
2(θ–1)
j – bμθ–1

j – a ≥ 0,

which gives that

μj ≥
(

b +
√

b2 + 4aS–(2θ–1)

2S–(2θ–1)

) 1
θ–1

= S
N
ps

(
bS 2θ–1

2 +
√

b2S2θ–1 + 4a
2

) 1
θ–1

.

Using Proposition 2.2 and (2.3) again, we derive

c + o(1) = J(un) –
1
θp

〈
J ′(un), un

〉

= a
(

1
p

–
1
θp

)
‖un‖p +

(
1
θp

–
1
p∗

s

)∫

RN
|un|p∗

s dx

–
(

1
q

–
1
θp

)
λ

∫

RN
f (x)|un|q dx

≥ a
(

1
p

–
1
θp

)(
μj + ‖u‖p) +

(
1
θp

–
1
p∗

s

)
νj –

(
1
q

–
1
θp

)
λ|f | p∗s

p∗s –q
S– q

p ‖u‖q

≥ a
(

1
p

–
1
θp

)
μj +

(
1
θp

–
1
p∗

s

)(
aμj + bμθ

j
)

– C0λ
p

p–q

= a
(

1
p

–
1
p∗

s

)
μj + b

(
1
θp

–
1
p∗

s

)
μθ

j – C0λ
p

p–q ≥ c∗ – C0λ
p

p–q , (2.6)

a contradiction. Hence we have J = ∅.
We then claim that the quantities μ∞ and ν∞ given by Proposition 2.3 satisfy μ∞ =

ν∞ ≡ 0. For any R > 0, let ϕR(x) to be a smooth function such that 0 ≤ ϕR ≤ 1, ϕR ≡ 1 when
x ∈ Bc

R(0), ϕR ≡ 0 when x ∈ BR/2(0) and |∇ϕR| ≤ 4/R. Now repeating the same process of
proving the above claim, we can obtain μ∞ = ν∞ ≡ 0.

Finally, based on the above two claims and [24, Lemma 4.5], we have un → u in Ds,p(RN ).
Therefore J ′(u) = 0 and J(u) = c. The proof is complete. �
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3 The proof of Theorem 1.2
In this section, we will prove Theorem 1.2 in detail.

3.1 Existence of a first solution for (1.1)

Proof Let λ∗ > 0 be given as in Lemma 2.6, then for any λ ∈ (0,λ∗) there exists a sequence
{un} ⊂ Ds,p(RN ) verifying (2.3) by Lemma 2.5. In view of the proof of Lemma 2.7, we know
that there exists a critical point u1 ∈ Ds,p(RN ) of J such that J(u1) = c > 0. Hence u1 is a
nontrivial solution of (1.1). �

3.2 Existence of a second solution for (1.1)
Before we obtain the second solution, we introduce the following proposition.

Proposition 3.1 (Ekeland’s variational principle [37], Theorem 1.1) Let V be a complete
metric space and F : V →R∪ {+∞} be lower semicontinuous, bounded from below. Then,
for any ε > 0, there exists some point v ∈ V with

F(v) ≤ inf
V

F + ε, F(w) ≥ F(v) – εd(v, w) for all w ∈ V .

We are in a position to show the existence of a second positive solution for (1.1).

Proof For ρ > 0 given by Lemma 2.5(i), we define

Bρ =
{

u ∈ Ds,p(
R

N)
,‖u‖ ≤ ρ

}
, ∂Bρ =

{
u ∈ Ds,p(

R
N)

,‖u‖ = ρ
}

,

and clearly Bρ is a complete metric space with the distance d(u, v) = ‖u – v‖. It is obvious
that the functional J is lower semicontinuous and bounded from below on Bρ (see [31]).

We claim first that

c̃ := inf
{

J(u) : u ∈ Bρ

}
< 0. (3.1)

Indeed, choosing a nonnegative function ψ ∈ C∞
0 (RN ) and then we have

lim
t→0

J(tψ)
tq = –

λ

q

∫

RN
f (x)|ψ |q dx < 0.

Therefore there exists a sufficiently small t0 > 0 such that ‖t0ψ‖ ≤ ρ and J(t0ψ) < 0, which
imply that (3.1) holds. By Proposition 3.1, for any n ∈ N there exists ũn such that

c̃ ≤ J (̃un) ≤ c̃ +
1
n

and J(v) ≥ J (̃un) –
1
n

‖̃un – v‖, ∀v ∈ Bρ . (3.2)

Then we claim that ‖̃un‖ < ρ for n ∈ N sufficiently large. In fact, we will argue it by con-
tradiction and just suppose that ‖̃un‖ = ρ for infinitely many n, without loss of generality,
we may assume that ‖̃un‖ = ρ for any n ∈ N . It follows from Lemma 2.5 that J (̃un) ≥ α > 0
and by (3.2) we have c̃ ≥ α > 0 which is a contradiction to (3.1). Next, we will show that
J ′ (̃un) → 0 in (Ds,p(RN ))∗. Indeed, set

vn = ũn + tu, ∀u ∈ B1 =
{

u ∈ Ds,p(
R

N)
,‖u‖ = 1

}
,
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where t > 0 small enough such that 0 < t ≤ ρ – ‖̃un‖ for fixed n large, then

‖vn‖ = ‖̃un + tu‖ ≤ ‖̃un‖ + t ≤ ρ,

which imply that vn ∈ Bρ . So it follows from (3.2) that

J(vn) ≥ J (̃un) –
t
n

‖̃un – vn‖,

that is,

J (̃un + tu) – J (̃un)
t

≥ –
1
n

.

Letting t → 0, then we have 〈J ′ (̃un), u〉 ≥ – 1
n for any fixed n large. Similarly, choosing t < 0

and |t| small enough, and repeating the process above we have 〈J ′ (̃un), u〉 ≤ 1
n for any fixed

n large. Therefore the conclusion 〈J ′ (̃un), u〉 → 0 as n → ∞ for any u ∈ B1 implies that
J ′ (̃un) → 0 in (Ds,p(RN ))∗.

Hence, we know that {̃un} is a (PS)̃c sequence for the functional J(u) with c̃ < 0. Therefore,
Lemma 2.7 implies that there exists a function u2 ∈ Bρ such that J ′(u2) = 0 and J(u2) = c̃ < 0.
Hence u2 is a nontrivial solution of (1.1). �

4 Asymptotic behavior as b ↘ 0+

In this section, we prove Theorem 1.5. In the following, we regard b > 0 as a parameter
in problem (1.1) and analyze the convergence property of ui

b as b ↘ 0 for i ∈ {1, 2}. The
variational functional corresponding to (1.5) is given by

J0(u) =
a
p
‖u‖p –

1
p∗

s

∫

RN
|u|p∗

s dx –
λ

q

∫

RN
f (x)|u|q dx,

which is of class of C1 due to [31] (or [2]). For any b ∈ (0, 1], we have

c∗ ≤ a
(

1
p

–
1
p∗

s

)
S

N
ps

(
S 2θ–1

2 +
√

S2θ–1 + 4a
2

) 1
θ–1

+
(

1
θp

–
1
p∗

s

)
S

Nθ
ps

(
S 2θ–1

2 +
√

S2θ–1 + 4a
2

) θ
θ–1

:= M < +∞,

where M is independent of b. Let {ui
b} (i ∈ {1, 2}) be the solutions of (1.1) obtained in

Theorem 1.2, that is,

J ′
b
(
u1

b
)

= 0, Jb
(
u1

b
)

= cb (4.1)

and

J ′
b
(
u2

b
)

= 0, Jb
(
u2

b
)

= c̃b, (4.2)

where

Jb(u) =
a
p
‖u‖p +

b
θp

‖u‖θp –
1
p∗

s

∫

RN
|u|p∗

s dx –
λ

q

∫

RN
f (x)|u|q dx.
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Proof of Theorem 1.5 To present the proof clearly, we will split it into several steps:
Step 1: there exist four constants independent of b ∈ (0, 1] such that

0 < α ≤ cb < M – C0λ
p

p–q and –C0λ
p

p–q ≤ c̃b ≤ –
λ

2q

∫

RN
f (x)|ψ0|q dx < 0. (4.3)

In fact, the constant α > 0 given by Lemma 2.5 is independent of any b > 0, then by (2.2)
we have Jb(u1

b) ≥ α. On the other hand, using (4.2) we have

Jb
(
u2

b
)

= Jb
(
u2

b
)

–
1
θp

〈
J ′
b
(
u2

b
)
, u2

b
〉

≥ a
(

1
p

–
1
θp

)∥∥u2
b
∥∥p –

(
1
q

–
1
θp

)
λ|f | p∗s

p∗s –q
S– q

p
∥∥u2

b
∥∥q ≥ –C0λ

p
p–q ,

where C0 > 0 is given by Lemma 2.6. We choose a nonnegative function ψ0 ∈ C∞
0 (RN ) to

satisfy ‖ψ0‖ ≤ (2qC0/|f |p∗
s /(p∗

s –q))
1
q λ

1
p–q S

1
p . Since

lim
t→0

Jb(tψ0)
tq = –

λ

q

∫

RN
f (x)|ψ0|q dx < 0,

we can let t0 > 0 such that ‖t0ψ‖ ≤ ρ , where ρ > 0 is given by Lemma 2.5(ii). Therefore we
can obtain

c̃b = inf
{

Jb(u) : u ∈ Bρ

} ≤ –
λ

2q

∫

RN
f (x)|ψ0|q dx < 0.

So the proof of Step 1 is complete.
Step 2: the sequences {ui

b} (i ∈ {1, 2}) contain strongly convergent subsequences.
By (4.1) and (4.2), we know that {ui

b} (i ∈ {1, 2}) are (PS) sequences of the functionals
Jb(u). We claim that {ui

b} (i ∈ {1, 2}) are bounded. In fact,

M > Jb
(
ui

b
)

= Jb
(
ui

b
)

–
1
θp

〈
J ′
b
(
ui

b
)
, ui

b
〉

≥ a
(

1
p

–
1
θp

)∥∥ui
b
∥∥p –

(
1
q

–
1
θp

)
λ|f | p∗s

p∗s –q
S– q

p
∥∥ui

b
∥∥q,

which shows that {ui
b} are bounded in Ds,p(RN ) since p > q > 1. With (4.1) and (4.2) at hand,

we can see Lemma 2.7 as a special case to show that the sequences {ui
b} (i ∈ {1, 2}) contain

strongly convergent subsequences with {c̃b, cb} < a(p∗
s – p)/(pp∗

s )SN/(ps). Hence there exist
subsequences still denoted by themselves and ui ∈ Ds,p(RN ) such that ui

b → ui in Ds,p(RN )
as b → 0+ for i ∈ {1, 2}. Therefore, ∀ϕ ∈ C∞

0 (RN ) we have

0 =
(
a + b

∥∥ui
b
∥∥(θ–1)p)∫

R2N

|ui
b(x) – ui

b(y)|p–2(ui
b(x) – ui

b(y))(ϕ(x) – ϕ(y))
|x – y|N+ps dx dy

–
∫

RN

∣∣ui
b
∣∣p∗

s –2ui
bϕ dx – λ

∫

RN
f (x)

∣∣ui
b
∣∣q–2ui

bϕ dx

→ a
∫

R2N

|ui(x) – ui(y)|p–2(ui(x) – ui(y))(ϕ(x) – ϕ(y))
|x – y|N+ps dx dy
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–
∫

RN

∣∣ui∣∣p∗
s –2uiϕ dx – λ

∫

RN
f (x)

∣∣ui∣∣q–2uiϕ dx as b → 0+,

which shows that ui ∈ Ds,p(RN ) are solutions of (1.5) for i ∈ {1, 2}.
Step 3: J0(u2) < 0 < J0(u1).
Indeed,

J0
(
u1) = lim

b→0+
Jb

(
u1

b
) ≥ α > 0

and

J0
(
u2) = lim

b→0+
Jb

(
u2

b
) ≤ –

λ

2q

∫

RN
f (x)|ψ0|q dx < 0.

Summing the above three steps, we see that u1 and u2 are two nontrivial solutions of
(1.5). The proof is complete. �

5 Asymptotic behavior as a ↘ 0+

In this section, we regard a ∈ (0, 1] as a parameter in problem (1.1) and analyze the conver-
gence property. To do it, we have to prove that problem (1.1) admits at least two nontrivial
solutions again. We introduce the following variational functional:

Ja(u) =
a
p
‖u‖p +

b
θp

‖u‖θp –
1
p∗

s

∫

RN
|u|p∗

s dx –
λ

q

∫

RN
f (x)|u|q dx

to emphasize the independence of a ∈ (0, 1]. In order to eliminate the influence of param-
eter a > 0, we have the following lemma which is different from Lemma 2.5.

Lemma 5.1 There exists λ00 > 0 such that the functional Ja(u) satisfies the mountain-pass
geometry around 0 ∈ Ds,p(RN ) for any λ ∈ (0,λ00), that is:

(i) there exist α0,ρ0 > 0 such that Ja(u) ≥ α > 0 when ‖u‖ = ρ0 and λ ∈ (0,λ00);
(ii) there exists e0 ∈ Ds,p(RN ) with ‖e0‖ > ρ such that Ja(e0) < 0.

Proof (i) It follows from (1.8) and Hölder’s inequality that

Ja(u) ≥ ‖u‖q
(

b
θp

‖u‖θp–q –
1
p∗

s
S– p∗s

p ‖u‖p∗
s –q –

λ

q
|f | p∗s

p∗s –q
S– q

p

)

≥
[

bp∗
s S

p∗s
θp (θp – q)

θp(p∗
s – q)

] 1
p∗s –θp

{
b(p∗

s – θp)
θp(p∗

s – q)

[
bp∗

s S
p∗s
θp (θp – q)

θp(p∗
s – q)

] θp–q
p∗s –θp

–
λ

q
|f | p∗s

p∗s –q
S– q

p

}
.

Therefore if we set

ρ0 =
[

bp∗
s S

p∗s
θp (θp – q)

θp(p∗
s – q)

] 1
p∗s –θp

> 0 and

λ00 =
bqS

q
p (p∗

s – θp)
θp|f | p∗s

p∗s –q
(p∗

s – q)

[
bp∗

s S
p∗s
θp (θp – q)

θp(p∗
s – q)

] θp–q
p∗s –θp

> 0,

then there exists α0 > 0 such that Ja(u) ≥ α0 > 0 when ‖u‖ = ρ0 > 0 for any λ ∈ (0,λ00).
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(ii) Choosing u0 ∈ Ds,p(RN )\{0}, then since θp < p∗
s and f (x) is nonnegative one has

J(tu0) ≤ a
p

tp‖u0‖p +
b
θp

tθp‖u0‖θp –
tp∗

s

p∗
s

∫

RN
|u0|p∗

s dx → –∞ as t → +∞.

Hence letting e0 = t0u0 ∈ Ds,p(RN )\{0} with t0 sufficiently large, we have ‖e0‖ > ρ0 and
Ja(e0) < 0. The proof is complete. �

By Lemma 5.1, and the mountain-pass theorem in [31], a (PS) sequence of the functional
Ja(u) at the level

ca := inf
γ∈�

max
t∈[0,1]

Ja
(
γ (t)

) ≥ α0 > 0 (5.1)

can be constructed, where the set of paths is defined as

�a :=
{
γ ∈ C

(
[0, 1], Ds,p(

R
N))

: γ (0) = 0, Ja
(
γ (1)

)
< 0

}
.

In other words, there exists a sequence {un} ⊂ Ds,p(RN ) such that

Ja(un) → ca, J ′
a(un) → 0 as n → ∞. (5.2)

The following two lemmas are very similar to Lemmas 2.6 and 2.7, respectively.

Lemma 5.2 There exists λ∗∗ > 0 such that the mountain-pass value satisfies

ca < c∗ – C00λ
p

p–q with C00 =
(θ – 1)(p – q)

qθp

[ (θp – q)|f |p∗
s /(p∗

s –q)

a(θ – 1)pS
q
p

] p
p–q

> 0

for any λ ∈ (0,λ∗∗), c∗ and S are given by (1.7) and (1.8), respectively.

Lemma 5.3 If λ ∈ (0,λ∗∗), any sequence satisfying (2.2) contains a strongly convergent sub-
sequence whenever ca < c∗ – C00λ

p
p–q , where c∗ is given by (1.7).

Remark 5.4 Since a ∈ (0, 1], always

c∗ – C0λ
p

p–q ≥ c∗ – C00λ
p

p–q ,

where C00 > 0 is independent of a. Consequently, in addition to the proper adjustment of
λ∗∗, the proof of Lemma 5.2 is exactly the same as that of Lemma 2.6. The above formula
is applied to Eq. (2.6) to get a contradiction, hence we can prove Lemma 5.3.

In view of Sect. 3.2 and using Lemmas 5.1–5.3, we have the following proposition.

Proposition 5.5 Assume (F), then for any a, b > 0 there exists a constant λ∗∗ > 0 such that
Eq. (1.1) has at least two nontrivial solutions, u11

a and u22
a , satisfying

Ja
(
u22

a
)

< 0 < J
(
u11

a
)
, ∀λ ∈ (0,λ∗∗).
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Now let λ ∈ (0,λ∗∗) and b > 0 be fixed; we have the following.

Proposition 5.6 Let {u11
a } and {u22

a } be nontrivial solutions of (1.1) obtained in Proposi-
tion 5.5, then there exist subsequences still denoted by themselves {u11

a } and {u22
a } such that

uii
a → uii in Ds,p(RN ) as a ↘ 0+ for i ∈ {1, 2}, where u11 and u22 are two nontrivial solutions

of (1.6).

Proof For any a ∈ (0, 1], there exists M00 > 0 independent of a such that

c∗ ≤
(

1
p

–
1
p∗

s

)
S

N
ps

(
bS 2θ–1

2 +
√

b2S2θ–1 + 4
2

) 1
θ–1

+ b
(

1
θp

–
1
p∗

s

)
S

Nθ
ps

(
bS 2θ–1

2 +
√

b2S2θ–1 + 4
2

) θ
θ–1

:= M00 < +∞.

Recalling Steps 1–3 in the proof of Theorem 1.5, we have the following facts.
Fact 1: there exist four constants independent of a ∈ (0, 1] such that

0 < α0 ≤ ca < M00 – C00λ
p

p–q and –C00λ
p

p–q ≤ c̃a ≤ –
λ

2q

∫

RN
f (x)|ψ00|q dx < 0,

where c̃a = inf{Ja(u) : u ∈ Bρ0}.
Fact 2: the sequences {uii

a} (i ∈ {1, 2}) contain strongly convergent subsequences with
{c̃a, ca} < b(p∗

s – p)/(θpp∗
s )SNθ/(ps)bθ/(θ–1)Sθ (2θ–1)/2(θ–1). Hence there exist subsequences still

denoted by themselves and uii ∈ Ds,p(RN ) such that uii
a → uii in Ds,p(RN ) as a → 0+ for

i ∈ {1, 2}. Therefore, ∀ϕ ∈ C∞
0 (RN ) we have

0 =
(
a + b

∥∥uii
a
∥∥(θ–1)p)∫

R2N

|uii
a(x) – uii

a(y)|p–2(uii
a(x) – uii

a(y))(ϕ(x) – ϕ(y))
|x – y|N+ps dx dy

–
∫

RN

∣∣uii
a
∣∣p∗

s –2uii
aϕ dx – λ

∫

RN
f (x)

∣∣uii
a
∣∣q–2uii

aϕ dx

→ b
∥∥uii∥∥(θ–1)p

∫

R2N

|uii(x) – uii(y)|p–2(uii(x) – uii(y))(ϕ(x) – ϕ(y))
|x – y|N+ps dx dy

–
∫

RN

∣∣uii∣∣p∗
s –2uiiϕ dx – λ

∫

RN
f (x)

∣∣uii∣∣q–2uiiϕ dx as a → 0+,

which shows that uii ∈ Ds,p(RN ) are solutions of (1.6) for i ∈ {1, 2}.
Fact 3: J00(u22) < 0 < J00(u11), where

J00(u) =
b
θp

‖u‖θp –
1
p∗

s

∫

RN
|u|p∗

s dx –
λ

q

∫

RN
f (x)|u|q dx.

Therefore we know that u11 and u22 are two nontrivial solutions of (1.6). The proof is
complete. �

Proof of Theorem 1.7 In view of Sect. 3.2 and using Lemmas 5.1–5.3, we know that for any
a, b > 0 there exists a constant λ∗∗ > 0 such that (1.1) has at least two nontrivial solutions,
u11

a and u22
a , satisfying

Ja
(
u22

a
)

< 0 < J
(
u11

a
)
, ∀λ ∈ (0,λ∗∗).
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Now we use Proposition 5.6 to obtain the desired result directly. The proof is com-
plete. �

6 Conclusion
This paper is concerned with the qualitative analysis of solutions of a nonlocal problem
driven by the fractional p-Laplace operator. A key feature of this paper is the presence of
the critical Sobolev exponent of Kirchhoff-type. We are interested both in the existence of
solutions and in the multiplicity properties of the solutions. We also establish the conver-
gence of solutions as the positive parameters converge to zero. There are obtained several
very nice results and the variational arguments play a central role in the arguments de-
veloped in this paper. Finally, we obtain the threshold value by solving a quadratic algebra
equation with one unknown which does not seem to have appeared in previous literature.
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19. Molica Bisci, G., Rădulescu, V.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial

Differ. Equ. 54, 2985–3008 (2015)
20. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities.

Calc. Var. Partial Differ. Equ. 55, 1–39 (2016)
21. Ambrosio, V.: Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator.

J. Math. Phys. 57, 051502 (2016)
22. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular

nonlinearity. Adv. Nonlinear Anal. 6, 327–354 (2017)
23. Lyons, J., Neugebauer, J.: Positive solutions of a singular fractional boundary value problem with a fractional

boundary condition. Opusc. Math. 37, 421–434 (2017)
24. Xiang, M., Zhang, B., Zhang, X.: A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent

in R
N . Adv. Nonlinear Stud. 3, 611–640 (2017)

25. Wang, L., Zhang, B.: Infinitely many solutions for Schrödinger–Kirchhoff type equations involving the fractional
p-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016, 339 (2016)

26. Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv.
Nonlinear Anal. 5, 27–55 (2016)

27. Xiang, M., Zhang, B., Ferrara, M.: Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with
concave–convex nonlinearities. Proc. R. Soc., Math. Phys. Eng. Sci. 471, 2177 (2015)
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