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Abstract
We consider gradient estimates for positive solutions to the following nonlinear
elliptic equation on a smooth metric measure space (M,g, e–f dv):

�f u + au logu + bu = 0,

where a, b are two real constants. When the ∞-Bakry–Émery Ricci curvature is
bounded from below, we obtain a global gradient estimate which is not dependent
on |∇f |. In particular, we find that any bounded positive solution of the above
equation must be constant under some suitable assumptions.
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1 Introduction
Let (M, g) be an n-dimensional complete Riemannian manifold and f be a smooth function
defined on M. Then the triple (M, g, e–f dv) is called a smooth metric measure space, where
dv denotes the volume element of the metric g and e–f dv is called the weighted measure.
On the smooth metric measure space (M, g, e–f dv), the m-Bakry–Émery Ricci curvature
(see [1–3]) is defined by

Ricm
f = Ric + ∇2f –

1
m – n

df ⊗ df , (1.1)

where m ≥ n is a constant, and m = n if and only if f is a constant. We define

Ricf = Ric + ∇2f . (1.2)

Then Ricf can be seen as the ∞-dimensional Bakry–Émery Ricci curvature. However,
there are many differences between the m-Bakry–Émery Ricci curvature and the ∞-
Bakry–Émery Ricci curvature. For example, there exist complete noncompact Rieman-
nian manifolds which satisfy Ricf = λg for some positive constant λ (which is called the
shrinking gradient Ricci soliton), but not for Ricm

f = λg . We recall that the f -Laplacian �f
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on (M, g, e–f dv) is defined by

�f = � – ∇f ∇ .

Since we have the Bochner formula with respect to f -Laplacian:

1
2
�f |∇u|2 ≥ 1

m
(�f u)2 + ∇u∇(�f u) + Ricm

f (∇u,∇u),

which is similar to the Bochner formula associated with the Laplacian, many results with
respect to the Laplacian have been generalized to those of the f -Laplacian under the m-
dimensional Bakry–Émery Ricci curvature. For example, see [4–7] and the references
therein. But for elliptic gradient estimates for f -Laplacian under the ∞-Bakry–Émery
Ricci curvature, in order to using the weighted comparison theorem, the assumption
|∇f | ≤ θ is forced commonly.

In this paper, under the assumption that the ∞-Bakry–Émery Ricci curvature is
bounded from below, we consider the following nonlinear elliptic equation:

�f u + au log u + bu = 0, (1.3)

where a, b are two real constants. Inspired by the ideas of Brighton in [8], we can obtain
global gradient estimates for positive solutions to (1.3) without any restriction on |∇f |.

Theorem 1.1 Let (M, g, e–f dv) be an n-dimensional complete smooth metric measure
space with Ricf (Bp(2R)) ≥ –(n – 1)K , where K ≥ 0 is a constant. Suppose that u is a positive
solution to (1.3) with u ≤ A on Bp(2R). Then on Bp(R) with R > 1, the following inequality
holds:

|∇u|2 ≤ CA2
[

max

{
4
5

b + a
(

1 +
4
5

L
)

, 0
}

+ K +
|β| + 1

R

]
, (1.4)

where C is a positive constant which depends on the dimension n, β = max{x|d(x,p)=1} �f r(x)
and

L =

⎧⎨
⎩

supBp(2R)(log u), if a ≥ 0,

infBp(2R)(log u), if a < 0.
(1.5)

Letting R → ∞ in (1.4), we obtain the following global estimates on complete noncom-
pact Riemannian manifolds:

Corollary 1.2 Let (M, g, e–f dv) be an n-dimensional complete smooth metric measure
space with Ricf ≥ –(n – 1)K , where K ≥ 0 is a constant. If u is a positive solution to (1.3)
with u ≤ A, then we have

|∇u|2 ≤ CA2
[

max

{
4
5

b + a
(

1 +
4
5

L
)

, 0
}

+ K
]

, (1.6)
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where

L =

⎧⎨
⎩

supM(log u), if a ≥ 0,

infM(log u), if a < 0.
(1.7)

Using the ideas of the proof of Theorem 1.1, by choosing h̃ = log u a gap develops be-
tween the constants, and we also establish the following.

Theorem 1.3 Let (M, g, e–f dv) be an n-dimensional complete smooth metric measure
space with Ricf (Bp(2R)) ≥ –(n – 1)K , where K ≥ 0 is a constant. Suppose that u is a positive
solution to (1.3) on Bp(2R) such that:

(1) either ∇f ∇(log u) – a log u – b ≤ δ|∇(log u)|2 for some 0 ≤ δ < 1
2 ;

(2) or ∇f ∇(log u) – a log u – b ≥ 2|∇(log u)|2.
Then on Bp(R) with R > 1, the following inequality holds:

∣∣∇(log u)
∣∣2 ≤ C1(n, δ,β)

R
+ C2(n, δ) max

{
a + (n – 1)K , 0

}
, (1.8)

where β = max{x|d(x,p)=1} �f r(x).

Letting R → ∞ in (1.8), we obtain the following global estimates on complete noncom-
pact Riemannian manifolds:

Corollary 1.4 Let (M, g, e–f dv) be an n-dimensional complete smooth metric measure
space with Ricf ≥ –(n – 1)K , where K ≥ 0 is a constant. Let u be a positive solution to
(1.3). Then under the assumption of either (1) or (2) as in Theorem 1.3, we have

∣∣∇(log u)
∣∣2 ≤ C(n, δ) max

{
a + (n – 1)K , 0

}
. (1.9)

Clearly, if either u ≤ e–( 5
4 + b

a ) and a > 0, or u ≥ e–( 5
4 + b

a ) and a < 0, then we have 4
5 b +

a(1 + 4
5 L) ≤ 0. This gives the following result.

Corollary 1.5 Let (M, g, e–f dv) be an n-dimensional complete smooth metric measure
space with Ricf ≥ 0.

(1) There exists no bounded positive solution to (1.3) with a > 0 and u ≤ e–( 5
4 + b

a );
(2) if a < 0 and u ≥ e–( 5

4 + b
a ), then any bounded positive solution to (1.3) must be constant

u = e– b
a .

Remark 1.1 In particular, when a = 0, Eq. (1.3) becomes

�f u + bu = 0 (1.10)

and (1.6) becomes

|∇u|2 ≤ CA2
[

max

{
4
5

b, 0
}

+ K
]

. (1.11)
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In this case, on a complete smooth metric measure space (M, g, e–f dv) with Ricf ≥ 0, there
exists no bounded positive solution to (1.10) with b < 0. On the other hand, if a = b = 0,
our Theorem 1.1 becomes Theorem 1 of Brighton in [8].

Remark 1.2 It is easy to see from Corollary 1.4 that if u is a positive solution to (1.3) with
a ≤ –(n – 1)K satisfying either (1) or (2) in Theorem 1.3, then u = e– b

a is a constant. In
particular, if a = b = 0, then our Theorem 1.3 becomes Theorem 3 of Brighton in [8].

Remark 1.3 Some related results for gradient estimates of positive solutions to

�f u + au log u = 0 (1.12)

can be found in [9–11]. Moreover, Qian in [10] used a different method to derive similar
estimates to (1.12) with constant f . On the other hand, if we assume Ricf ≥ –(n – 1)K and
|∇f | ≤ θ , then from (1.1), we obtain

Ricm
f = Ricf –

1
m – n

df ⊗ df

≥ –(n – 1)
(

K +
θ2

(m – n)(n – 1)

)
:= –(n – 1)K̃ .

Hence, Theorem 1.5 in [11] follows from Theorem 1.1 of [11] immediately. However, our
estimates in this paper are not dependent on |∇f |.

2 Proof of results
We firstly give the following lemma which plays an important role in the proof of main
results.

Lemma 2.1 Let u be a positive solution to (1.3) with u ≤ A and Ricf ≥ –(n – 1)K for some
positive constant K . Denote ũ = u/A and h = ũε for ε ∈ (0, 1). If there exists one positive
constant δ satisfying

1
n

+
2(ε – 1)

nεδ
≥ 0, (2.1)

then we have

1
2
�f |∇h|2 ≥

(
(ε – 1)2

nε2 –
ε – 1

ε
+

2δ(ε – 1)
nε

) |∇h|4
h2 +

ε – 1
ε

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + aL̃

]|∇h|2, (2.2)

where

L̃ =

⎧⎨
⎩

supM(log h), if a ≥ 0,

infM(log h), if a < 0.
(2.3)

Proof Under the scaling u → ũ = u/A, it follows from (1.3) that ũ satisfies

�f ũ + aũ log ũ + b̃ũ = 0, (2.4)
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where the constant b̃ is given by b̃ = b + a log A. Let h = ũε , where ε ∈ (0, 1) is a constant to
be determined. Then we have

log h = ε log ũ. (2.5)

Since 0 < ũ ≤ 1, we have log h ≤ 0 and

�f h = �f
(
ũε

)
= ε(ε – 1)ũε–2|∇ũ|2 + εũε–1�f ũ

= ε(ε – 1)ũε–2|∇ũ|2 – aεũε log ũ – b̃εũε

=
ε – 1

ε

|∇h|2
h

– ah log h – b̃εh, (2.6)

which implies

∇h∇�f h = ∇h∇
(

ε – 1
ε

|∇h|2
h

– ah log h – b̃εh
)

=
ε – 1

ε
∇h∇ |∇h|2

h
– a∇h∇(h log h) – b̃ε|∇h|2

=
ε – 1

ε

∇h
h

∇(|∇h|2) –
ε – 1

ε

|∇h|4
h2

– ah log h
|∇h|2

h
– (a + b̃ε)|∇h|2. (2.7)

Thus, under the assumption Ricf ≥ –(n – 1)K , one has

1
2
�f |∇h|2 = |∇2h|2 + ∇h∇�f h + Ricf (∇h,∇h)

≥ 1
n

(�h)2 + ∇h∇�f h – (n – 1)K |∇h|2

=
1
n

(
ε – 1

ε

|∇h|2
h

+ ∇f ∇h – ah log h – b̃εh
)2

+
ε – 1

ε

∇h
h

∇(|∇h|2)

–
ε – 1

ε

|∇h|4
h2 – (ah log h)

|∇h|2
h

–
[
a + b̃ε + (n – 1)K

]|∇h|2

=
(

(ε – 1)2

nε2 –
ε – 1

ε

) |∇h|4
h2 +

2(ε – 1)
nε

|∇h|2
h

(∇f ∇h – ah log h – b̃εh)

+
1
n

(∇f ∇h – ah log h – b̃εh)2 +
ε – 1

ε

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + a log h

]|∇h|2. (2.8)

For any fixed point p, if there exists a positive constant δ such that ∇f ∇h – ah log h – b̃εh ≤
δ

|∇h|2
h , then from (2.8), we can deduce

1
2
�f |∇h|2 ≥

(
(ε – 1)2

nε2 –
ε – 1

ε

) |∇h|4
h2 +

2(ε – 1)
nε

|∇h|2
h

(
δ
|∇h|2

h

)

+
1
n

(∇f ∇h – ah log h – b̃εh)2 +
ε – 1

ε

∇h
h

∇(|∇h|2)
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–
[
a + b̃ε + (n – 1)K + a log h

]|∇h|2

≥
(

(ε – 1)2

nε2 –
ε – 1

ε
+

2δ(ε – 1)
nε

) |∇h|4
h2 +

ε – 1
ε

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + aL̃

]|∇h|2. (2.9)

On the contrary, if ∇f ∇h – ah log h – b̃εh ≥ δ
|∇h|2

h at the point p, then from (2.8), we can
deduce

1
2
�f |∇h|2 ≥

(
(ε – 1)2

nε2 –
ε – 1

ε

) |∇h|4
h2 +

2(ε – 1)
nεδ

(∇f ∇h – ah log h – b̃εh)2

+
1
n

(∇f ∇h – ah log h – b̃εh)2 +
ε – 1

ε

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + a log h

]|∇h|2

=
(

(ε – 1)2

nε2 –
ε – 1

ε

) |∇h|4
h2 +

(
1
n

+
2(ε – 1)

nεδ

)
(∇f ∇h – ah log h – b̃εh)2

+
ε – 1

ε

∇h
h

∇(|∇h|2) –
[
a + b̃ε + (n – 1)K + a log h

]|∇h|2

≥
[

(ε – 1)2

nε2 –
ε – 1

ε
+

(
1
n

+
2(ε – 1)

nεδ

)
δ2

] |∇h|4
h2 +

ε – 1
ε

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + a log h

]|∇h|2

≥
(

(ε – 1)2

nε2 –
ε – 1

ε
+

2δ(ε – 1)
nε

) |∇h|4
h2 +

ε – 1
ε

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + aL̃

]|∇h|2 (2.10)

as long as (2.1) holds.
Therefore, in these two cases the estimate (2.2) holds, which finishes the proof of the

Lemma 2.1. �

2.1 Proof of Theorem 1.1
In order to obtain the upper bound of |∇h| by using the maximum principle for (2.2), we
need to choose ε, δ such that the coefficient of |∇h|4

h2 in (2.2) is positive. That is, we need

(ε – 1)2

nε2 –
ε – 1

ε
+

2δ(ε – 1)
nε

> 0. (2.11)

In particular, by choosing ε = 4
5 and letting δ → 1

2 , we find that the inequality (2.1) holds
and (2.2) becomes

1
2
�f |∇h|2 ≥ 4n – 3

16n
|∇h|4

h2 –
1
4

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + aL̃

]|∇h|2. (2.12)
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As in [8], we define a cut-off function ψ ∈ C2([0, +∞)) by

ψ(t) =

⎧⎨
⎩

1, t ∈ [0, R];

0, t ∈ [2R, +∞],
(2.13)

satisfying ψ(t) ∈ [0, 1] and

–
C
R

≤ ψ ′(t)√
ψ

≤ 0,
∣∣ψ ′′(t)

∣∣ ≤ C
R2 , (2.14)

where C is a positive constant. Let

φ = ψ
(
d(x, p)

)
.

Using Eq. (2.19) in [8] (see Eq. (4.5) in [5] or [12, Theorem 3.1]), we obtain

�f φ ≥ –
Cβ

R
–

C(n – 1)K(2R – 1)
R

–
C
R2 (2.15)

and

|∇φ|2
φ

≤ C
R2 . (2.16)

Denote by Bp(R) the geodesic ball centered at p with radius R. Let G = φ|∇h|2. Assume G
achieves its maximum at the point x0 ∈ Bp(2R) and assume G(x0) > 0 (otherwise the proof
is trivial). Then, at the point x0,

�f G ≤ 0, ∇(|∇h|2) = –
|∇h|2

φ
∇φ

and

0 ≥ �f G

= φ�f
(|∇h|2) + |∇h|2�f φ + 2∇φ∇|∇h|2

= φ�f
(|∇h|2) +

�f φ

φ
G – 2

|∇φ|2
φ2 G

≥ �f φ

φ
G – 2

|∇φ|2
φ2 G + 2φ

[
4n – 3

16n
|∇h|4

h2 –
1
4

∇h
h

∇(|∇h|2)

–
[
a + b̃ε + (n – 1)K + aL̃

]|∇h|2
]

=
�f φ

φ
G – 2

|∇φ|2
φ2 G +

4n – 3
8n

G2

φh2 +
G
2φ

∇φ
∇h
h

– 2
[
a + b̃ε + (n – 1)K + aL̃

]
G, (2.17)
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where in the second inequality, we used (2.12). Multiplying both sides of (2.17) by φ

G , we
obtain

4n – 3
8n

G
h2 ≤ –

1
2
∇φ

∇h
h

+ 2
[
a + b̃ε + (n – 1)K + aL̃

]
φ

– �f φ + 2
|∇φ|2

φ
. (2.18)

Substituting the Cauchy inequality

–
1
2
∇φ

∇h
h

≤ 1
2
|∇φ| |∇h|

h

≤ n
4n – 3

|∇φ|2
φ

+
4n – 3

16n
φ

|∇h|2
h2

=
n

4n – 3
|∇φ|2

φ
+

4n – 3
16n

G
h2

into (2.18) gives

4n – 3
16n

G
h2 ≤ 2

[
a + b̃ε + (n – 1)K + aL̃

]
φ – �f φ +

9n – 6
4n – 3

|∇φ|2
φ

≤ 2
[
a + b̃ε + (n – 1)K + aL̃

]
+

C1[(n – 1)K(2R – 1) + β]
R

+
C2

R2 , (2.19)

where C1, C2 are two positive constants depending on n. Hence, on Bp(R) with R > 1, it
follows from (2.19) that

4n – 3
16n

G(x) ≤ 4n – 3
16n

G(x0)

≤ h2(x0)
[

2
[
a + b̃ε + (n – 1)K + aL̃

]

+
C1[(n – 1)K(2R – 1) + β]

R
+

C2

R2

]
. (2.20)

In particular, the estimate (2.20) gives

|∇u|2 ≤ CA2
[

max

{
4
5

b + a
(

1 +
4
5

L
)

, 0
}

+ K +
|β| + 1

R

]
, (2.21)

which finishes the proof of Theorem 1.1.

2.2 Proof of Theorem 1.3
We define h̃ = log u. Then we have

�h̃ – ∇f ∇h̃ = �f h̃

=
�f u

u
–

∣∣∇(log u)
∣∣2

= –|∇h̃|2 – ah̃ – b, (2.22)
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where, in the last equality of (2.22), we used Eq. (1.3). Using the Bochner formula with
respect to the f -Laplacian, we have

1
2
�f |∇h̃|2 =

∣∣∇2h̃
∣∣2 + ∇h̃∇�f h̃ + Ricf (∇h̃,∇h̃)

≥ 1
n

(�h̃)2 + ∇h̃∇�f h̃ – (n – 1)K |∇h̃|2. (2.23)

Moreover, by virtue of (2.22), we have

(�h̃)2 =
(
–|∇h̃|2 + ∇f ∇h̃ – ah̃ – b

)2

= |∇h̃|4 – 2|∇h̃|2(∇f ∇h̃ – ah̃ – b) + (∇f ∇h̃ – ah̃ – b)2. (2.24)

If the assumption (1) holds, then (2.24) yields

(�h̃)2 ≥ |∇h̃|4 – 2δ|∇h̃|4 + (∇f ∇h̃ – ah̃ – b)2

≥ (1 – 2δ)|∇h̃|4. (2.25)

On the other hand, if the assumption (2) holds, then (2.24) shows

(�h̃)2 ≥ |∇h̃|4 – (∇f ∇h̃ – ah̃ – b)2 + (∇f ∇h̃ – ah̃ – b)2

= |∇h̃|4

≥ (1 – 2δ)|∇h̃|4. (2.26)

Therefore, in these two cases, we have

(�h̃)2 ≥ (1 – 2δ)|∇h̃|4, (2.27)

and (2.23) gives

1
2
�f |∇h̃|2 ≥ 1 – 2δ

n
|∇h̃|4 – ∇h̃∇(|∇h̃|2) –

[
a + (n – 1)K

]|∇h̃|2. (2.28)

Following the proof of Theorem 1.1 line by line, we obtain on Bp(R) with R > 1,

|∇h̃|2 ≤ C1(n, δ,β)
R

+ C2(n, δ) max
{

a + (n – 1)K , 0
}

, (2.29)

where δ is taken to zero in the second assumption.
We completed the proof of Theorem 1.3.
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