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Abstract
Based on the extreme value conditions of a multiple variables function, a new class of
Wirtinger-type double integral inequality is established in this paper. The proposed
inequality generalizes and refines the classical Wirtinger-based integral inequality and
has less conservatism in comparison with Jensen’s double integral inequality and
other double integral inequalities in the literature. Thus, the stability criteria for
delayed control systems derived by the proposed refined Wirtinger-type integral
inequality are less conservative than existing results in the literature.
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1 Introduction
During the past several decades, the Wirtinger inequality received considerable attention
due to its extensive applications. For details, see [1–5] and the references therein. Recently,
a Wirtinger-based integral inequality was presented by Seuret and Gouaisbaut in [1], and
it was applied to analyze the stability for delayed systems. The Wirtinger-based inequal-
ity can deliver more accurate lower bounds for some single integral form of the quadratic
terms which emerge in the derivative of Lyapunov–Krasovskii functional (LKF) (for ex-
ample,

∫ b
a ωT (s)R1ω(s) ds (R1 = RT

1 > 0)) than other integral inequalities, such as the well-
known Jensen inequality [6], Park’s inequality [7] and Moon’s inequality [8]. Accordingly,
it is natural that the stability criterion derived by the Wirtinger-based integral inequality
has less conservatism than those by the aforementioned inequalities.

On the other hand, based on Lyapunov stability theory, Sun et al. [9] firstly introduced
the LKF containing the triple integral terms to discuss the stability problem. It was proved
that this triple integral-based LKF can effectively reduce the conservatism of the stability
criteria. Subsequently many researchers adopted this triple integral type LKF to analyze
the stability for various delayed systems. As we know, when one chooses such LKF, such
as V =

∫ b
a ds

∫ s
a dr

∫ r
a ωT (u)R2ω(u) du (R2 = RT

2 > 0), then some double integral terms, like
∫ b

a ds
∫ s

a ωT (u)R2ω(u) du (R2 = RT
2 > 0) will emerge in the derivative of the chosen V . How-

ever, the previous Wirtinger-based integral inequality [1] cannot be applied in finding the
lower bounds of such double integral terms since it merely evaluates the quadratic terms
in the form of a single integral. It should be pointed out that, for such double integral
terms, no other integral inequalities can handle them except Jensen’s double integral in-
equality [9, 10] at present. Nevertheless, Jensen’s double integral inequality is considerably
conservative. This motivates our interest in reinvestigating this problem further.
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In this paper, inspired by the method utilized in [2], we develop a new class of Wirtinger-
type double integral inequality, as an extension of the Wirtinger-based integral inequality.
In addition, Jensen’s double integral inequality can be regarded as a specialization of the
newly derived Wirtinger-type double integral inequality.

The following notations are used throughout the paper. The superscript “T” denotes the
transpose of a matrix. �n stands for the set of real vectors with dimension n. R > 0 denotes
a symmetric positive definite matrix and R < 0 denotes a symmetric negative definite ma-
trix. In a symmetric matrix, the symbol “*” is used to denote the term that is induced by
symmetry. The symbol ⊗ stands for the Kronecker product. In addition, matrices whose
dimensions are not explicitly stated are assumed to be compatible for algebraic opera-
tions.

2 Main results
In this section, we are to derive the Wirtinger-type double integral inequality and its corol-
lary.

Theorem (Wirtinger-type double integral inequality) If for a given symmetric matrix
R > 0, two scalars a, b satisfy a < b and we have a vector-valued function ω(t) : [a, b] → �n

such that the following integrations are well defined, then the following inequalities hold:

(b – a)2

2

∫ b

a
ds

∫ s

a
ωT (u)Rω(u) du ≥ 3ξT

([
3 –8
∗ 24

]

⊗ R

)

ξ , (1)

(b – a)2

2

∫ b

a
ds

∫ b

s
ωT (u)Rω(u) du ≥ 3ηT

([
3 –8
∗ 24

]

⊗ R

)

η, (2)

where

ξ =

[ ∫ b
a ds

∫ s
a ω(u) du

∫ b
a ds

∫ s
a dr

∫ r
a ω(u) du

]

,

η =

[ ∫ b
a ds

∫ b
s ω(u) du

∫ b
a ds

∫ b
s dr

∫ b
r ω(u) du

]

.

Proof Firstly, we are to prove inequality (1).
For a vector-valued function ω(t) : [a, b] → �n satisfying the condition of the theorem,

we define a function z(u) as follows:

z(u) � ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr – p(u)v,

where p(u) is a scalar function and the constant vector v is to be determined.
Based on z(u) defined above, we construct a generalized energy function J(v) with re-

spect to v denoted by

J(v) �
∫ b

a
ds

∫ s

a
zT (u)Rz(u) du.
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Then

∫ b

a
ds

∫ s

a
zT (u)Rz(u) du =

∫ b

a
ds

∫ s

a
ωT (u)Rω(u) du +

(∫ b

a
ds

∫ s

a
p2(u) du

)

vT Rv

+
2

(b – a)2

(∫ b

a
ds

∫ s

a
ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
ω(u) du

)

–
4

(b – a)2

(∫ b

a
ds

∫ s

a
ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
ω(u) du

)

– 2
(∫ b

a
ds

∫ s

a
p(u)ω(u) du

)T

Rv

+
4

(b – a)2

(∫ b

a
ds

∫ s

a
p(u) du

)(∫ b

a
ds

∫ s

a
ω(u) du

)T

Rv.

That is,

J(v) =
∫ b

a
ds

∫ s

a
ωT (u)Rω(u) du +

(∫ b

a
ds

∫ s

a
p2(u) du

)

vT Rv

–
2

(b – a)2

(∫ b

a
ds

∫ s

a
ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
ω(u) du

)

– 2
(∫ b

a
ds

∫ s

a
p(u)ω(u) du

)T

Rv

+
4

(b – a)2

(∫ b

a
ds

∫ s

a
p(u) du

)(∫ b

a
ds

∫ s

a
ω(u) du

)T

Rv. (3)

From Eq. (3), J(v) has a minimum due to the fact that J(v) can be taken as a quadratic
function concerning vector v with the coefficient of the quadratic term greater than zero,
i.e.,

∫ b
a ds

∫ s
a p2(u) du > 0.

In view of the extreme value conditions of multiple variable function, we conclude that
when ∇J(v) = 0, the function J(v) arrives at its minimum, where ∇ denotes the nabla op-
erator.

Namely,

2R
[∫ b

a
ds

∫ s

a
p2(u) duv

–
(∫ b

a
ds

∫ s

a
p(u)ω(u) du –

2
(b – a)2

∫ b

a
ds

∫ s

a
p(u) du

∫ b

a
ds

∫ s

a
ω(u) du

)]

= 0.

Solving the above equality, we can find a unique stationary point v∗:

v∗ =
(∫ b

a
ds

∫ s

a
p2(u) du

)–1[∫ b

a
ds

∫ s

a
p(u)ω(u) du

–
2

(b – a)2

∫ b

a
ds

∫ s

a
p(u) du

(∫ b

a
ds

∫ s

a
ω(u) du

)]

.
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Then

J
(
v∗) =

∫ b

a
ds

∫ s

a

[

ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr – p(u)v∗

]T

× R
[

ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr – p(u)v∗

]

du

=
∫ b

a
ds

∫ s

a

[

ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr

]T

× R
[

ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr

]

du

– 2
∫ b

a
ds

∫ s

a

{

p(u)
[

ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr

]

du
}T

Rv∗

+
∫ b

a
ds

∫ s

a
p2(u) du

(
v∗)T Rv∗.

In fact we have

–2
∫ b

a
ds

∫ s

a

{

p(u)
[

ω(u) –
2

(b – a)2

∫ b

a
ds

∫ s

a
ω(r) dr

]

du
}T

Rv∗

= –2
[∫ b

a
ds

∫ s

a
p(u)ωT (u) du

–
2

(b – a)2

∫ b

a
ds

∫ s

a
p(u) du

(∫ b

a
ds

∫ s

a
ωT (u) du

)]

Rv∗

= –2
∫ b

a
ds

∫ s

a
p2(u) du

(
v∗)T Rv∗.

Thus

J
(
v∗) =

∫ b

a
ds

∫ s

a
ωT (u)Rω(u) du

–
2

(b – a)2

(∫ b

a
ds

∫ s

a
ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
ω(u) du

)

–
∫ b

a
ds

∫ s

a
p2(u) du

(
v∗)T Rv∗.

Setting p(u) = u – 2a+b
3 , one can obtain the following equalities by basic integral calculus

and integration by parts:

∫ b

a
ds

∫ s

a
p(u) du = 0,

∫ b

a
ds

∫ s

a
p2(u) du =

(b – a)4

36
,

∫ b

a
ds

∫ s

a
p(u)ω(u) du

=
2
3

(b – a)
[∫ b

a
ds

∫ s

a
ω(u) du –

3
b – a

∫ b

a
ds

∫ s

a
dr

∫ r

a
ω(u) du

]

.
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Additionally,

∫ b

a
ds

∫ s

a
p2(u) du

(
v∗)T Rv∗

=
36

(b – a)4

(∫ b

a
ds

∫ s

a
p(u)ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
p(u)ω(u) du

)

.

Summarizing up and utilizing the above equalities yield

∫ b

a
ds

∫ s

a
zT (u)Rz(u) du

=
∫ b

a
ds

∫ s

a
ωT (u)Rω(u) du –

2
(b – a)2

(∫ b

a
ds

∫ s

a
ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
ω(u) du

)

–
∫ b

a
ds

∫ s

a
p2(u) du

(
v∗)T Rv∗.

Since R = RT > 0,
∫ b

a ds
∫ s

a zT (u)Rz(u) du ≥ 0, and we conclude that inequality (1) holds.
Setting p̄(u) = u – a+2b

3 instead of p(u) = u – 2a+b
3 for inequality (2) and following a sim-

ilar idea to inequality (1), we can prove inequality (2). This completes the proof of the
theorem. �

Remark 1 For the sake of convenience to utilize the theorem in analyzing stability for
delayed systems, inequality (1) and (2) can be equivalently rewritten as inequalities (1′)
and (2′), respectively:

(b – a)2

2

∫ b

a
ds

∫ s

a
ωT (u)Rω(u) du

≥
(∫ b

a
ds

∫ s

a
ω(u) du

)T

R
(∫ b

a
ds

∫ s

a
ω(u) du

)

+ 8�T
1 R�1, (1′)

(b – a)2

2

∫ b

a
ds

∫ b

s
ωT (u)Rω(u) du

≥
(∫ b

a
ds

∫ b

s
ω(u) du

)T

R
(∫ b

a
ds

∫ b

s
ω(u) du

)

+ 8�T
2 R�2, (2′)

where

�1 =
∫ b

a
ds

∫ s

a
ω(u) du –

3
b – a

∫ b

a
ds

∫ s

a
dr

∫ r

a
ω(u) du,

�2 =
∫ b

a
ds

∫ b

s
ω(u) du –

3
b – a

∫ b

a
ds

∫ b

s
dr

∫ b

r
ω(u) du.

Remark 2 Park et al. [4] also derived another Wirtinger-based double integral inequality;
see [4, Corollary 1]. For comparison, we excerpt it as follows with sign change:

(b – a)2

2

∫ b

a
ds

∫ b

s
ωT (u)Rω(u) du

≥
(∫ b

a
ds

∫ b

s
ω(u) du

)T

R
(∫ b

a
ds

∫ b

s
ω(u) du

)

+ 2�T
2 R�2. (4)
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Observe that 8�T
2 R�2 > 2�T

2 R�2 ≥ 0, one easily finds that the proposed Wirtinger-type
double integral inequality can deliver a tighter lower bound of the term

∫ b
a ds

∫ b
s ωT (u) ×

Rω(u) du than the one in [4]. The reason lies in different derivation approaches: the former
by extreme value conditions of multiple variables function; the latter mainly by the Schur
complement.

Remark 3 Apparently, by setting �1 = 0, �2 = 0 in Remark 1, the proposed Wirtinger-
type double integral inequality reduces to Jensen’s double integral inequality [10]. Thus
the theorem covers Jensen’s double integral inequality and has less conservatism than the
latter owing to the fact that 8�T

1 R�1 ≥ 0, 8�T
2 R�2 ≥ 0.

When ω(·) is replaced by ẋ(·) in the theorem, we obtain the following corollary as a
specialization of the theorem.

Corollary For a given matrix R = RT > 0 and a differentiable signal x in [a, b] → �n

(a < b), the following inequalities hold:

(b – a)2

2

∫ b

a
ds

∫ s

a
ẋT (u)Rẋ(u) du ≥ 3�T

1

([
3 –8
∗ 24

]

⊗ R

)

�1, (5)

(b – a)2

2

∫ b

a
ds

∫ b

s
ẋT (u)Rẋ(u) du ≥ 3�T

2

([
3 –8
∗ 24

]

⊗ R

)

�2, (6)

where

�1 =

[ ∫ b
a x(s) ds – (b – a)x(a)

∫ b
a ds

∫ s
a x(r) dr – (b–a)2

2 x(a)

]

,

�2 =

[
(b – a)x(b) –

∫ b
a x(s) ds

(b–a)2

2 x(b) –
∫ b

a ds
∫ b

s x(r) dr

]

.

Similarly, inequalities (5) and (6) can be expressed as inequalities (5′) and (6′), respec-
tively,

(b – a)2

2

∫ b

a
ds

∫ s

a
ẋT (u)Rẋ(u) du

≥
(∫ b

a
x(s) ds – (b – a)x(a)

)T

R
(∫ b

a
x(s) ds – (b – a)x(a)

)

+ 8ϒ̄T
1 Rϒ̄1, (5′)

(b – a)2

2

∫ b

a
ds

∫ b

s
ẋT (u)Rẋ(u) du

≥
(∫ b

a
x(s) ds – (b – a)x(b)

)T

R
(∫ b

a
x(s) ds – (b – a)x(b)

)

+ 8ϒ̄T
2 Rϒ̄2, (6′)

where

ϒ̄1 =
(b – a)

2
x(a) +

∫ b

a
x(s) ds –

3
b – a

∫ b

a
ds

∫ s

a
x(r) dr,

ϒ̄2 =
b – a

2
x(b) +

∫ b

a
x(s) ds –

3
b – a

∫ b

a
ds

∫ b

s
x(r) dr.
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3 Conclusions
In this paper, a refined Wirtinger-type double integral inequality is derived on the basis
of the Wirtinger-based integral inequality and the extreme value conditions of multiple
variables function. The proposed inequality extends the celebrated Wirtinger-based inte-
gral inequality from a single integral to a double one. In addition, the proposed inequality
refines Jensen’s double integral inequality and is less conservative compared with other
double integral inequalities.
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