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1 Introduction
In 1912, Bernstein [1] proposed the famous polynomials, nowadays called Bernstein poly-
nomials, to prove the Weierstrass approximation theorem as follows:

Bu(f;x) = Zf(%)bn,k(xx (1)
k=0

where x € [0,1], n = 1,2,..., and Bernstein basis functions b, x(x) are defined as follows:

By () = (:) (1 -2k, (2)

Based on this, there are many papers that mention Bernstein type operators, we illustrate
some of them [2—13].In 2010, Ye et al. [14] defined the following new Bernstein bases with
shape parameter A:

nO()";x) = bn,O(x) - n)\?bn+1,1(x)7

b
By i(35%) = byi(x) + ML Dy () = 225Dy () (1<i<n-1), (3)
b,

, -1 n2-1

(A5 %) = by (%) — ﬁbwrl,n(x)»

where b,,;(x) (i =0,1,...,n) are defined in (2), x € [0,1], A € [-1,1]. They discussed some
important properties of the basis functions and the corresponding curves and tensor prod-
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uct surfaces. It must be pointed out that we have more modeling flexibility when adding
the shape parameter A.
Recently, Cai et al. [15] introduced the A-Bernstein operators as follows:

By (f;x) = ZZn,ka;x)f(S), (4)

k=0

where ’l;,,,k()n;x) (k=0,1,...,n) are defined in (3) and A € [-1,1].
In this paper, we propose the Kantorovich type A-Bernstein operators

k+1

Kplfio) =+ )Y Butin) [ fat, (5)

k
k=0 Eo)
and the Bézier variant of Kantorovich type A-Bernstein operators

kel
n+l

Lusalfin) = n+ )3 Q05 [ st (6)
k=0 n+l

where

QUM% = [k Ws)]” = Uit G5 0] Juks2) =Y b (35),

j=k

Zn,/((k;x) (k=0,1,...,n) are defined in (3), « > 1,x € [0,1],and A € [-1,1].

Obviously, when « = 1, L, 5 1 (f; x) reduce to Kantorovich type A-Bernstein operators (5);
when A =0, L, (f;x) reduce to Bernstein—Kantorovich—Bézier operators defined in [13];
when A =0, @ =1, L,,01(f; %) reduce to Bernstein—Kantorovich operators defined in [13].

Let

Pyet) = (n+ 1)y QY 0sx)x(0)
k=0

and
t
Rupa,0) = / Pua,5) ds,
0

where y;(¢) is the characteristic function on the interval [%, %] with respect to [0, 1].

By the Lebesgue—Stieltjes integral representations, we have

1 1
Lusalfio) = [ FOPsatwde= [ fOd R0, )
0 0
The aims of this paper are to study the rate of convergence of operators L, , for f € Cio,1

and the asymptotic behavior of L, ; , for some absolutely continuous functions f € ®pg,
where the class of functions of ®pg is defined by

®pp = {f‘f(x) -f(0) = /x¢>(u) du;x > 0; ¢ is bounded on [0, 1] } (8)
0



Cai Journal of Inequalities and Applications (2018) 2018:90 Page 3 of 10

For a bounded function f on [0, 1], the following metric forms were first introduced in
[12]:

Qu-(f;81) = sup |f( Qi (f382) = sup  [f(

te[x—581,x] texx+82]

Qu(f5 1) = sup
telx—x/px+(1-x)/ 1]

where x € [0,1] is fixed, 0 < §; <x,0 <8, <1-x, and u > 1. For the basic properties of
Qx—(f;sl)’ Qx+(f; 85), and Qx(f§ﬂ); refer to [12].

2 Some lemmas

For proving the main results, we need the following lemmas.

Lemma 2.1 ([15]) Lete; = t},i=0,1,2, and n > 1. For the A-Bernstein operators B, (f;x),

we have

By (egsx) = 1;

1-2x+ ™1 — (1 —x)"!
By a(er;x) =x + A;

nn-1)

x(1—x 2 — 4 + 21 a4 (1—x)™1 -1

B, (exx) =x* + ( ) +A + ( )
n n(n-1) n2(n—-1)

Lemma2.2 Lete; =t,i=0,1,2,and n > 1, for the Kantorovich type \-Bernstein operators
K., (f;x), we have the following equalities:

Ky(e0ix) = 1; 9)

1-2x 1-2x+x"1—(1-x)"!
+

2(n +1) n2-1

, 3nx(2-3x)-3x*+1 (=202 + 2" D + 4" —x
K, (ex;x) =x° + 2\
’ 3(n+1)2 (m—1)(n+ 1)2

K, ;(e1;%) =x+ A (10)

(11)

Proof We can obtain (9) easily by the fact that ) ;_, Zn,/<(k;x) = 1. Next, by (5) and using

Lemma 2.1, we have

k+1

Kyier )-(n+1)2bnk(x 0 [ et
n+l

2k + 1
ankkx) +1)

n B, ) 1
= — e x) +
nel 2(n+1)
1-2x  1-2x+a™!—(1-x)"!
+ +
2n+1) n2-1

A
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Finally,

kel

Kuplen®) = 14 )Y Busin) | £t

k
k=0 n+l

"o~ 3k% + 3k +1
I R ahas
pry 3n+1)

n? n

= B,(e33%) + ——— By, (e1;%) + ————
(n+1)? m(ezia) + (n+1)? mleria) + 3(n+1)?

, 3nx(2-3x)-3x* +1 (=202 + 2" D + 4" —x
= + + 2)\.
3(n+1)2 (n—-1)(n+1)2

Lemma 2.2 is proved. O

Lemma 2.3 For the Kantorovich type A-Bernstein operators K, ;(f;x) and n > 1, using
Lemma 2.2, we have

1-2x 1—2x+x”+1—(1—x)”+1k

Kult=59 =50 * w1 ’
oy mx(l-x)  1-3x(1-x) 221 -x)+x(1-x)""]
K6 =25%) = 0 * e w21 1)
(1 — x)A
C (n+12(m-1)
4
< .
“n+1

Lemma 2.4 For the Bézier variant of Kantorovich type \-Bernstein operators L, ; ,(f;x)
and f € Cjo) with the sup-norm ||f|| := sup,(o1; |f (x)|, we have

|Znra D] < @llf1l-
Proof Since, for a > 1, we have

0 < [JnkGs)]" = D1 05 0)]" < @[k Rs0) = Jogr1 (050)] = b (35
Then, from (9) and the definition of L, ; , (f;x), we have

| L] < || Kun ()] < @lIf1I- O

Lemma 2.5
(i) ForO0<y<wx<1, wehave

Ropa(%,9) /yp (o) dt < — 2 (13)
X = nho\Xs = .
SO s 1+ D=5
(i) ForO0<x<z <1, we have
1
1-Rppat,2)= | Pupalot)dt< —— 14
)= [ Doyl de < (14)
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Proof (i) Using (7) and (12), we have

y
Rn,A,a (x, )/) = / Pn,A,a (x; t) dt
0

Yo t\2
f/ (x—> Pn,A,a(x;t)dt
0 \*¥—JY

1
= ﬁ /0 (t - x)zpn,k,a (xr t) dt
1
= an,La ((t - x)Z;x)
= oyl
4o

< —.
T (m+ D)x-y)?

Similarly, (ii) is proved. O

3 Main results

As we know, the space Cjo ) of all continuous functions on [0, 1] is a Banach space with
sup-norm ||f| := sup,c(o1; [f(®)[. Let f € C[0,1], the Peetre’s K-functional is defined by
Kaffit):=infeeca {If -l + tlg'll + £*1g"|l}, where ¢ > 0 and Cf == {g € Cpo11: g,¢" €
Cio,11}. By [16], there exists an absolute constant C > 0 such that

K (f3t) < Con(f; V1), (15)
where w)(f;£) := SUPg_j,<; SUP v iivs2nefo) f (8 + 2h) — 2f (x + h) + f(x)] is the second order

modulus of smoothness of f € Cjg,1). We also denote the usual modulus of continuity of

J € Co by @(f32) 1= SUPg<, SUPxhefo, (6 + 1) —f(x)].

Theorem 3.1 Forf € Cjp), A € [-1,1], we have

|Lipa(f32) —f (%) < Cary (f;,/ %) (16)

where C is a positive constant.

Proof Letg e C[zo,l]’ by Taylor’s expansion

gt) =) +g @t -2+ / (¢ - u)g () dt.

Asweknow, L,,; ,(1;x) = 1. Applying L, ; » (-; x) to both sides of the above equation, we get

Lyjo(gx) = g(x) + & ®)Lypa(t —%%) + Ly ( / (t —u)g" (u) du; x>
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By the Cauchy—Schwarz inequality, (12) and Lemma 2.4, we have

Ly (/t(t —u)g" (u) du;x)

”i ” Ln,A,a ((t - x)Zix)

= “g/ ” Lnja ((t - x)z;x) * @Ln,x,a ((t - X)Z;x)

//||

|Linsa (g5 %) — g®)| < |¢ ®)||Lnpa (1t —xl5%)| +

= ||g/||Ln,A,a(|t —xl;x) +

alg
2

<Ve|g| /K ((t - x)%x) +

< 2 /allgl . 2alg”|l
T Jn+1 n+l’

Then, using the above inequality, we have

((t - x)%x)

|Ln,A,a(f;x) _f(x)| < |Ln,)\,rx(f_g;x)| + |(f_g)(x)’ + {Ln,k,a(g;x) _g(x)}

(24 / (o4 /
<2(i-e1+ 2551+ 2 lel).

Hence, taking infimum on the right-hand side over all g € C[20,1]’ we get

Lo lf ) — )] < 2K, (f; L)
n+1

By (15), we obtain

Lpalf2) —F0)| < Coos (f; L)
n+1

This completes the proof of Theorem 3.1. O

Next, we recall some definitions of the Ditzian—Totik first order modulus of smoothness
and K-functional, which can be found in [17]. Let f € Cjg1), and ¢(x) := 4/x(1 — x), the first
order modulus of smoothness is given by

0 (fit)=  sup P(’” ’w(x)) . f<x_ zw(x)) ‘
O<h=tx+ 149 e[o,1] 2 2

The K-functional K, (f; ) is defined by K, (f; ) := infgec[w . {If —gll + tlleg |}, where £ > 0,

0,

CE%J] ={g:g € AC1), g || < o0}, ACjoj is the class of all absolutely continuous func-

tions on [0, 1]. Besides, from [17], there exists a constant C > 0 such that
Ky(f;t) < Cwy(f;t). (17)
Theorem 3.2 For f € Cp), A € [-1,1], and ¢(x) = /x(1 — x), we have

220 )

[Lna(fi%) = f@)] = Cor, (f it p)

where C is a positive constant.
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Proof Since
t
g0 =g+ [ g
applying L., +(f; %) to the above equality, we have

Luja(g%) +Lnxa(/tg/(u)du;x>. (18)

We will estimate fxt g'(u) du: For any x,t € (0,1), we have

= ”")g/”/x w(u)d ‘
, 1
- Jog| /x et

<loel| [ (5 + = ) o
< 2| g | (Wt - vl + IV1-t-1-x])

t
g (u)du

, 1 1
B 2||§0g |||t_x|<«/f+\/9_c+ «/1—t+«/1—x)
1
<2 e -+ )

t_
< 2V2pg | 2
o(x

From (18), using the Cauchy—Schwarz inequality, we obtain

|Lpa(gin) —g(x)| < 2v2 MLM(M x;x)

leg'll ]
<2V2 o) Luja((t - x)2,x)

<2v2a ”‘p‘i ” K (8 — %)% %)

_ W2aegll
T Vn+le (x)

Hence, using the above inequality, we have

|Ln,A,tx(f;x) _f(x)| < |Ln,A,a(f_g;x)| + |(f_g)(x)| + |Ln,A,a(f;x) _g(x)|
2B o)

< Z(Hf—g” + m vg

Taking infimum on the right-hand side over all g € CFZM]’ we get

2@)

|Lisa(f3%) = f(%)] < 2K, (f TSP
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By (17), we obtain

24/ 2
|Lupa(f3%) - f(®)] < Ca, (f ; m)
Theorem 3.2 is proved. O

Finally, we study the approximation properties of L, ; ,(f;x) for some absolutely contin-
uous functions f € ®pp.

Theorem 3.3 Let f be a function in ®pp. If p(x+) and ¢(x—) exist at a fixed point x € (0, 1),
then we have
20(|p(x+)| + |[¢p(x=)]) 8o +2x(1 — x) vl 1

Z Qx ’

[Eunetfio) - flo] = =22 =y (e

where [n] denotes the greatest integer not exceeding n, and

o) —plx+), x<u<l;
¢x(1) = 10, u=ux; (19)
o) —p(x-), 0<u<ux.

Proof By the fact that L,; ,(1;x) = 1, using (7) and (8), we have

1
Lupafs%) —F(3) = /0 [F(6) = F(3)] R, 1)

_ /0 1 ( / o) du> ARy (5, 1).

By the Bojanic—Cheng decomposition [18], we have

_ pxt) + p(x-) P(x+t) — p(x-)
————5———+%WM~——7;———

i) (a0 - 20O,

¢(u)

sgn(u — x)
(20)

1, u=x

where ¢, (u) is defined in (19), sgn() is a sign function and §,(u) = { o usx Bydirectinte-
grations, we find that

Lunalfi) ) = PEVPED 1 252) U059 + Torals)

o(x+) + p(x-)
L X o)

2 Ln,k,a (t —X; x)¢ (21)

where

U (i) = / ( / ¢x(u>du) iR (1)
0 t

1 t
Tpa(s) = / ( / @(u)du) ARy (3,1,
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Integration by parts derives

Uppa (i) = f ( / ¢x<u)du) iR (1)
0 t

- / o) ARy, 8)| + / R )00) it
t 0

_ / R, 05a(2) dit
0

x—x//n x
) (/ +_/ )Rn,)»,a(x» t)(,bx(t) dt.
0 x—x//n

Note that R,,; «(x,£) <1 and ¢,(x) = 0, it follows that

/ Rupa 6, )by () lt| <
x—x//n

From Lemma 2.5 (i) and change of variable ¢ = x — x/u, we have

4 x—x//n Q _
_ Ao / o(Prrx — 1) gt
n+1

—x//n
/0 R (&, D0 (0) lt| < o

A ﬁQ .x)d
_(n+1)x/1 x<¢x’; "

Wnl

8a x
= (n+1)x ;Qx(%; %)

Thus, it follows that

| Uy o (P x) | =

Wnl [V/n]
X 2x X
s+ — ) iT
(n l)x Z <¢x k) T ; x<¢" k)
_ Sa+22? W 1
Z ¢x§ % .
k=1
From Lemma 2.5(ii), using a similar method, we also obtain

2 Vn]
Toalin)| < 22— ng(% %)

n(l—x) oy

By the Cauchy—Schwarz inequality, (12), and Lemma 2.4, we have

200
Ln,)\,a(“ _x|;x) = al(n,k(” _x|;x) e I<n,k((t _x)Z;x) = m
Hence, by (22), (23), (24), and (21), we have
Wn]

|Lipa(f32) = f()] < 20(|p(x+)| + [p(x-)) 8 + 2x(1 — ) 5

Theorem 3.3 is proved.

(o) En ()

+ Q
NOES nx(l-x) =

Page 9 of 10

(22)

(23)

(24)
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4 Conclusion

In this paper, we have presented a Bézier variant of Kantorovich type A-Bernstein oper-
ators L, «(f;%), and established approximation theorems by using the usual second or-
der modulus of smoothness and the Ditzian—Totik modulus of smoothness. From Theo-
rem 3.3 of Sect. 3, we know that the rate of convergence of operators L, . (f;x) for f € ®pp
is ﬁ Furthermore, we might consider the approximation of these operators L, ; o (f;x)

for locally bounded functions.
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