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1 Introduction
The abstract problem in this paper is a class of mixed variational problems governed by
two variational inequalities, with a bilinear function and functional which is convex and
lower semicontinuous. Considering such kinds of variational problems sets the functional
background in the study of elastic contact problems with unilateral constraints and non-
monotone interface laws. For very recent work, see [1–3]. Our results improve the results
in [4–7], which consider a bilinear functional.

Let X be a Hilbert space, Y a reflexive Banach space and � be a nonempty, closed and
convex subset Y . Let A : X → X, B : X × � →R, φ : X →R be given maps to be specified
later, and w, f ∈ X be fixed. We consider the mixed variational problems of following forms.

Problem 1 Find (u,λ) ∈ X × � such that

(Au, v – u)X + B(v – u,λ) + φ(v) – φ(u) ≥ (f , v – u)X , ∀v ∈ X, (1)

B(u – w,μ – λ) ≤ 0, ∀μ ∈ �. (2)

Recently, a lot of work was devoted to the modeling in contact mechanics. Weak formu-
lations of contact problems involve the theory of variational inequalities and the theory
of saddle-point problems; see e.g. [7–13]. The purpose of this paper is to investigate the
weak solvability of a unilateral frictionless contact problem using a technique with dual
Lagrange multipliers. The weak formulations with dual Lagrange multipliers allow one
to write efficient algorithms in order to approximate the weak solutions. In the present
work, the behavior of the materials is described by using the subdifferential of a proper,
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convex, lower semicontinuous functional and the contact is modeled with Signorini’s con-
dition with zero gap. The results extend and improve the results obtained in [5, 6], where
a unilateral frictionless contact model for nonlinearly elastic materials is analyzed.

In this paper, by applying the saddle-point theory, we obtain the existence of solutions to
the mixed variational problems. The main results are that Problem 1 has a unique solution
(u,λ) ∈ X ×� and the solution (u,λ) is Lipschitz continuous with respect to f and ω. Then
we apply them to find that our model has a unique weak solution and the weak solution is
Lipschitz continuous with respect to the data.

The rest of this paper is organized as follows. In Section 2, we will introduce some useful
preliminaries and necessary materials. Section 3 is devoted to proving the existence and
uniqueness results. In the last section, we give some examples of friction contact problems
to illustrate our main results.

2 Preliminaries
In this section, we will introduce some basic preliminaries which are used throughout this
paper. Denote by ‖ · ‖X and (·, ·)X the norm and inner product of the Hilbert space X the
inner product of X, respectively.

Definition 2 Let K be a nonempty subset of a Banach space X. A function f : K → R is
said to be

(i) convex on K if for every finite subset {x1, . . . , xn} ⊂ K and {λ1, . . . ,λn} ⊂R+ such
that

∑n
i=1 λi = 1 and

∑n
i=1 λixi ∈ K , then

f

( n∑

i=1

λixi

)

≤
n∑

i=1

λif (xi);

(ii) concave on K if –f is convex on K ;
(iii) upper semicontinuous (u.s.c.) at x0, if, for any sequence {xn}n≥1 ⊂ K with xn → x0,

we have

lim sup
n→∞

f (xn) ≤ f (x0);

(iv) lower semicontinuous (l.s.c.) at x0, if, for any sequence {xn}n≥1 ⊂ K with xn → x0,
we have

lim inf
n→∞ f (xn) ≥ f (x0).

f is said to be u.s.c. (l.s.c.) on K if f is u.s.c. (l.s.c.) at x for all x ∈ K .

We now recall some elements of convex analysis. For more details, we refer to [10, 14,
15].

Definition 3 Let A and B be nonempty sets. A pair (u,λ) ∈ C × D is said to be a saddle
point of a functional L : C × D →R if

L(u,μ) ≤L(u,λ) ≤L(v,λ), ∀v ∈ C,μ ∈ D.
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In this paper, we apply the following result to prove our existence result.

Theorem 4 Let X, Y be reflexive Banach spaces, and let A ⊂ X, B ⊂ Y be nonempty, closed,
convex subsets. Assume that a functional L : C × D →R satisfies the following conditions:

(i) v 
→L(v,μ) is convex and l.s.c. for all μ ∈ D,
(ii) μ 
→L(v,μ) is concave and u.s.c. for all v ∈ C.

Moreover, assume that
(iii) C is bounded or

lim‖v‖X→∞,v∈C
L(v,μ0) = ∞ for some μ0 ∈ D,

(iv) D is bounded or

lim‖μ‖Y →∞,μ∈D
inf
v∈C

L(v,μ0) = –∞.

Then the functional L has at least one saddle point.

We also recall the following definition.

Definition 5 Let X be a Hilbert space and ϕ : X → R. ϕ is said to be Gâteaux differentiable
at u ∈ X, if there exists an element ∇ϕ(u) ∈ X such that

lim
t→0

ϕ(u + tv) – ϕ(u)
t

=
(∇ϕ(u), v

)
X , ∀v ∈ X.

The element ∇ϕ(u) which satisfies the relation above is unique and is called the gradient
of ϕ at u. ϕ : X → R is said to be Gâteaux differentiable if it is Gâteaux differentiable at
every point of X. In this case, the operator ∇ϕ(u) : X → X that maps every element u ∈ X
into the element ∇ϕ(u) is called the gradient operator of ϕ. The convexity of Gâteaux
differentiable functions can be characterized as follows.

Lemma 6 ([16, 17]) Let X be a Hilbert space and ϕ : X → R be Gâteaux differentiable.
Then ϕ is convex if and only if

ϕ(v) – ϕ(u) ≥ (∇ϕ(u), v – u
)

X , ∀v ∈ X.

3 Existence and uniqueness result
We will make the following hypotheses to obtain the existence and uniqueness result for
Problem 1:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A : X → X is such that
(a) ‖Au1 – Au2‖X ≤ LA‖u1 – u2‖X

for all u1, u2 ∈ X with LA > 0,
(b) (Au1 – Au2, u1 – u2)X ≥ mA‖u1 – u2‖2

X

for all u1, u2 ∈ X with mA > 0,

(3)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B : X × � →R is a bilinear function such that
(a) |B(u,λ)| ≤ LB‖u‖X‖λ‖Y

for all u ∈ X,λ ∈ � with LB > 0,
(b) infλ∈�,λ �=0Y supu∈X,u�=0X

B(u,λ)
‖u‖X‖λ‖Y

≥ αB

with αB > 0,

(4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ : X →R is a function such that
(a) φ is l.s.c., convex and Gâteaux differentiable,
(b) ‖∇φ(u1) – ∇φ(u2)‖X ≤ Lφ‖u1 – u2‖X

for all u1, u2 ∈ X with Lφ > 0,
(c) (∇φ(u1) – ∇φ(u2), u1 – u2)X ≥ mφ‖u1 – u2‖2

X

for all u1, u2 ∈ X with mφ > 0,

(5)

0Y ∈ �. (6)

We will prove the following existence and uniqueness result.

Theorem 7 Assume that (3), (4), (5), (6) are satisfied. Then, for any ω, f ∈ X, Problem 1
has a unique solution (u,λ) ∈ X × �.

Firstly, we give the following equivalence which can be deduced in the proof of Theo-
rem 4 in [6].

Lemma 8 Problem 1 is equivalent to the following problem:
Find (u,λ) ∈ X × � such that

(Au, v)X + B(v,λ) +
(∇φ(u).v

)
= (f , v)X , ∀v ∈ X,

B(u – w,μ – λ) ≤ 0, ∀μ ∈ �.

The proof of Theorem 7 is carried out in several steps. Let η ∈ X be given and consider
the following auxiliary problem.

Problem 9 Given w, f ∈ X, find (uη,λη) ∈ X × � such that

(uη, v – uη)X +
mA

2L2
A

B(v – uη,λη) + φ(v) – φ(uη)

≥
(

mA

2L2
A

f –
mA

2L2
A

Aη + η, v – uη

)

X
, ∀v ∈ X, (7)

B(uη – w,μ – λη) ≤ 0, ∀μ ∈ �. (8)

Define now the operator T : X → X by

Tη = uη for η ∈ X, (9)

where uη ∈ X denotes the unique solution of Problem 9.

Lemma 10 The operator T has a unique fixed point.
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Proof From Lemma 23 in the Appendix we know that Problem 9 has a unique solution
(uη,λη) ∈ X ×�. Let η1,η2 ∈ X and (uη1 ,λη1 ), (uη2 ,λη2 ) ∈ X ×� be the unique solutions of
Problem 9 corresponding to η1, η2, respectively. From (7) we have

(uη1 – uη2 , uη2 – uη1 )X +
mA

2L2
A

B(uη1 – uη2 ,λη2 – λη1 )

≥
(

η1 – η2 +
mA

2L2
A

(Aη2 – Aη1), uη2 – uη1

)

X
.

From (8) it follows that

B(uη1 – uη2 ,λη2 – λη1 ) ≤ 0.

Then

∥
∥u1

η – u2
η

∥
∥

X ≤
∥
∥
∥
∥η1 – η2 +

mA

2L2
A

(Aη2 – Aη1)
∥
∥
∥
∥,

and hence

‖uη1 – uη2‖2
X ≤ ‖η1 – η2‖2

X –
mA

L2
A

(Aη2 – Aη1,η1 – η2)X +
m2

A
4L4

A
‖Aη2 – Aη1‖2

X .

We use the hypothesis (3)(b) to obtain

‖uη1 – uη2‖2
X ≤

(

1 –
3m2

A
4L4

A

)

‖η1 – η2‖2
X .

It is clear that mA ≤ LA and hence 0 < 1 – 3m2
A

4L4
A

< 1. Consequently,

‖Tη1 – Tη2‖X ≤
√

1 –
3m2

A
4L4

A
‖η1 – η2‖X ,

which implies that the operator T is a contraction. By applying the Banach contraction
principle, we deduce that there exists a unique η∗ ∈ X such that η∗ = Tη∗. This completes
the proof of the lemma. �

We now have all the ingredients to provide the proof of the main result in this section.

Proof of Theorem 7 (i) For the existence, let η∗ ∈ X be the fixed point of the operator T .
We write (7) and (8) for η = η∗ and observe that uη∗ = Tη∗ = η∗. Hence, we conclude that
the function (uη∗ ,λη∗ ) ∈ X × � is a solution to Problem 1.

The uniqueness of a solution to Problem 1 is proved directly. Let (u1,λ1), (u2,λ2) ∈ X ×�

be two solutions. By Lemma 8 we deduce that

(Au1 – Au2, v)X + B(v,λ1 – λ2) +
(∇φ(u1) – ∇φ(u2), v

)
X = 0, ∀v ∈ X. (10)
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Taking v = u1 – u2 in the above inequality we obtain

(Au1 – Au2, u1 – u2)X + B(u1 – u2,λ1 – λ2) +
(∇φ(u1) – ∇φ(u2), u1 – u2

)
X = 0. (11)

From (2) it follows that

B(u1 – u2,λ1 – λ2) ≤ 0. (12)

Combining (4)(b), (5)(c), (11) and (12), we conclude that u1 = u2. Moreover, from (10) it
follows that

B(v,λ1 – λ2) = 0, ∀v ∈ X,

which implies that λ1 = λ2. This completes the proof of the theorem. �

Next, we consider some stability results.

Theorem 11 Assume that (3), (4), (5), (6) are satisfied. If (u1,λ1), (u2,λ2) ∈ X × � are
two solutions of Problem 1 corresponding to f1, f2 ∈ X with w = 0X , then there exists C =
C(LA, mA,αB, Lφ) > 0 such that

‖u1 – u2‖X + ‖λ1 – λ2‖Y ≤ C‖f1 – f2‖X . (13)

Proof From (1) and (2) we have

(Au1 – Au2, u2 – u1)X + B(u1 – u2,λ2 – λ1) ≥ (f1 – f2, u2 – u1)X ,

B(u1 – u2,λ2 – λ1) ≤ 0.

From (3)(b) it follows that

mA‖u1 – u2‖2
X ≤ ‖f1 – f2‖X‖u1 – u2‖X ,

and hence

‖u1 – u2‖X ≤ 1
mA

‖f1 – f2‖X . (14)

Since

B(v,λ1 – λ2) = (f1 – f2, v)X – (Au1 – Au2, v)X –
(∇φ(u1) – ∇φ(u2), v

)
X , ∀v ∈ X.

from (5)(b) we have

‖λ1 – λ2‖Y ≤ LA + Lφ

αB
‖u1 – u2‖X +

1
αB

‖f1 – f2‖X . (15)

Combining (14) and (15) we get (13). �
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Theorem 12 Assume that (3), (4), (5), (6) are satisfied. If (u1,λ1), (u2,λ2) ∈ X × � are two
solutions of Problem 1 corresponding to w1, f1 ∈ X and w2, f2 ∈ X (wi �= 0X , i = 1, 2), then
there exists C1 = C1(LA, mA, LB,αB, Lφ) > 0 such that

‖u1 – u2‖X + ‖λ1 – λ2‖Y ≤ C1
(‖w1 – w2‖X + ‖f1 – f2‖X

)
. (16)

Proof From (1) and (2) we have

(Au1 – Au2, u2 – u1)X + B(u1 – u2,λ2 – λ1) ≥ (f1 – f2, u2 – u1)X ,

B(u1 – u2,λ2 – λ1) ≤ B(w1 – w2,λ2 – λ1).

From (3)(c) it follows that

mA‖u1 – u2‖2
X ≤ ‖f1 – f2‖X‖u1 – u2‖X + LB‖w1 – w2‖X‖λ1 – λ2‖Y ,

αB‖λ1 – λ2‖Y ≤ ‖f1 – f2‖X + (LA + Lφ)‖u1 – u2‖X ,

and hence

mA‖u1 – u2‖2
X ≤ 1

2k1
‖f1 – f2‖2

X +
k1

2
‖u1 – u2‖2

X +
L2

B
2k2

‖w1 – w2‖2
X +

k2

2
‖λ1 – λ2‖2

Y ,

‖λ1 – λ2‖2
Y ≤ 2

α2
B

(‖f1 – f2‖2
X + (LA + Lφ)2‖u1 – u2‖2

X
)
, (17)

where k1, k2 are strictly positive real constants. Choosing k1, k2 such that

N := mA –
k1

2
–

k2L2
A

α2
B

> 0,

we have

‖u1 – u2‖2
X ≤ 1

N

(
1

2k1
‖f1 – f2‖2

X +
L2

B
2k2

‖w1 – w2‖2
X

)

+
k2

Nα2
B
‖f1 – f2‖2

X ,

and combining with (17) we get (16). �

4 Contact problems
In this section, we consider some elastic frictional problems to illustrate our main results.

The elastic body occupies an open bounded connected set 	 ⊂ R
d (d = 1, 2, 3) with

boundary 
 = ∂	, assume to be Lipschitz continuous. Assume that 
 consists of three
sets 
1, 
2 and 
3, with mutually disjoint relatively open sets 
1, 
2 and 
3, such that
meas(
1) > 0.

We use the notation x = (xi) for a generic point in 	 ∪ 
 and ν = (νi) for the outward
unit normal at 
. The indices i, j run between 1 and d and, unless stated otherwise, the
summation convention over repeated indices is used. The notation S

d stands for the space
of second order symmetric tensors on R

d . On the spaces R
d and S

d we use the inner
products and the Euclidean norms defined by

u · v = uivi, ‖u‖ = (u · u)1/2 for all u = (ui), v = (vi) ∈R
d,

σ · τ = σiτi, ‖σ‖ = (σ · σ )1/2 for all σ = (σij),τ = (τij) ∈ S
d,



Jiang Journal of Inequalities and Applications  (2018) 2018:95 Page 8 of 16

respectively. For a vector field, notation uν and uτ represent the normal and tangential
components of u on 
 given by uν = u · ν and uτ = u – uνν . Also, σν and σ τ represent the
normal and tangential components of the stress field σ on the boundary, i.e. σν = (σν) · ν
and σ τ = σν – σνν .

The classical model for the process is as follows.

Problem 13 Find a displacement field u : 	 →R
d and a stress field σ : 	 → S

d such that

σ = A
(
ε(u)

)
in 	, (18)

Divσ + f 0 = 0 in 	, (19)

u = 0 on 
1, (20)

σν = f 2 on 
2, (21)

uν ≤ 0, σν + η ≤ 0, uν(σν + η) = 0, η ∈ ∂φ(uν) on 
3, (22)
⎧
⎪⎨

⎪⎩

‖σ τ‖ ≤ ζ ,
‖σ τ‖ < ζ ⇒ uτ = 0,
‖σ τ‖ = ζ ⇒ ∃λ ≥ 0 s.t. uτ = –σ τ ,

on 
3. (23)

Now, we describe (18)–(23) in the following. Equation (18) represents the elastic con-
stitutive law. Equation (19) is the equation of equilibrium, where f 0 denotes the density of
the body forces, (20) is the displacement homogeneous boundary condition which means
that the body is fixed on 
1, and (21) is the traction boundary condition with surface trac-
tions of density f 2 acting on 
2. Conditions (22) and (23), given on the contact surface 
3,
represent the contact and the friction law, respectively. Here ζ is the friction bound.

In the rest of the paper we use standard notation for Lebesgue and Sobolev spaces and,
in addition, we use the spaces V and H defined by

V =
{

v ∈ H1(	;Rd)|v = 0 on 
1
}

, H = L2(	;Sd).

Here and below we still denote by v the trace of an element v ∈ H1(	;Rd). The space H
will be endowed with the Hilbertian structure given by the inner product

(σ ,τ )H =
∫

	

σij(x)τij(x) dx,

and the associated norm ‖ · ‖H. On the space V we consider the inner product

(u, v)V =
(
ε(u),ε(v)

)
H, u, v ∈ V ,

and the associated norm ‖ · ‖V . Recall that, since meas(
1) > 0, it follows that V is a real
Hilbert space. Moreover, by the Sobolev trace theorem, we have

‖vτ‖L2(
3;Rd) = ‖γ v‖L2(
3;Rd) ≤ ‖γ ‖‖v‖V for all v ∈ V ,

where ‖γ ‖ is the norm of the trace operator γ : V → L2(
3;Rd).
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In the study of Problem 13 we assume that the following conditions hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : 	 × S
d → S

d is such that
(a) A(·,ε) is measurable on 	 for all ε ∈ S

d,
(b) there exists LA > 0 such that

‖A(x,ε1) – A(x,ε2)‖ ≤ LA‖ε1 – ε2‖
for all ε1,ε2 ∈ S

d, a.e. x ∈ 	, t ∈R+,
(c) there exists mA > 0 such that

(A(x,ε1) – A(x,ε2)) · (ε1 – ε2) ≥ mA‖ε1 – ε2‖2

for all ε1,ε2 ∈ S
d, a.e. x ∈ 	,

(d) A(x, 0) = 0, a.e. x ∈ 	,

(24)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ : 	 ×R →R+ is such that
(a) φ(·, r) is measurable for all r ∈ R,
(b) φ(x, ·)is l.s.c., convex and Gâteaux differentiable for a.e. x ∈ 	,
(c) ‖∇φ(x, r1) – ∇φ(x, r2)‖ ≤ Lφ|r1 – r2|

for all r1, r2 ∈ R, a.e. x ∈ 	 with Mϕ > 0,
(d) (∇φ(x, r1) – ∇φ(x, r2), r1 – r2) ≥ mφ|r1 – r2|2

for all r1, r2 ∈R, a.e. x ∈ 	 with mϕ > 0.

(25)

Finally, we assume that the densities of body forces and surface tractions have the regu-
larity

f 0 ∈ L2(	;Rd), f 2 ∈ L2(
2;Rd).

We define an operator A : V → V by

(Au, v)V =
〈
A

(
ε(u)

)
,ε(v)

〉
H (26)

for all u, v ∈ V . Moreover, we define an element f ∈ V ∗ by

〈f , v〉V = 〈f 0, v〉L2(	;Rd) + 〈f 2, v〉L2(
2;Rd) (27)

for all v ∈ V .
Next, we introduce the space of admissible displacement fields U defined by

U = {v ∈ V | vν ≤ 0 a.e. on 
3}.

Then (U , (·, ·)U) is a Hilbert space, where

(u, v)U = (u, v)V , ∀u, v ∈ U .

From Proposition 2.1 and Remark 2.2 in [5] we know that γ (U) can be organized as a
Hilbert space. Let DT be the dual space of γ (U). We define λ ∈ DT by

〈λ,γ v〉T = –
∫


3

σ τ · vτ dx, ∀v ∈ U ,
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where 〈·, ·〉T denotes the duality pairing between DT and γ (U). Furthermore, we define
B : U × DT →R by

B(v,μ) = 〈μ,γ v〉T , ∀v ∈ U ,μ ∈ DT . (28)

Let us introduce the following subset of DT :

� =
{

μ ∈ DT
∣
∣
∣〈μ,γ v〉T ≤

∫


3

ζ |γ v|dx,∀v ∈ U
}

. (29)

Obviously, λ ∈ �. Moreover, from (23) it follows that

B(u,λ) =
∫


3

ζ |γ u|dx

and

B(u,μ) ≤
∫


3

ζ |γ u|dx, μ ∈ �.

Then, combining (18)–(23), from Problem 4.1 in [5], Problem 13 can be written as the
following variational formulation:

Problem 14 Find (u,λ) ∈ U × � such that

(Au, v – u)U + B(v – u,λ) + φ(v) – φ(u) = (f , v – u)U , ∀v ∈ U ,

B(u,μ – λ) ≤ 0, ∀μ ∈ �.

Now, we give the following existence, uniqueness and dependence results.

Theorem 15 Assume that (24) and (25) are satisfied. Then Problem 14 has a unique solu-
tion (u,λ) ∈ U × �. Moreover, if (u1,λ1), (u2,λ2) ∈ U × � are two solutions of Problem 14
corresponding to f 1, f 2 ∈ U , then there exists C2 = C2(LA, mA, Lφ ,γ ) > 0 such that

‖u1 – u2‖U + ‖λ1 – λ2‖DT ≤ C2
∥
∥f 1 – f 2∥∥

U . (30)

Proof The proof is analogous to Theorem 6.1 in [5]. From (24) and (25), it is easy to verify
that (3) and (5) hold. Then, by applying Theorem 7 and Theorem 11, we can obtain the
results. �

Problem 16 Find a displacement field u : 	 →R
d and a stress field σ : 	 → S

d such that

σ = A
(
ε(u)

)
in 	,

Divσ + f 0 = 0 in 	,

u = 0 on 
1,

σν = f 2 on 
2,

σ τ = 0, uν ≤ 0, σν + η ≤ 0, uν(σν + η) = 0, η ∈ ∂φ(uν) on 
3. (31)
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Let DS be the dual space of γ (V ). We define λ ∈ DS by

〈λ,γ v〉S = –
∫


3

σνvν dx, ∀v ∈ V ,

where 〈·, ·〉S denotes the duality pairing between DS and γ (V ). Furthermore, we define
B : V × DS → R by

B(v,μ) = 〈μ,γ v〉S, ∀v ∈ U ,μ ∈ DS. (32)

Let us introduce the following subset of DT :

� =
{
μ ∈ DT |〈μ,γ v〉S ≤ 0,∀v ∈ U

}
. (33)

Obviously, λ ∈ �. Moreover, from (31) it follows that

B(u,λ) = 0

and

B(u,μ) ≤ 0, ∀μ ∈ �.

Then Problem 16 can be written as the following variational formulation.

Problem 17 Find (u,λ) ∈ V × � such that

(Au, v – u)V + B(λ, v – u) + φ(v) – φ(u) = (f , v – u)V , ∀v ∈ V ,

B(u,μ – λ) ≤ 0, ∀μ ∈ �.

We have the following result which is analogous to Theorem 6.2 in [5] and Theorem 15.

Theorem 18 Assume that (24) is satisfied. Then Problem 17 has a unique solution (u,λ) ∈
V ×�. Moreover, if (u1,λ1), (u2,λ2) ∈ V ×� are two solutions of Problem 17 corresponding
to f 1, f 2 ∈ V , then there exists C3 = C3(LA, mA, Lφ ,γ ) > 0 such that

‖u1 – u2‖V + ‖λ1 – λ2‖DS ≤ C3
∥
∥f 1 – f 2∥∥

V . (34)

Problem 19 Find a displacement field u : 	 →R
d and a stress field σ : 	 → S

d such that

σ = A
(
ε(u)

)
in 	,

Divσ + f 0 = 0 in 	,

u = 0 on 
1,

σν = f 2 on 
2,

σ τ = 0, uν ≤ g, σν + η ≤ 0,

(uν – g)(σν + η) = 0, η ∈ ∂φ(uν) on 
3.
(35)
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Here g : 
3 → R+ denotes the gap between the deformable body and the foundation,
measured along the outward normal τ .

We keep (32) and (33). We assume that there exists gext : 	 →R such that

gext ∈ H1(	), γ ′gext = 0 a.e. on 
1,

γ ′gext ≥ 0 a.e. on 
 \ 
1, g = γ ′gext a.e. on 
 \ 
3,

where γ ′ : H1(	) → L2(
) is the well-known Sobolev trace operator. Moreover, we assume
that the unit outward normal to 
3, ν3, is a constant vector.

Then from (35) it follows that

B(u,λ) = B(gextν3,λ),

and by (33) we have

B(u,μ) ≤ B(gextν3,μ), ∀μ ∈ �.

Then Problem 19 can be written as the following variational formulation:

Problem 20 Find (u,λ) ∈ V × � such that

(Au, v – u)V + B(λ, v – u) + φ(v) – φ(u) = (f , v – u)V , ∀v ∈ V ,

B(u – gextν3,μ – λ), ∀μ ∈ �.

We have the following result which is analogous to Theorem 6.3 in [5] and Theorem 15.

Theorem 21 Assume that (24) is satisfied. Then Problem 20 has a unique solution (u,λ) ∈
V ×�. Moreover, if (u1,λ1), (u2,λ2) ∈ V ×� are two solutions of Problem 20 corresponding
to f 1, f 2, gextν3, g∗

extν3 ∈ V , then there exists C4 = C4(LA, mA, Lφ ,γ ) > 0 such that

‖u1 – u2‖V + ‖λ1 – λ2‖DS ≤ C4
(∥
∥f 1 – f 2∥∥

V +
∥
∥gextν3 – g∗

extν3
∥
∥

V

)
. (36)

5 Conclusion
In this paper, we study a class of mixed variational problems governed by two variational
inequalities with dual Lagrange multipliers. We prove the existence and uniqueness of
solution to the mixed variational problem and apply it to obtain the solutions to some
frictional contact problems whose weak formulation can be transferred to the mixed vari-
ational problem. We point out that considering such kinds of mixed variational problems
sets the functional background in the study of many frictional contact problems. To con-
clude, our results improve many results with bilinear cases and can be further studied.

Appendix
We will show the solvability of Problem 9 by using saddle-point theory with the functional
Lη : X × � →R,

Lη(u,λ) =
1
2

(u, u)X –
(

mA

2L2
A

f –
mA

2L2
A

Aη + η, u
)

X
+

mA

2L2
A

B(u – w,λ) + φ(u), (37)
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where

fη =
mA

2L2
A

f –
mA

2L2
A

Aη + η.

Lemma 22 Problem 9 has a solution (uη,λη) ∈ X × � if and only if (uη,λη) is a saddle
point of the functional Lη .

Proof For the necessity, let (uη,λη) ∈ X × � be a solution of Problem 9. Inequality (8)
implies that

Lη(uη,μ) ≤Lη(uη,λη), ∀μ ∈ �.

Moreover, by combining (7) and (37), we have

Lη(uη,λη) – Lη(v,λη)

=
1
2

(uη, uη)X –
1
2

(v, v)X – (fη, uη – v)X +
mA

2L2
A

B(uη – v,λη) + φ(uη) – φ(v)

≤ –
1
2
‖uη – v‖2

X ≤ 0.

Therefore,

Lη(uη,λη) ≤Lη(v,λη), ∀v ∈ X.

For the sufficiency, let (uη,λη) ∈ X × � be a saddle point of functional Lη . Note that

Lη(uη,μ) ≤Lη(uη,λη), ∀μ ∈ �,

which implies (8). Next, we will prove (7). Since

Lη(uη,λη) ≤Lη(v,λη), ∀v ∈ X,

we use (37) to see that, for all v ∈ X,

1
2

(uη, uη)X –
1
2

(v, v)X – (fη, uη – v)X +
mA

2L2
A

B(uη – v,λη) + φ(uη) – φ(v) ≤ 0.

For ∀t ∈ (0, 1), v′ ∈ X taking v = uη + t(v′ – uη) in the above inequality, we obtain

–t
(
uη, v′ – uη

)
X –

t2

2
(
v′ – uη, v′ – uη

)
X + t

(
fη, v′ – uη

)
X

–
mA

2L2
A

tB
(
v′ – uη,λη

)
+ φ(uη) – φ

(
uη + t

(
v′ – uη

)) ≤ 0.

Then, since ϕ is convex, we obtain

–t
(
uη, v′ – uη

)
X –

t2

2
(
v′ – uη, v′ – uη

)
X + t

(
fη, v′ – uη

)
X

–
mA

2L2
A

tB
(
v′ – uη,λη

)
– t

(
φ
(
v′) – φ(uη)

) ≤ 0.
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Dividing by t and passing to the limit as t → 0, we get (7). This completes the proof of the
lemma. �

Lemma 23 Problem 9 has a unique solution (uη,λη) ∈ X × �.

Proof By (5), it is easy to verify that the map v 
→Lη(v,μ) is convex and l.s.c. for all μ ∈ �,
and μ 
→ Lη(v,μ) is concave and u.s.c. for all v ∈ X. Since φ is convex and l.s.c., it admits
an affine minorant, see e.g. [18, Proposition 5.2.25], that is, there are l ∈ X∗ and b ∈R such
that

φ(v) ≥ 〈l, v〉X + b for all v ∈ X.

Then we have

Lη(v, 0Y ) =
1
2

(v, v)X – (fη, v)X +
mA

2L2
A

B(v – w, 0) + φ(v)

≥ 1
2
‖v‖2

X – (fη, v)X +
mA

2L2
A

B(v – w, 0) + 〈l, v〉X + b.

Therefore,

lim‖v‖X→∞,v∈X
Lη(v, 0Y ) = ∞.

Next, we will prove that

lim‖μ‖Y →∞,μ∈�
inf
v∈X

Lη(v,μ) = –∞. (38)

From Lemma 4.2 and Corollary 4.6 in [19], for every μ ∈ � the following inequality:

(uμ, v – uμ)X +
mA

2L2
A

B(v – uμ,μ) + φ(v) – φ(uμ) ≥ (fη, v – uμ)X , ∀v ∈ X (39)

has a unique solution uμ ∈ X. It is easy to verify that

inf
u∈X

Lη(u,μ) =
1
2

(uμ, uμ)X – (fη, uμ) +
mA

2L2
A

B(uμ – w,μ) + φ(uμ).

Taking v = 0X in (39), we obtain

‖uμ‖2
X +

mA

2L2
A

B(uμ,μ) + φ(uμ) – (fη, uμ)X ≤ φ(0).

Hence,

inf
u∈X

Lη(u,μ) ≤ ϕ(0) –
1
2
‖uμ‖2

X +
mA

2L2
A

LB‖w‖X‖μ‖Y . (40)

By Lemma 8 we deduce that inequality (39) is equivalent to the following variational equa-
tion:

(uμ, v)X +
mA

2L2
A

B(v,μ) +
(∇φ(uμ), v

)
= (fη, v)X , ∀v ∈ X. (41)
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From (4)(b) we deduce that

αB‖μ‖Y ≤ sup
v∈X,v�=0X

B(v,μ)
‖v‖X

,

and combining with (41) we obtain

mAαB

2L2
A

‖μ‖Y ≤ sup
v∈X,v�=0X

(fη, v)X – (uμ, v)X – (∇φ(uμ), v)
‖v‖X

≤ ‖fη‖X + ‖uμ‖X + ‖∇φ(uμ)‖X .

It follows from (5) that

∥
∥∇φ(uμ)

∥
∥

X ≤ Lφ‖uμ‖X +
∥
∥∇φ(0)

∥
∥

X .

Therefore, there exists c > 0 such that

‖μ‖2
Y ≤ c

(‖fη‖2
X + ‖uμ‖2

X
)
. (42)

Then, combining (40) and (42), we deduce that there exists c′ > 0 such that

inf
u∈X

Lη(u,μ) ≤ –c′(‖μ‖2
Y – ‖fη‖2

X
)

+
mA

2L2
A

Lϕ‖w‖X‖μ‖Y .

Since μ ∈ � is arbitrary, passing to the limit as ‖μ‖Y → ∞ we get (38). By applying Theo-
rem 4 we deduce that the functional L has at least one saddle point, and then we conclude
Problem 9 has at least one solution by applying Lemma 22.

Finally, we will show the uniqueness of the solution. In fact, let (u1
η,λ1

η), (u2
η,λ2

η) ∈ X × �

be two solutions of (41). Then we have

(
u1

η – u2
η, v

)
X +

mA

2L2
A

B
(
v,λ1

η – λ2
η

)
+

(∇φ
(
u1

η

)
– ∇φ

(
u2

η

)
, v

)
X = 0, ∀v ∈ X.

Choosing v = u2
η – u1

η in the above equation, we get

(
u1

η – u2
η, u2

η – u1
η

)
X +

mA

2L2
A

B
(
u1

η – u2
η,λ2

η – λ1
η

)
+

(∇φ
(
u1

η

)
– ∇φ

(
u2

η

)
, u2

η – u1
η

)
X = 0. (43)

From (8) it follows that

B
(
u1

η – u2
η,λ2

η – λ1
η

) ≤ 0. (44)

Combining (5)(c), (43) and (44), we conclude that u1
η = u2

η . Moreover, we have

B
(
v,λ1

η – λ2
η

)
= 0, ∀v ∈ X.

By (4)(b), we conclude that λ1
η = λ2

η . �
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