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1 Introduction
Let I¥ . (1 < p < 00) be the class of all 27 /r-periodic real-valued functions, integrable in
the Lebesgue sense with the pth power over Q, = [-7/r, 7w /r] with the norm

Ilflngﬂ/r=| )||Lp = (/ [f(t)|pdt> ,

; p p
where r € N. It is clear that L5, C L% , =I5 andforfel’

— ,lp
=r
”f”LIzjn ”f”le’n/r

Taking into account the above relations, we will consider, for f € L}, the trigonometric
Fourier series as such a series of f € L} in the following form:

o(f

Sf (x) Z(av(f)cos vx + by (f) sin vx)
v=1

with the partial sums Sif and the conjugate one

Sf(x) := (av(f) sinvx — by (f) cos vx)

M2

—

v=
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with the partial sums Sf. We also know that if f € L}_, then
~ 1 [~ 1 t Lo~ o~
fx):=—— Yr(t)=cot=dt = lim f(x,€)= lim f(x,€),
T Jo 2 2 €e—0% e—>0"

where, for r € N,

2(m+ @[r/2]+1)m
~ -1 (Z r/2] ! f2m7r ‘e + /2[r/2]11 )’(ﬁx(t)% cot % dt for an Odd r,
ﬂ(x) 6) = [ /2] 1 2(m+1)71
oo Some Zmn l/fx(t cot £ dt for an even r,
and

f€) =filx€) = —% /:r wx(t)% cot % dt,
with
Valt) :=flx +8) —flx— 1),

exist for almost all x (cf. [4, Th. (3.1) IV]).

Let A := (a,,x) be an infinite matrix of real numbers such that

o0
anx >0 whenk,n=0,1,2,..., lim a,r =0 and Zamk =1,
n—oQ =0

but A° := (a,x)}_o, where
anx =0 whenk>n.

We will use the notations

oo n

A, = E |@nk = Anisrl, Az,r = Z @k — G jesr]
k=0 k=0
for r € Nand

=Y anSif(®) (n=0,1,2,...)

for the A-transformation of §f .

In this paper, we will study the estimate of ﬁ",,_Af €3] —ﬁ(x, €)| by the function of mod-
ulus of continuity type, i.e. a nondecreasing continuous function @ having the following
properties: @(0) = 0, @(81 + 83) < @(8;) + @(82) for any 0 < §; < 8 < 81 + 8 < 2. We will

also consider functions from the subclass L, , (&)4 of L%, for r € N:

L, @p={fel’,,: aﬂ(f’(s)ﬁz’ﬂ/, = O(@(3)) when § € [0,27r] and g > 0},
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where

wpf(8)r = sup{
2m/r 0<|t|<é

It is easy to see that wyf (+) = af (-) i is the classical modulus of continuity. Moreover,

it is clear that for 8 > a >0

e’
sm%‘ @) }

2m/r

and consequently
Lgn/r(a)a < LIZQJT/r(LNU)ﬂ‘

The deviation 7, Af (%) —ﬁ(x, €) was estimated with r = 1 in [2] and generalized in [1] as

follows:

Theorem A ([1, Theorem 8, p. 95]) Iff € Lgn(?u)ﬁ withl<p<ooand0<pB<1- }7, where

@ satisfies the conditions:

. - 1/,
[ (£ ] -0, v

b o(t)

n+l

with0<y<ﬁ+%and

w1 RO -t .
{/0 ( 50 ) smﬁpidt} =Ox((n+1)7), (2)

then

TnAC’f(x) —f(x, il )‘ - Ox<(n+ 1)ﬂ+}’+1A‘;’,15< T ))

n+1 n+1

The next essential generalizations and improvements in [3, Theorem 1] were given. In
these resultsfr(x, €) and A,,, (with r € N) instead ofﬁ (x,€) =]7(x, €) and A; ;, respectively,

were taken. We can formulate them as follows.

Theorem B ([3, Theorem 1]) Iff € L’;n, l<p<oo,0<p<1- }7 and a function @ of

modulus of continuity type satisfies the conditions:

{/0 ( 0 dty  =0:((n+1)7) 3)

forreN,

2mn

T*‘ﬁ in21B\? l/p
[ gy @
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Jor a natural r > 3, where m € {1,...[5]} when r is an odd or m € {1,...[5] — 1} when r is

an even natural number, and

n L , inZBN? p
T r(n+l T

forre NwithO<y <B + 1%, where m € {0,...[5]} when r is an odd or m € {0,...[5] - 1}
when r is an even natural number. Moreover, let @ satisfy, for a natural r > 2, the conditions:

2(m+1)m STt BN\ P 1/p
r t S 5
M it} =0,), ©)
2(m+1) P ( (m+1)m t)
R OTSY) @
2Amil)w __x i B\ P lp
r r(n+1) (£)]| sin =
{f ! (M) dt} = Ox((n+1)), @)
L () (2D _ gy

withO<y < B+ i, where m € {0,...[5] — 1}. If a matrix A is such that

Z (k+1)%a,; = ((n + 1)2) (8)
k=0

and

with r € N are true, then

~ /3+1%+1 ~ T
Tyaf (x) f,(x, e +1))‘ x<(11+1) Ay,,rw<n+1)>.

Theorem C ([3, Theorem 2]) Letf €5 ,1<p<00,0<B<1- 1% and a function @ of
modulus of continuity type satisfy, for r € N, the conditions: (4) and (5) withO<y < + }7,
where m € {0,...[5]} when r is an odd or m € {0,...[5] — 1} when r is an even natural
number. Moreover, let @ satisfy, for a natural r > 2, the conditions (6) and (7) with 0 < y <
B+ 117, where m €{0,...[5] - 1}. If a matrix A is such that

>k + Daye=0(n +1), (10)
k=0

and (9) with r € N are true, then

~ ~ 4 _ ﬁ+},+1 ~(
Tnd(x)—ﬁ(x,m)‘—ox<(n+l) An7ra)<n+1>).

In our theorems we generalize the above results considering 27 /r-periodic functions

and using simpler assumptions.
In the paper Zi:a =0whena>b.
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2 Statement of the results

To begin with, we will present the estimates of the quantities

Toaf () ﬂ( il )

r(m+1)

Tyaf (%) fr(x, 711))‘ and ‘

Finally, we will formulate some remarks and corollaries.

Theorem 1 Suppose thatf €I, ,1<p<oo,reN,0<B<1 —1% and a function @ of the

modulus of continuity type satisfies the conditions:

rn+1 thﬁx(t)” sin rt|ﬁ 1p B
{/0 (T) dt} =Ox((m+ 1)), an
whenr=1or
rn+1 e\ B 1/
{/ (M> dt} "o, 12
0 o(t)
when r > 2, and
@) sin 2P \? 1/p_
{/ (W) df} = 0:((n+1)), 13)

r(n+1)

forreNwithO<y <f+ 119. If a matrix A is such that (8) and (9) are true, then

e 7 T _ /5+ +1 T
T,,Af(x)—f,<x,—r(n+l)>‘—Ox((n+1) A,y <n+1>>'

Theorem 2 Suppose thatf € I, 1<p<oo,reN,0<B<1- 1% and a function @ of the

modulus of continuity type satisfies the conditions (12) and (13) forr e NwithO<y < B+ }7.
If a matrix A is such that (10) and (9) are true, then

o T )00 5))

Remark 1 The Holder inequality gives

0 . 121 o 1/2
Z(k +Dayx = Z(k + Va,fa)? < |:Z(k +1)%a, k:| |:Z an,k:|
k=0 k=0 k=0
. 172
= [Z(k + 1)2an,k]
k=0

and thus the condition (8) implies (10), but the condition (12) implies (11). Therefore The-

orems 1 and 2 are not comparable.
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Theorem 3 Let f € I} (@)p, 1 <p<oo,reNand0<B<1- %. If a matrix A is such
that (9) and (8) or (10) are true, then

_ /3+%+1 ~ T
R R G o))

Corollary 1 Taking r = 1 the conditions (11) and (13) in Theorem 1 reduce to (1) and (2).
Thus we obtain the results from [2] and Theorem A [1, Theorem 8, p. 95], but in the case
of [3] (Theorem B and C) we reduce the assumptions.

Next, using more natural conditions when 8 > 0 we can formulate, without proofs, the
following theorems.

Theorem 4 Suppose thatf €L}, 1<p<oco,reN,0<f<1- 1%. Let a function o of the
modulus of continuity type satisfy the conditions:

T @ sin g\ TP -1
[, (P ) e

r(n+1)

fory e ( + B) and r € N (instead of (13)), and

syt ()] sin 2|7 v 11
U () @) o

whenr=1 or

) (|9 (8)] | sin 5 "v‘f) }1/,, 1
—= | dt =0x((m+1)» (15
(% (o) )
when r > 2 (instead of (11) and (12), respectively). If a matrix A is such that (9) and (8) are
true, then

Touf () f,(x, 1))‘ <(n+1)ﬂ”A a)( L)) (16)

Moreover, if a function @ of the modulus of continuity type and a matrix A satisfy the
following conditions: (14) withr e Nand y € (%,% + B), (15) with r € N, (9) and (10), then

the estimate (16) is also true.

Theorem 5 Letf € Lzﬂ/r(a)),g withl<p<oo,reNand0<pB<1- I%Jfa matrix A is such
that (9) and (8) or (10) are true, then

~ T ~ b1 ~f T
07 () M-ox(<n+1) a(;55))

Remark 2 We note that our extra conditions (9), (8) and (10) for a lower triangular infinite

matrix A° always hold.
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Corollary 2 Considering the above remarks and the obvious inequality
Ay <rA,1 forreN (17)

our results also improve and generalize the mentioned result of Krasniqi [1].

Remark 3 We note that instead of L‘;n ,,(@)p one can consider another subclass of L‘;ﬂ Ir
generated by any function of the modulus of continuity type e.g. @, such that

or
- 1[0 -
5,9 =5 /0 ()| dt < 3,(6).

3 Auxiliary results
We begin this section by some notations from [5] and [4, Sect. 5 of Chapter II]. Let for

r=1,2,...
o (t) sin (2k;r)t 1’55 (t) cos (2k;r)t
k™= "9 gin 2 ’ k= T sin 2
and
Be(o) cos & — cos (Zkzi)t cos & 5
k,r = -t = -t kr\t).
2sin 5 2sin 5

It is clear by [4] that

St =—— [ s+ oDt

and

Toaf) == [ fws0Y aubu
- k=0

T
Now, we present a very useful property of the modulus of continuity.

Lemma 1 ([4]) A function @ of modulus of continuity type on the interval [0, 2] satisfies
the following condition:

851 @(82) < 287'@(81) for 8y > 81 >0.
Next, we present the following well-known estimates.
Lemma 2 ([4]) IfO< |t| <7 then

~ T ~ 4
|D k,l(t)| = m; |Dk,1(t)| = m



Kubiak et al. Journal of Inequalities and Applications (2018) 2018:92

and, for any real t, we have

1 ~ 1 ~
’D,‘ill(t)| <k+ % |Dk,1(t)| < 5k(k+ 1)¢], ‘Dk,l(t)| <k+1.

Lemma 3 ([5,6]) LetreN,le Zand (a,) CC.Ift+# 217”, then for every m > n

m+r n+r—1
Zﬂk sinkt = — Z(ﬂk W) Doxp (D) + Z axD% ., (t) - Z axD%
k=m+1

m+r n+r-1
Zak coskt = Z(ak — ax+r)Dy (2) Z arDy _,(t) + Z arDy _,(¢t)
k=n k=n

We additionally need the following estimate as a consequence of Lemma 3

k=m+1

Lemma4 LetreN,leZ and (a,x) CR{ for nk € No. If t # 2z then

1 2k + 1)t 1 - 1
=Y a,xcos < +Y a X
ZkX:O: mk 2 2|sin %] Any kXo: mk _|sm”| Anr
Proof By Lemma 3,

(2k+ 1)t
~ Zank

k=0

1 P e ¢
== A,k cos kt cos — — Ak Sinkt sin —
2(; stens - Smin)

-1

) i (Z(ank an k+r)Dkr £) + Zﬂnka r(t))
k=0

k=0

r-1
sm—
2 ( Z(ank ank+err t) Zﬂnka —r ))

k=0
and our inequalities follow.

We also need some special conditions which follow from the ones mentioned above

Lemma 5 Suppose that f € L', ., where 1 < p < 0o and r € N. If the condition (12) holds
with any function @ of the modulus of continuity type and B > 0, then

2(m+1)

g [¥x () Pl ot
2Am+)r  w 5(2(m+1)71 —t) Sin

in —
2
T r(n+l)

ST

Br
dt} = 0O(1),

where m € {0,...[5] - 1}.

Proof By the substitution £ = w — u, we obtain

Bp 1/p
dt}

2(m+1)

r [ (8] Pl
2m+l)wr @ CNU(w_t) st

r r(n+1)

r

Page 8 of 14
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en (T )| 2m+ )7 A
= - Tlsin-| ———-u du
0 o(u) 2 r
e (@) | ru PN
= - sin — du .
0 a)(u) 2

Hence, by (12) our estimate follows. O

Lemma 6 Suppose that f € L', ,,, where 1 < p < 00 and r € N. If the condition (12) holds
with any function @ of the modulus of continuity type and B > 0, then

Br
5 dt} = Ok(1),

2

T (e V| Lt
= 5.-C Py Sin —

2r:m w(t-T)

where m € {0,...[%]}.

Proof By the substitution ¢ = 2’“7” + u, analogously to the above proof, we obtain
2mn
rt

r +rn+1 i . "
{f ( ’(M) sin — dt}
2o o(t - =7) 2
{/r(il)<|wx(2m7ﬂ +u)|| . r<2mn )‘ﬁ)p }1/17
_ ! sin — tu it
A & (u) 2\ r
% B\ P 1/p
5{/0( >(|1f~ux((:))|‘sin% ) dt} = 0x(1)

and we have the desired estimate. O

Now, we formulate another two lemmas without proofs. We can prove them in the same

way as Lemmas 5 and 6, respectively.

Lemma 7 Suppose that f € L', ,,, where 1 < p < 0o and r € N. If the condition (13) holds
with any function @ of the modulus of continuity type and y, 8 > 0, then

2(m+1)7

F D) L(B)][sinZ|F NP P
0 (st af o,
2(m:1)717% o@)( (m;rl)zf by

where m € {0,...[5] - 1}.

Lemma 8 Suppose that f Lgﬂ/r, where 1 < p < 0o and r € N. If the condition (13) holds
with any function @ of the modulus of continuity type and y, B > 0, then

2W”T+E A TEIBN\P l/p
r r X t -
{/ <7|ilj ( )”Slzn 2| ) dt} = Ox((n+1)),
2’7”*4&11) o(6)(z - #)y

where m € {0,...[5]}.

Page 9 of 14
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4 Proofs of theorems
4.1 Proof of Theorem 1
It is clear that for odd r

Tof @) ﬁ(x, 1))

1 [ N~
- / Ua0) S B (t) de
0 k=0

[r/2]-1 m+1 M
r rz+1 (t) t dt
+ — cot —
zm” n 2[r/2]m 4 wx

r r(n+1)

( rr [r/2] 2m7z 711) [r/2]-1 m+1
- / Y o)
2(m+1)7'r pid
T r(n+l)

X Y(t) Y angDia(t)dt

k=0

[r/2] 2(m+1)7 [r/2]-1 2m+l)r @
r

1 r r(n+1) o —~
+ ;(Z/;W o Z /;2m+l>n )wx(t)gﬂn,kl) K1(2)dt

T

m=0 r(n+1) m=0

=Io(x) + I (x) + Ir(%) + I3(x) + Ia(x)

and for even r

[r/ 2]-

:—%fon wx(t)Zankal t)dt+— Z / x(t) Cot—dt

[r/2]-1 2mn n [r/2]-1

m+1
-2 D3
( 2m7r 2(M+l)n b4
r n+1

X Yal2) Zan,ka,l t)dt

k=0
/2]-1 M /2]-1 (m+1) oz
) ([r ] 121 £
LTS
b 0 2m7r 2m+1)rr
m=!

X Ye(t) Y anaDoua (2) dlt

=Io(x) + I} (%) + L(x) + I3(x) + La(x),

whence

Tl 7575 +1))‘

<|@)| +|L@)] +[1@)] + [L@)] + |[I36x)] + [1x)] + [Lax)].

Page 10 of 14
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Next, using Lemma 2, (8), the Holder inequality withp > 1 and g = p%l and (11) whenr=1

or (12) when r > 2 we get
Io(x)|

= 0((n+1)?) /ﬁ t|0)| dt
0
NV tm(m) 1t }”P{ rw(w(t)) }2
O((n+1) ){/0 (—CNO(t) dt /(; s1n5%t dt
o\ |}
O((n + 1)2) O ((n + 1)-1)5<r(n”+ 1)>{/0'('” ) (%) th}

i
B - 7 b s pelv~( T
_Ox((VH1))w<r(n+1)>(r(n+1)> =O:((n+1) )w<n+1>’

for0<p<1- 1%. We note that applying the condition (9) we have

[(n+1)A [Z A, } [Z i |k = a,q,kwq_1

1=0 k=l
n | oo -1 n r+l-1 -1
=< |:Z Z(an,k - an,k+r) :| = |:Z Z ﬂn,k:| =0(1),
1=0 | k=l =0 k=l
whence
] = 0s(0r 0, (7)),
n+1
By Lemma 2
|[L )| + | @) + | L)
[r/2] 2mrr Jr [r/2]- m+1
1Y ()]
< T ( 2mn + Z / ) T dt
[r/2] ZWUT [r/2] 2(m+1)7
1Y ()]
<_(Z 2mn +Z/m+1 %) JT/}" d

and using the Holder inequality with p > 1 and g = 1%

\L@)| + [ ®)] + | L)

[r/2]

2 Ty |y (£)] sin” 2 7
sox(l);[ /m <m> dt}

e (- 2N i
X - r
2mm smﬂ rt

T

[r/2 M ‘3 rt ES
[ (2)| sin
+O,(1) Z U (—w(zwm _t)> dt}

r(n+l) r

S
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2(m+1)7 1
+1) (2(m+1 t) 7
x 2(m+1)7 T B re ¢ :
b _ sin )

T r(n+1)

Hence, by Lemmas 5 and 6 with (12) and (9),

|[L )| + || + | LW

- T D) 1 7 4
:oxmw(r(ml))[ /0 <—Smﬁ%) dt]
- e 2= ) = Froa, o Z—

O,((n+1) )w<n+1> Ox<(n+1) An,rw<n+1)>,

for0<B<1- }7.
In the case of the last integrals, applying Lemma 4 we obtain

)| + L&) + | L)

[r/2] 2m+1)m [r/2]-1 2(m+1)w bid
rn+T) 1Y (8)]
<— + ———A,,dt.
(Z /;mn o Z /;2m+1)rr ) | sin % sin %t| wr

r(n+1)

Using the estimates | sin £| > 'ﬂﬂ fort € [0,7],|sinZ| > % —2mfort € [22~ D) (2”’;’1)”],
where m € {0,...,[r/2]} and |sin §| > 2(m + 1) - £ for t € [(2m:1)", 2(”’:1) ~ oo where

m € {0,...,[r/2] — 1}, we obtain

)| + L&) + | L)

r/2] (2m+1)rr

Z [¥(2)] at
2m71 x rt (t 2mrr )
m=0 r(n+1) r
[r/2]-1 2m+l)w _ w
T A T [Y(9)] it
mwr @m+1)7 rt [ 2(m+m t] :
m=0 r T r

By the Holder inequality with p > 1 and g = 1% we have

|13(x)| + |I§(x)| + |I4(x)|

[r/2] 2mx | T B\ P 1
T T t rt »
< —An’r |:/ (% s E > dt}
d I o(t)(t = =F)
R (@ my \ T
x 2mn pid 2mn )| sin rt |l3 dt
r +r(n+1) r 2
_ 2(m+1) g 1
nA o D) AG] re|” pdt !
A Z 2(m+)m ~ 2(m+1)m 5
r me xR gy |2

m=0

Q=

2(m;r1)71 74;:1) N(t)(w _ t)y q W 1
X .
2Ams)w (R _ gy gin 26
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Further, using Lemmas 7 and 8 with (13) and Lemma 1 we get

)| + || + |[la@)]

[r/2] 2 1 _ o %
< 0:(VA,, ) (n+ 1)y[/ r ( (“’(t)(t—)y )th}

2mm st
2”;‘”+r(:+1) tt—T)|s1n5|ﬂ

m=0

[r/2]-1 2(m+)m _

b8 ~ 1
r r(n+1) w(t)(m - t)y 1 q
+O,(DA,, (n+1)V|:/ < L ) dt]
x nr Z 2ol _x t(w—tﬂsingw

m=0

[r/2]

N R LA
=ox<1>An,r[Z<n+”y{fL(m) ””}

m=0 r(n+1)

-

[r/2]-1

T ~2(m+1)m -1 1
G o(ZEE Y 4 q
+ E n+1yf ( . )dt}
( ) { _x (w_msm%ﬂﬁ

m=0 r(n+1)

= 0,(1) Ay (1 + 1) {/ (%)th} 7
2

r(n+1)

Q-

x 1
T

= 0,(1)A,,(n + 1)1+V5(r (n’i 1))< / ) t(y_l‘ﬂ)th)q

r(n+1)

1+p-y—4
r(n+ 1))(71 +1)

_ 1+ﬁ+% ~ T
‘O"(("”) A””‘”((ml)))

for0<y</3+1la.

= O(DA,(n+ 1)1+y6(

Collecting the partial estimates our statement follows.

4.2 Proof of Theorem 2
The proof is the same as above, but for estimate of |Ip(x)| we only used the inequality
|l’5k,1(t)| < k +1 from Lemma 2, and the condition (10) instead of (8).

4.3 Proof of Theorem 3

We note that for the estimate of ||7",,Af(~) —jN",(-, ﬁ)”L’;ﬂ we need the conditions on @
from the assumptions of Theorems 1 or 2. These conditions always hold with ||y.(¢) || 7
instead of |, (¢)| and thus the desired result follows.
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