Rathore and Singh Journal of Inequalities and Applications (2018) 2018:89 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-018-1676-0 a SpringerOpen Journal

RESEARCH Open Access

Approximation of certain bivariate

functions by almost Euler means
of double Fourier series

Arti Rathore™ and Uaday Singh

“Correspondence:

artirathore201@gmail.com Abstract

Department of Mathematics, Indian . . . T .

Institute of Technology Roorkee, In this paper, we study the degree of approximation of 27 -periodic functions of two
Roorkee, India variables, defined on T2 = [-7, 7] x [-7r, 7] and belonging to certain Lipschitz

classes, by means of almost Euler summability of their Fourier series. The degree of
approximation obtained in this way depends on the modulus of continuity
associated with the functions. We also derive some corollaries from our

theorems.

MSC: 40C05; 41A25; 26A15

Keywords: Double Fourier series; Symmetric partial sums; Modulus of continuity;
Modulus of smoothness; Lipschitz class; Zygmund class; Almost Euler means

1 Introduction
Let f(x,y) be a 27 -periodic function in each variable and Lebesgue integrable over the
two-dimensional torus T? = [-7,7] x [-m,7]. Then the double trigonometric Fourier

series of f(x,y) is defined by

flxy) ~ Z kaz ol (1

k=—00l=—

where

Flk,1) = @ / f £ (1, v)e ) gy dly

are the Fourier coefficients of the function f.
The double sequence of symmetric rectangular partial sums associated with Fourier

series of f is given by

o) = 30 S FnekeD),

k=—m l=—n
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and its integral representation is given by

1 b3 T
i) =25 [ [ flw sy + 0D, 0D, 0) s @
where Dy (t) = % is the Dirichlet kernel.

The concept of almost convergence of sequences was introduced and studied by
G.G. Lorentz in 1948 [1]. A sequence {x,} is said to be almost convergent to a limit L,
if

r+n

nli)rglon_Flkak:L forall r € N.

Moricz and Rhoades [2] extended the definition of almost convergence to double se-
quences of real numbers {x,,,}, almost converging to L, if

1 q+m r+n
lim —— =L forallg,reN.
i G Lt e
The Euler means E,,,,(x,y) of the sequence {sx(x,y)} are defined by
Em}’l 7 T N4 N k n_l 7 b ) O}
R e ZZ( )( ) L) >

k=0 (=0

and almost Euler means of the sequence {si(x,y)} are defined by

T (%,9) = m 22( )( )% ‘"S5 (%, 9),

where
1 r+k s+l
Skl(x,y) m XV: Z;Syu(x,y)

The following function classes are well known in the literature (see [3,4]). ForO<« <1,
the Lipschitz class Lip « is defined by

Lipa = {f: T* > R | w(f,8) = 0(s%)},

where o(f, 8) is the modulus of continuity of f, defined by

o(f,8)=sup  sup {|fGc+hy+n)—flx)|}.

Xy (h2+’72)1/2§5

For 0 < @, B < 1, the Lipschitz class Lip(«, 8) is defined by

Lip(e, B) = {f : T> > R | w14(f, u) = O(u”) and w1, (f,v) = O(vF)},
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where wy,(f, %) and wy,,(f,v) are the partial moduli of continuity of f, defined by

w1x(f, 1) = sup sup {|f(x + 1, y) - f(x,9)|}

%y |h|<u

and

w1,,(f,v) = sup sup { [f(x,y +17) —f(x,y)| }

%y Inl<v

For 0 < @, B < 2, the Zygmund class Zyg(«, 8) is defined by

Zyg(e, B) = {f : T* > R | wax(f, u) = O(u”) and wo,(f,v) = O(Vﬁ)},

where w,(f, #) and w,,(f,v) are the partial moduli of smoothness of f, defined by

wax(f>u) = sup sup { |[f(x + 1,y) +f(x - h,y) = 2f (x,9)|}

xy |hl<u

and

@2,(f>v) = sup sup {|f (x,5 + 1) + £ (6,5 — 1) = 2f (%, )| }.

%y Inl<v

Here, we generalize the definitions of Lip(«, 8) and Zyg(e, B) given in [3] and [4], respec-
tively, by introducing a new Lipschitz class Lip(«, 8; p) and a Zygmund class Zyg(e, B; p).

Let LP(T?) (p > 1) denote the spaces of Lebesgue functions on the torus 7?2, with the
norm defined by

w2 1
=GR vwrdsdr pz1;
3 ess SuPOSMJ’SZTr If(x,y)|; p=00.

Let f(x,y) be a 2 -periodic function in each variable belonging to L?(T?) (p > 1) class.
Then the total integral modulus of continuity of f is defined by

A (fowv)= sup |{|fGe+hy+n)-fxy)|,}

|| <u,|nl<v

while the two partial integral moduli of continuity of f are defined by
o (fruw) = R (f,u,0) = sup {If e+ hy) -fen],}
|h|<u
and

oy (fo0) = A (F,0,9) = sup {[fGey + 1) ~F )], ).

nl=<v

The Lipschitz class Lip(«, 8;p) (p > 1) for «, B € (0,1] is defined as

Lip(e, B;p) := {f € IP(T?) | & ,(f, ) = O(u*) and o (fv) = o(v/)}. (3)
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We also use the notion of integral modulus of smoothness. The total integral modulus of

smoothness of a function f is defined by

Cl)g(f, u, V) = sup { ||¢)x’}’(h’n)”p}’

|| <u,nl<v

where

Orym) =fx+ly+n) +fx—hy+n)+f(x+hy-n)
+flx—hy—-n)-4f(xy).

The partial integral moduli of smoothness are defined by

alfo) = S0h(f1160) = sup [+ hy) + £l =)~ 2f (5]

|l <u

and

1
Why(f20) = S0 = sup { [y o 1) +fny = ) - 2 )] )

Inl<v

It is clear that o (f,u,v), b (f,u) and wiy(f, v) are nondecreasing functions in u# and v
and that

2max{wh (f, ), (f,v)} < &b (f,u,v) < 2{h (f,u) + f (V)]
and

o) <26 (o), W (fiv) < 268, (1), @
For 0 < &, B < 2, the Zygmund class Zyg(«, 8; p) (p > 1) is defined as

Zyg(a, B;p) := {f € LP(TZ) | ng(f, u) = O(u"‘) and an’y(f, V)= O(Vﬁ)}.
From (4) it is clear that Lip(«, 8;p) € Zyg(a, B;p) for 0 < o, 8 < 1, and similar to one-
dimensional case, Lip(e, 8;p) = Zyg(w, B; p) for 0 < «, 8 < 1, but Lip(e, 8; p) # Zyg(w, B; p)

for max(«, B) = 1 (see, e.g., [5], p. 44).
Let w(8) be a nondecreasing function of § > 0. Then w(8) is of the first kind if

/nw(u)du:o{@}, 0<s<m, )
$

u?

and w(§) is of the second kind if

T 8
/5 %du:O{%log%}, 0<é<m (6)

(see [3]).
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A function f(x, y) is said to belong to the class Lip(y (4, v); p) (p > 1) if

[f(x+u,y+v) —f(x,y)’ §M(w(u'v)),

(u.v)lp

where (1, v) is a positive increasing function of the variables u, v and M is a positive
constant independent of x, y, u, and v (see [6-8]).

Here, we generalize the definition of Lip(y (&, v); p) (p > 1) class given above by intro-
ducing a new Lipschitz class Lip(y (1, v))1» (p > 1) defined as

¥ (u,v)
|V(x+ u,y+v)—f(xy) ||p SM((u.V)l/P)' (7)
Throughout this paper we shall use the following notations:
Oy, V) = {f(x+ wy+v)+fx—uy+v)+fx+u,y-v)
+flx—uy—v)—4f (%)},
sin((k + 1) %) sin((k +2r + 1)%) X
Si(u) = = D , 8
() sin?(u/2) }Z:; (@) ®)
sin((Z+ 1)) sin((+ 25 +1)%) &
Si(v) = = D,(v), 9
i) sin?(v/2) ; wl¥) ©)
Rw-=3 ("L 50, q>0 (10)
AV YA TSR
R W)= - (1) S0), gy >0 11)
LN\ BT
Note 1 We can easily prove that ¢, (u, v) satisfies the following inequalities:
|62y (4, V)| < 2(@2,2(f, 1) + @2(f,V)) (12)
and
||¢x,y(u’ V) Hp < 2(50127',6(/[: u) + a)‘znyy(f: V)) (13)

Moricz and Xianlianc Shi [4] studied the rate of uniform approximation of a 2 -periodic
continuous function f(x,y) in the Lipschitz class Lip(«, 8) and in the Zygmund class
Zyg(a,8), 0 <, B <1, by Cesaro means oﬁ of positive order of its double Fourier series.
They also obtained the result for conjugate function by using the corresponding Cesaro
means.

Further, Méricz and Rhoades [9] studied the rate of uniform approximation of f(x,y)
in Liper, 0 < o < 1, class by Norlund means of its Fourier series. After that, Méricz and
Rhoades [10] studied the rate of uniform approximation of a continuous function f(x,y) in
the Lipschitz class Lip(«, ) and in the Zygmund class Zyg(«, B), 0 < «, 8 < 1, by Norlund
means of its Fourier series. In [10], they also obtained the result for a conjugate function
by using the corresponding N6rlund means.

Page 5 of 15
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Mittal and Rhoades [3] generalized the results of [9, 10], and [4] for a 27 -periodic contin-
uous function f(x, y) in the Lipschitz class Lip(«, ) and in the Zygmund class Zyg(e, ),
0 < a,B <1, by using rectangular double matrix means of its double Fourier series. Lal
[11, 12] obtained results for double Fourier series using double matrix means and product
matrix means.

Also, Khan [6] obtained the degree of approximation of functions belonging to the class
Lip(¥ (&, v); p) (p > 1) by Jackson type operator. Further, Khan and Ram [8] determined the
degree of approximation for the functions belonging to the class Lip(y (u, v); p) (p > 1) by
means of Gauss—Weierstrass integral of the double Fourier series of f(x,y). Khan et al. [7]
extended the result of Khan [6] for n-dimensional Fourier series. In [13], Krasniqi deter-
mined the degree of approximation of the functions belonging to the class Lip(y (i, v); p)
(p > 1) by Euler means of double Fourier series of a function f(x, y). In fact, he generalized

the result of Khan [14] for two-dimensional and for #-dimensional cases.

2 Main results

In this paper, we study the problem in more generalized function classes defined in Sect. 1
and determine the degree of approximation by almost Euler means of the double Fourier
series. More precisely, we prove the following theorem.

Theorem 2.1 Let f(x,y) be a 2m-periodic function in each variable belonging to LP(T?)
(1 < p < 00). Then the degree of approximation of f (x, y) by almost Euler means of its double

Fourier series is given by:
i) If both o, and w‘;,y are of the first kind, then

1 1
[27.) f<x’y>||p=0(w5x(f’m)*“ﬁw(f’m))

(ii) If o, is of the first kind and o}, , is of the second kind, then

1 1
|t 2) = f 9, = O(w’zﬂ’x(f, m) +log(m (n + 1))w127,y(f, - 1))

(iii) If o, is of the second kind and o 5 i of the first kind, then

1 1
s, (x, ) f(x,y)”p = O(log(n(m +1))ah, (f, m) + a)g,y (f, m))

(iv) If both oy, and w‘;’y are of the second kind, then

HT (%, 9) fx,y)” :O(log(n(m+1) Zx( 1 )

+log((n+ 1) ( ! ))

For p = 00, the partial integral moduli of smoothness w} , and &, , reduce to the moduli

of smoothness w, . and w,,,, respectively. Thus, for p = oo, we have the following theorem.

Page 6 of 15
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Theorem 2.2 Let f(x,y) be a 2n-periodic function in each variable belonging to L®(T?).
Then the degree of approximation of f(x,y) by almost Euler means of its double Fourier
series is given by:

() If both wyy and w,,y are of the first kind, then

1 1
| Tmn e 3) = f )| o, = O(m’x (f’ m) B (f’ ﬁ>>

(ii) If way is of the first kind and wy,y is of the second kind, then

[er) = f G2 = O(wz,x( ,;) +log(m (n + 1))w2,y( ,ﬁ))

m+1

(iil) If woy is of the second kind and w,,, is of the first kind, then

1 1
[me) ~fGen)| = O(log(ﬂ(m +1)en (f ’ m) e (f ’ ﬁ))

(iv) If both w,, and w,,y are of the second kind, then

1

e ~F )] = o(log(n<m ; 1))%( , ﬁ)

+log(m (1 + 1))w2,y(f, ﬁ))

Theorem 2.3 Let f(x,y) be a 27 -periodic function in each variable belonging to the class
Lip(¥ (u,v))1r (p > 1). If the positive increasing function \ (u, v) satisfies the condition

(uv)° ¥ (u,v) is nondecreasing for some 1/p < o < 1, (14)

then the degree of approximation of f (x, y) by almost Euler means of its double Fourier series
is given by

|75, (%, 9) = f (%, %) ||}7 = O{((m + 1)+ 1))1/p|:w< 1 L)

m+1l n+1

+(n+ 1)_“w<%,n) + (m + 1)‘”1&(71, 1 )

+1 n+1

+((m+1)(n+ 1))_g:| }
For p = 00, the class Lip(y (&, v))» reduces to the class Lip( (x4, v)) ., defined as
[f(x +U,Y+V) —f(x,y)| < My (u,v).
Thus, for p = 0o, we have the following theorem.

Theorem 2.4 Let f(x,y) be a 27 -periodic function in each variable belonging to the class
Lip( (&, v)) . If the positive increasing function ¥ (u, v) satisfies the condition

(uv)™ ¥ (u,v) is nondecreasing for some 0 <o < 1, (15)
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then the degree of approximation of f (x, y) by almost Euler means of its double Fourier series
is given by

rs = 1 ! I !
Hfmn(x,y)—f(x,y)ﬂp—O{w<m+1’n+l>+(”+1) ‘”<m+1’”)

+(m+ 1)‘”1&(71, ﬁ) +(m+1)(n+1)~° }

3 Lemmas

We need the following lemmas for the proof of our theorems.

Lemma 3.1 Let R}, (1) and R} (v) be given by (10) and (11), respectively. Then
(i) R () =0O(1+q1)"(m+1))forO<u< m+1

(i) R,(v)=0((1+¢2)"(n+1)) forO<v < —= n+1

Proof (i) ForO<u < ﬁ, using sin(#/2) > u/m and sinmu < msinu, we have

m

(V)i
(V)i

|R’ u)|

Si(u )‘

m
k

g% sin((k +1)%) sin((k + 2r +1)%)
sin?(u/2)

0

IA

e i1

k) (k+1) sin?(u/2)

(m) m=k (Je+ 1)(k + 2r + 1)sin(%) sin(%)

) Kk +2r+1)

>¢-

=0

(I+q)"(m+2r+1)

= O((l +q1)"(m+ 1)). (16)
(ii) It can be proved similarly to part (i). O

Lemma 3.2 Let R!, (1) and R;(v) be given by (10) and (11), respectively. Then
(i) R, (u) = <(1+q1)m>fo Locu<m.

(m+1)u2 m+1
(i) RS (v) = Of L2 Jor L <v<m.
n (n+1) V2 n+l

Proof (i) For ﬁ <u <, using sin(#/2) > u/w and sinu < 1, we have

;( )(k IR )’

0

R}, ()] =

(k+1) sin?(u/2)

ki( ) moksin((k +1)%) sin((k + 2r + 1)%)
-0

" -k 2
I;;( )(k+1) u?
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S Xm: m+1\ .«
“mr w2 =\ k1) B

2
BCT A

o @+ q)”
- O((m + 1)142)' 17)

(ii) It can be proved similarly to part (i). O
4 Proof of the main results

Proof of Theorem 2.1 Using the integral representation of sy (, y) given in (2), we have

S1(9) f(5,9) = f / Gy (1,9) D () D1 () s .

Therefore,

r+k s+l

Sgx9) —f(%,7) = mZZ syu(%9) —f(x,))

r+k s+l

" Px (u,V)
k+1)(l+1)ZZ/ 12 Dy D, (v) dudv

¢xy(14,1/) r+k s+l o
// 4r2(k + 1)(I+1) ZD (u) ZDH(V) udv.

n=s

Now

T (%) —f (%,)

m n P n
[<1+q1>m(1+qz)nzz( )<> ot ] A

k=0 1=0

sy (1, ) (DS w) \ (& () 'S )
4712/ / (1+q1)m<1+qz)n(zo (k+1) IZ (1+1) v
1 T R (u) R(v)
_Pfo /0 ¢x,y(u,v)(1+ql)m T+ q) dudy,

which, on applying the generalized Minkowski inequality, gives

|t 9) =f 9],
1 (7T R R
=7 X, ) i i d d
‘Wfo /0 Pl g W g ™%,
1 2 2 1 T ke R:,l(u) R;(V) p
:{E/ [ gl [ et g e

R )] 1R W)]
4n2/ / e, oy e oy

1/p
dx dy}
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1 1 1 1
1 (m+1) (n+1) T (n+1) (m+1) 7
" 42 * *
1 1
T 0 0 (m+1) 0 0 (n+1)

@] R,

P<1+q> Wt gy

X [y (et

1
= W{h +1 +I3+1}, say.

Proof of part (i): Using Lemma 3.1 and (13), we have

1 1
) [ D IR (u)| RS (v)]
11:/ / ||¢x,y(u,v)||p . m . " dudy
0 0 (1 +g1)" (1+q2)

= O((m + 1)(n+ 1)) /0 o /0 T (@) + o (V) dudy

o) nst)

Using Lemma 3.1, Lemma 3.2, (5), and (13), we have

1
™ D) IRy, ()] IR} (v)]
L= ey (ths - ———dud
2 /1 / ||¢,y(” V)||p(1+q1)m (1 +qo)" uav

(m+1)

RSN dudv

:O(’””)/(man/o (hall )+ 2 o) =5~
n+1 7 1 ”
() (o)
= 1 " a)g,x(f’u) 1 g dI/l
_O<m+1){/(1 w2 d”+0)§,y(f,m)/;;}

m+1) (m+1)

ofelrzn) 1)

Similarly, we have

weo{p2k) )

Using Lemma 3.2, (5), and (13), we have

[
)

i IR, ()] IR, (V)]

I“:/ / el o gy e gy 4

m+1) (n+1)

(
_O<(Wl+1)(l’l+1)/ / (@half )+ Zy(fV))

(n+l

T 1 du
(m+1) n+1 )/(ynl_m(n+1)<a)§,x(f,u)+w§’y<f,n+ 1))?

1 ” o (o) 1 T du
T
1

(20 7) b))

du dv

O

=0

Page 10 of 15

(18)

(19)

(20)

(21)

(22)



Rathore and Singh Journal of Inequalities and Applications (2018) 2018:89 Page 11 of 15

Collecting (18)—(22), we have

1 1
”T;:fn(x’y) _f(x’y)”p = O(wg,x(f’ Wl—-l-l) + wg,y(f’ n+ 1))’

which proves part (i).
Proof of part (ii): Using (19) and (20), we have

1 1

11=O<a)§,x(f,m) +a)l2"y(f,m>); (23)
1 1

I- O<w§’,x<f» L 1) +w§,y<f» . 1)) (24

Using Lemma 3.1, Lemma 3.2, (6), and (13), we have

1

D [T IR, ()| |R,(v)|
I = ey (U V = z dudv
-, /(1) |00l 0 gy s

n+l

=O<m+1)/omf”1 (a)gyx(f,u)+w§y(f,v))dudv

n+1 - V2
1\ [ 1
_ (1;11’1:1)/(')< )(n+1)[a)§,x(f,u)+log(n(n+1))w§’y<f,n+l)]du

=O(m + 1){/0W b (f»u) du +log(m (n + 1))a)§,y<f, ! )/(;(mm du}

n+1

= O(w‘;’x(f, ﬁ) +log(m (1 + 1))w§,y (f, - 1 1>> (25)

Using Lemma 3.2, (5), (6), and (13), we have

IR ()| [R5 (v)]
P(1+q1)" (1+q2)"

I = / 1 / e dudy

(m+1) © (n+1)

: [ dudy
:O<m>/(ml+l)_/l (wg,x(ﬂu)"'a)gy(f,v))m

(n+1)

1 T 1 du

(m+1)

:O( 1 ){/ﬂl wg'x(f’u)du+log(n(n+1))a)§]y(f, 1 ) nl d_u}

u? n+1
(m+1)

[
)

= O((u‘z’x<f, ﬁ) +log(m(n+1))ehy, (f, ﬁ)) (26)

Collecting (18), (23)—(26), we have

1 1
59 =Sl = O 1 ) ostwtn s D)o (115 ) )

which proves part (ii).
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In a similar manner, we can prove part (iii) and part (iv). O

Proof of Theorem 2.2 We have

|Tritsn(x’y) —f(x»)’)‘

Ly R (w) R(v)

= ¢x'y(”’”)<1+q1)m<1+q2)"d”d”‘
|R:n(u>| IRS()]

4712/ ./ |¢xy (1+41)m(1+%)”dudv

1 1
1 (m+1) (n+1) T (n+1) (m+1) T T
= 4—2 + + +
1 1 1
7= LJo 0 i V0 0 @D Y D

IR, ()] |R,(v)]
1+q)" (1+q)"

[

(n+1)

X “{bx,y(ur V) ’

1
= P{h +5L+13+1), say.

Using (12) and following the proof of Theorem 2.1 with supremum norm, we will get the

required result. d

Proof of Theorem 2.3 Following the proof of Theorem 2.1, using the generalized Min-
kowski inequality and the fact that ¢, (i, v) € Lip(¥ (4, v))1» (p > 1), we have

) —fal,
1 S R (u) R:(v)
| . , m n dud
‘4712/0 [ oot o ",
RG] IR )
4n2/ / [y P(1+ql)m(1+qz)nd”d”

LT

(n+l
¥ (w,v) IR, ()l IRZ(V)I
@v)'? (1 +q1)" (1+ q2)"

S L)

(27)

1
= m{ll ++ 13+ 1}, say. (28)

Using Lemma 3.1, we have

1/(m+1) 1/(n+1) r S
[ / / V) Rl RO

()P (L+q1)" (1 + q2)"

1/(m+1) 1/(n+1)
=O((m +1)(n + 1))1&( ! , ! ) /0 /0 ()™ VP dudv

m+1 n+1

o{w( LI )((m+1)(n+1))1/p}. (29)

m+1 n+1



Rathore and Singh Journal of Inequalities and Applications (2018) 2018:89 Page 13 of 15

Using Lemma 3.1 and Lemma 3.2, we have

Vms1) AP wy) IR, R0
b= / /I/m M (L gy (Lt o) 4

/ D) f (MV) “Y(u,v) IR, @) R,
/(n+1) MV l/p o (1+‘h) (1+42)"

m+1 ) U(m+1) (uv)°®
=O m+1 d
(n+1)( n)a)/ / oy Py P

m+1

dudv

:o{w(L,n)(W DY + 1)1/P-“}. (30)
m+1

Similarly, we have
1 1/p-o 1/
L=0{y|n,—— Jm+1)"P % (n+1)"7}. (31)
n+1
Using Lemma 3.1 and Lemma 3.2, we have

) IR ()] RS W)
dud
li= / m+1/ e (uv)l/p Trq)” Qegy

/ / (W) Y u,v) IR, ()| IRV dudv
Vme1) J1/(n+1) (uv)p=o (L+q)" (1+qo)"

_ Y (m,m) (uv)”
- O<(m + 1)(” + 1)> ( (n.n-)a ) / /(m+1) \/;/ n+1) uv)2+1/17 dudv

= O((m+1)(n+1))7. (32)

Collecting (28)—(32), we have

||t,’,fn(x,y)—f(x,y)||p:O{((m+1)(n+1))1/p|:w( 1 ,L>

m+1 n+1

1 1
+(n+ 1)”¢<m,n) + (m + 1)"1//(71, " 1)

+ ((m+1)(n+1))a:|}. O

Proof of Theorem 2.4 We have

|Trrrfn(xry) —f(x:)’)|

1T R.) R

- W/ f Pl gy W gy P
IRZ,(M)I IR, (v)]

_4712/ / [y 0¥ (1+ql)’"(1+qz)”dudv

1 1
1 _(m+1) _(n+1> T [eTsy) [T
= F + +
1 1
T 0 0 (m+1) 0 0 (n+1)

g T
+/ / ]
1 1
(m+1)

(n+1)
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IRy, ()| |R;,(v)|
x My (u,v) Tt Lt g0 dudy

1
=— L+, +13+1}, say. 33
a2 {hi+ 1+ 13+ 14} y (33)
Now we can follow the proof of Theorem 2.3 with supremum norm to get the result. [J

5 Corollaries
If f € Zyg(w, B; p), then

o (fru)=0(u®) and wg,y(f, v) = O(v).

ForO<oa,f<1,

T T B
/ —du= (80‘_1) and / V—2 dv = O(8ﬁ_1),
8 s VvV

u?

which implies that % and v# are of the first kind.
Fora=8=1,

/u—zduzo(logz> and / <log )
s U 1)

which implies that % and v# are of the second kind.
Thus, Theorem 2.1 reduces to the following corollary.

Corollary 1 Iff € Zyg(w, B8; p), then

O(m+1)*+mn+1)#), O0<a,B<1;
O((m+1)™ + 28y gca<1,8=1;

— n+l
||T (x; f(x,y)”p O(log,riwl +(m+ 1) ﬁ) a=1,0<B<1;
O(loglmel)  loglnal)) a=18=1

For p = 0o, the Zygmund class Zyg(«, 8; p) reduces to Zyg(c, B). In this case, from The-
orem 2.2 we have the following corollary.

Corollary 2 Iff € Zyg(«, B), then

O(m+1)*+(mn+1)#), 0<a,B<1;
O((m+ 1) + &=y gy < 1,8=1;

‘L’ X, X, — n+l
” ( ) f( y)Hoo O(logmr:z;rl +(m+1)” ﬁ) a=1,0<B<1;
o(loglrl) | loglntl) a=18=1
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