
Luo and Zhang Journal of Inequalities and Applications  (2018) 2018:77 
https://doi.org/10.1186/s13660-018-1674-2

R E S E A R C H Open Access

Smoothing sample average
approximation method for solving stochastic
second-order-cone complementarity
problems
Meiju Luo* and Yan Zhang

*Correspondence:
mjluo_office@sina.com
School of Mathematics, Liaoning
University, Liaoning, China

Abstract
In this paper, we consider stochastic second-order-cone complementarity problems
(SSOCCP). We first use the so-called second-order-cone complementarity function to
present an expected residual minimization (ERM) model for giving reasonable
solutions of SSOCCP. Then, we introduce a smoothing function, by which we obtain a
smoothing approximate ERM model. We further show that the global solution
sequence and weak stationary point sequence of this smoothing approximate ERM
model converge to the global solution and the weak stationary point of the original
ERM model as the smoothing parameter tends to zero respectively. Moreover, since
the ERM formulation contains an expectation, we employ a sample average
approximate method for solving the smoothing ERMmodel. As the convergence
analysis, we first show that the global optimal solution of this smoothing sample
average approximate problem converges to the global optimal solution of the ERM
problem with probability one. Subsequently, we consider the weak stationary points’
convergence results of this smoothing sample average approximate problem of ERM
model. Finally, some numerical examples are given to explain that the proposed
methods are feasible.
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1 Introduction
The second-order-cone (SOC) in Rn (n ≥ 1) is defined as follows:

Kn =
{

(x1, x2) ∈ R × Rn–1 | ‖x2‖ ≤ x1
}

,

where ‖ · ‖ denotes the Euclidean norm. The second-order-cone complementarity prob-
lems (SOCCP) are to find vectors x, y ∈ Rn and z ∈ Rl satisfying

〈x, y〉 = 0, x ∈K, y ∈K, F(x, y, z) = 0,
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where 〈·, ·〉 denotes the Euclidean inner product. K = Kn1 ×· · ·×Knm with m, n1, . . . , nm ≥
1 and n1 + · · ·+ nm = n. F : Rn ×Rn ×Rl → Rn ×Rl is a continuously differentiable mapping.
Especially, if F(x, y, z) = f (x) – y with a continuously differentiable function f : Rn → Rn and
K = Kn, then we can rewrite SOCCP as follows: Find (x, y) ∈ Rn × Rn such that

x ∈Kn, y ∈Kn, 〈x, y〉 = 0, y = f (x).

If ni = 1 for all i, l = 0, and the mapping F has the form

F(x, y, z) = F0(x) – y

for some F0 : Rn → Rn, the SOCCP become

〈
x, F0(x)

〉
= 0, x ≥ 0, F0(x) ≥ 0,

which are the well-known nonlinear complementarity problems (NCP).
In fact, many engineering and practical problems, such as the three-dimensional fric-

tional contact problems [1] and the robust Nash equilibria [2], can be changed into SOCCP
directly. In addition, as the special case of the SOCCP, some basic theory, effective al-
gorithms, and important applications of complementarity problems in engineering, eco-
nomics have been developed. However, in practice, several types of uncertain data such as
weather, supply, demand, cost, etc. may be involved in SOCCP. The stochastic problems
are aimed at a practical treatment of such problems under uncertainty. It is well known
that stochastic second-order-cone complementarity problems (SSOCCP) are more com-
plicated than SOCCP and they have found applications in more fields. Therefore, it is
meaningful and interesting to study the general SSOCCP.

In this paper, we consider the following SSOCCP: Find vectors x, y ∈ Rn and z ∈ Rl sat-
isfying

〈x, y〉 = 0, x ∈K, y ∈K, F(x, y, z, ξ ) = 0, a.s., (1.1)

where 〈·, ·〉 denotes the Euclidean inner product. ξ ∈ � is a stochastic variable and � is
the underlying sample space. F : Rn × Rn × Rl × � → Rn × Rl is a continuously differen-
tiable mapping, and a.s. is the abbreviation for “almost surely” under the given probability
measure. Especially, if F(x, y, z, ξ ) = f (x, ξ ) – y with a continuously differentiable function
f : Rn ×� → Rn and K = Kn, then we can rewrite SSOCCP as follows: Find (x, y) ∈ Rn ×Rn

such that

x ∈Kn, y ∈Kn, 〈x, y〉 = 0, y = f (x, ξ ), a.s. (1.2)

If ni = 1 for all i, l = 0, and the mapping F has the form

F(x, y, z, ξ ) = F0(x, ξ ) – y

for some F0 : Rn × � → Rn, the SSOCCP become

〈
x, F0(x, ξ )

〉
= 0, x ≥ 0, F0(x, ξ ) ≥ 0, a.s., (1.3)
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which are the well-known stochastic nonlinear complementarity problems (SNCP). Un-
less otherwise specified, in the following analysis we assume that K = Kn. This, however,
does not lose any generality because our analysis can be easily extended to the general
case.

Note that problem (1.3) may not have a solution in general. There have been proposed
three ways to deal with (1.3). One way was suggested by Gürkan et al. [3], who used an
expectation of F0 instead of F0 for giving a simple nonlinear complementarity problems
reformulation. Another way was presented by Chen and Fukushima [4], who made use
of the so-called NCP function to present the expected residual minimization formulation
for SNCP. The last was proposed by Lin and Fukushima [5]. They formulated SNCP as a
special here-and-now model of stochastic mathematical program with equilibrium con-
straints. Moreover, Luo and Wang [6] presented the ERM and CVaR reformulation for
solving stochastic generalized complementarity problem.

Motivated by the above work, we will propose a reformulation of SSOCCP for giv-
ing reasonable solutions of SSOCCP. In the rest of this paper, we assume that � is
a nonempty compact set. We will often write x = (x1, x2) for (xT

1 , xT
2 )T and (x, y, z) for

(xT , yT , zT )T for simplicity. In addition, for any x = (x1, x2) ∈ R × Rn–1 and y = (y1, y2) ∈
R × Rn–1, we define their Jordan product as x ◦ y = (xT y, y1x2 + x1y2). We will write x2

to mean x ◦ x and write x + y to mean the usual componentwise addition of vectors.
Moreover, if x ∈ Kn, then there exists a unique vector in Kn, which we denote by x1/2

such that (x1/2)2 = x1/2 ◦ x1/2 = x. F(·, ·, ·, ξ ) is twice continuous differentiable with re-
spect to (x, y, z) and F(x, y, z, ·) is continuous differentiable with respect to ξ ∈ �. For each
t = 1, . . . , n + l, ∇(x,y,z)Ft(x, y, z, ξ ) denotes the gradient of Ft on (x, y, z), ∇2

(x,y,z)Ft(x, y, z, ξ )
denotes the Hessian matrix of Ft on (x, y, z), and ∂Ft

∂xj
denotes a partial derivative on xj.

∇(x,y,z)F(x, y, z, ξ ) = [∇(x,y,z)F1(x, y, z, ξ ), . . . ,∇(x,y,z)Fn+l(x, y, z, ξ )]T . For an m × n matrix A,
‖A‖F :=

√∑m
i=1

∑n
j=1 |aij|2 denotes its Frobenius norm. Moreover, I and O denote the

identity matrix and null matrix with suitable dimensions, respectively.
The remainder of the paper is organized as follows. In Sect. 2, some preliminaries are

given and a smoothing sample average approximation problem is presented. The conver-
gence analysis of global solution and weak stationary point of this approximation problem
are established in Sect. 3 and Sect. 4, respectively. Moreover, the conclusions are given in
Sect. 5.

2 Deterministic reformulation and its approximation problems
Because of the existence of a random element ξ , we cannot generally expect that there ex-
ists a vector (x, y, z) satisfying (1.1) or (1.2) for almost all ξ ∈ �, that is, both (1.1) and (1.2)
may not have a solution in general. Therefore, an important issue in the study of SSOCCP
is to present an appropriate deterministic formulation of the considered problem. Before
giving the reformulation, we first introduce some related functions and their properties.

If 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn ⇐⇒ φ(x, y) = 0. We call mapping φ : Rn × Rn → Rn an SOC
complementarity function associated with Kn. One popular SOC complementarity func-
tion which is called by natural residual function was presented by Fukushima et al. in [7].
This function associated with Kn is defined as

φNR(x, y) = x – [x – y]+,
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where [x]+ denotes the projection of x onto the second-order-cone Kn, that is, [x]+ =
argminx′∈Kn ‖x′ – x‖. For simplicity, set φ0(x, y) := φNR(x, y) in this paper. Note that this
function is nondifferentiable but strongly semismooth.

In reference [8], Chen et al. presented a continuously differentiable smoothing func-
tion φμ : Rn × Rn → Rn of φ0(x, y), parameterized by μ > 0, such that the pointwise limit
limμ→0+ φμ(x, y) = φ0(x, y). For any x = (x1, x2), y = (y1, y2) ∈ R × Rn–1,

φμ(x, y) =
1
2
[
(x + y) –

(
(x – y)2 + 4μ2e

)1/2],

where μ > 0 is a smoothing parameter and e = (1, 0, . . . , 0)T ∈ Rn. Especially, by Proposi-
tion 6.2 of [9], we know that φμ(x, y) is globally Lipschitz continuous, which means that
there exists a positive constant ν > 0 such that

∥∥φμ(x, y) – φ0(x, y)
∥∥ ≤ νμ.

Motivated by the work of Chen and Fukushima [4] for the special case of SSOCCP, we
propose the following deterministic formulation for SSOCCP, called the ERM problem
below, in which we try to find a vector (x, y, z) ∈ Rn × Rn × Rl that minimizes an expected
residual for φ0 and F(x, y, z, ξ ), that is,

min
(x,y,z)

θ (x, y, z) := E
[∥∥F(x, y, z, ξ )

∥∥2 +
∥∥φ0(x, y)

∥∥2]. (2.1)

Here, E stands for the expectation with respect to the random variable ξ ∈ �.
It is well known that φ0 is not differentiable with respect to (x, y). Hence, for solving ERM

model, we consider the following smoothing approximation problem of (2.1):

min
(x,y,z)

θμ(x, y, z) := E
[∥∥F(x, y, z, ξ )

∥∥2 +
∥∥φμ(x, y)

∥∥2]. (2.2)

Since an expectation function is generally difficult to evaluate exactly, we employ a sam-
ple average approximation (SAA) method for numerical integration to solve (2.2). Thus, by
taking independent identically distributed (i.i.d.) samples ξ 1, . . . , ξNk , one may construct,
for each k, a smoothing sample average approximation to problem (2.2) as follows:

min
(x,y,z)

θ k
μ(x, y, z) :=

1
Nk

∑

ξ i∈�k

∥∥F
(
x, y, z, ξ i)∥∥2 +

∥∥φμ(x, y)
∥∥2, (2.3)

where �k := {ξ i|i = 1, . . . , Nk} is a set of observations generated by a sample average ap-
proximation method such that �k ⊂ � and Nk → ∞ as k → +∞.

For the sample average approximation method, the strong law of large numbers guar-
antees that the following result holds with probability one (abbreviated by “w.p.1.”).

Lemma 2.1 [10, 11] Let η : � → R be integrable over �. Then we have

lim
k→+∞

1
Nk

∑

ξ i∈�k

η
(
ξ i) = E

[
η(ξ )

]
, w.p.1.
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It is generally known that the boundedness of an iteration sequence is the basic re-
quirement in the iteration methods for solving various optimization problems. To en-
sure the boundedness of the iteration sequence of problem (2.1), it is essential to take
the level sets of θ (x, y, z) into account. And it is worth noting that if θ (x, y, z) is coercive,
i.e., lim‖x‖→∞ θ (x, y, z) = +∞, then the level sets of θ (x, y, z) are bounded. Next, we study
the coerciveness of θ (x, y, z) under appropriate conditions.

Theorem 2.1 If the sequence {(xk , yk)} ⊆ Rn × Rn satisfies lim infk→+∞ λ1(xk) = –∞ or
lim infk→+∞ λ1(yk) = –∞, then ‖θ (xk , yk , zk)‖ → +∞ as k → +∞. Here, λ1(x) is the spectral
value of x = (x1, x2) ∈ R × Rn–1, given by λ1(x) = x1 – ‖x2‖.

Proof It is easy to obtain the conclusion from Lemma 3.5 of [9]. In addition, more details
about Jordan algebra associated with SOCCP also can be seen in [9]. �

3 Convergence of global optimal solution
In this section, we will show that the global solution sequence of smoothing approximation
problem (2.2) converges to the global solution of the true ERM problem (2.1). Then we will
consider that the global solution sequence of smoothing SAA approximation problem (2.3)
converges to the global solution of the so-called true problem (2.1) when the smoothing
parameter tends to 0+ as sample size increases to +∞.

From now on, we denote by S̄(μ) the set of global optimal solutions of problem (2.2).

Theorem 3.1 Suppose that for each μ, (x(μ), y(μ), z(μ)) is a global optimal solution of
problem (2.2) and limμ→0+ x(μ) = x̂, limμ→0+ y(μ) = ŷ, limμ→0+ z(μ) = ẑ. Then we have
(x̂, ŷ, ẑ) is a global optimal solution of problem (2.1).

Proof Let D be a compact convex set containing the sequence {(x(μ), y(μ), z(μ))}. By the
continuous differentiability of F on the compact set D × � and Theorem 16.8 of [12], we
have

lim
μ→0+

E
[∥∥F

(
x(μ), y(μ), z(μ), ξ

)∥∥2] = E

[
lim

μ→0+

∥∥F
(
x(μ), y(μ), z(μ), ξ

)∥∥2
]

= E
[∥∥F(x̂, ŷ, ẑ, ξ )

∥∥2]. (3.1)

Noting that

∥∥φ0
(
x(μ), y(μ)

)
– φ0(x̂, ŷ)

∥∥

≤ ∥∥x(μ) – x̂
∥∥ +

∥∥[
x(μ) – y(μ)

]
+ – [x̂ – ŷ]+

∥∥

≤ 2
∥∥x(μ) – x̂

∥∥ +
∥∥y(μ) – ŷ

∥∥,

where the first inequality follows from the definition of φ0, the second inequality follows
from the nonexpansive property of project. Then we have

lim
μ→0+

∥∥φ0
(
x(μ), y(μ)

)∥∥ =
∥∥φ0(x̂, ŷ)

∥∥. (3.2)
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It then follows from (3.2) and the fact φ0 = limμ→0+ φμ that

∥∥φμ

(
x(μ), y(μ)

)∥∥

≤ ∥∥φμ

(
x(μ), y(μ)

)
– φ0

(
x(μ), y(μ)

)∥∥ +
∥∥φ0

(
x(μ), y(μ)

)∥∥

μ→0+−−−→ ∥∥φ0(x̂, ŷ)
∥∥. (3.3)

Since (x(μ), y(μ), z(μ)) is a global optimal solution of problem (2.2), there holds

θμ

(
x(μ), y(μ), z(μ)

) ≤ θμ(x, y, z), ∀(x, y, z) ∈ Rn × Rn × Rl. (3.4)

Letting μ → 0+ in (3.4), we get from (3.1), (3.3), and the fact φ0 = limμ→0+ φμ that

θ (x̂, ŷ, ẑ) ≤ θ (x, y, z), ∀(x, y, z) ∈ Rn × Rn × Rl,

which indicates (x̂, ŷ, ẑ) is a global optimal solution of problem (2.1). �

Let μ vary as k increases, that is, let μ = μk → 0+ as k → +∞. In the following, we
discuss the convergence for this case.

Theorem 3.2 Suppose that for each k, (xk(μk), yk(μk), zk(μk)) is a global optimal solution
of problem (2.3) and limk→+∞ xk(μk) = x̄, limk→+∞ yk(μk) = ȳ, limk→+∞ zk(μk) = z̄, w.p.1.
Then we have (x̄, ȳ, z̄) is a global optimal solution of problem (2.1) w.p.1.

Proof Let A be a compact convex set containing the sequence {(xk(μk), yk(μk), zk(μk))}.
By the continuous differentiability of F on the compact set A × �, there exist constants
C1 > 0, C2 > 0 such that

∥∥F(x, y, z, ξ )
∥∥ ≤ C1, (3.5)

∥∥∇F(x, y, z, ξ )
∥∥
F ≤ C2, ∀(x, y, z, ξ ) ∈ A × �. (3.6)

Moreover, we have from the mean-value theorem that, for each k and each ξ i, there exist
γ ki

x (μk) = αkixk(μk) + (1 – αki)x̄, γ ki
y (μk) = αkiyk(μk) + (1 – αki)ȳ, γ ki

z (μk) = αkizk(μk) + (1 –
αki)z̄, and (γ ki

x (μk),γ ki
y (μk),γ ki

z (μk)) ∈ A with αki ∈ [0, 1] such that

Ft
(
xk(μk), yk(μk), zk(μk), ξ i) – Ft

(
x̄, ȳ, z̄, ξ i)

= ∇(x,y,z)Ft
(
γ ki

x (μk),γ ki
y (μk),γ ki

z (μk), ξ i)T(
xk(μk) – x̄, yk(μk) – ȳ, zk(μk) – z̄

)
. (3.7)

Then we have

∣∣F2
t
(
xk(μk), yk(μk), zk(μk), ξ i) – F2

t
(
x̄, ȳ, z̄, ξ i)∣∣

≤ ∣∣Ft
(
xk(μk), yk(μk), zk(μk), ξ i) + Ft

(
x̄, ȳ, z̄, ξ i)∣∣

· ∣∣Ft
(
xk(μk), yk(μk), zk(μk), ξ i) – Ft

(
x̄, ȳ, z̄, ξ i)∣∣

≤ 2C1
∥∥∇(x,y,z)Ft

(
γ ki

x (μk),γ ki
y (μk),γ ki

z (μk), ξ i)∥∥
F
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· ∥∥(
xk(μk) – x̄, yk(μk) – ȳ, zk(μk) – z̄

)∥∥

≤ 2C1C2
(∥∥xk(μk) – x̄

∥∥ +
∥∥yk(μk) – ȳ

∥∥ +
∥∥zk(μk) – z̄

∥∥)
, (3.8)

where the second inequality follows from (3.5), the third inequality follows from (3.6), the
definition of ‖ · ‖F , and the fact that

√
A + B ≤ √

A +
√

B with A ≥ 0, B ≥ 0.
It then follows from Lemma 2.1 and (3.8) that

∣∣∣∣
1

Nk

∑

ξ i∈�k

∥∥F
(
xk(μk), yk(μk), zk(μk), ξ i)∥∥2 – E

[∥∥F(x̄, ȳ, z̄, ξ )
∥∥2]

∣∣∣∣

≤ 1
Nk

∑

ξ i∈�k

n+l∑

t=1

∣∣F2
t
(
xk(μk), yk(μk), zk(μk), ξ i) – F2

t
(
x̄, ȳ, z̄, ξ i)∣∣

+
∣∣∣∣

1
Nk

∑

ξ i∈�k

∥∥F
(
x̄, ȳ, z̄, ξ i)∥∥2 – E

[∥∥F(x̄, ȳ, z̄, ξ )
∥∥2]

∣∣∣∣

≤ 2C1C2(n + l)
1

Nk

∑

ξ i∈�k

(∥∥(
xk(μk) – x̄

∥∥ +
∥∥yk(μk) – ȳ

∥∥ +
∥∥zk(μk) – z̄

)∥∥)

+
∣∣∣∣

1
Nk

∑

ξ i∈�k

∥∥F
(
x̄, ȳ, z̄, ξ i)∥∥2 – E

[∥∥F(x̄, ȳ, z̄, ξ )
∥∥2]

∣∣∣∣

k→+∞−−−−→ 0, w.p.1. (3.9)

Similar to obtaining (3.3), we have

lim
k→+∞

∥∥φμk

(
xk(μk), yk(μk)

)∥∥2 =
∥∥φ0(x̄, ȳ)

∥∥2. (3.10)

Since

∣∣θ k
μk

(
xk(μk), yk(μk), zk(μk)

)
– θ (x̄, ȳ, z̄)

∣∣

≤
∣∣∣∣

1
Nk

∑

ξ i∈�k

∥∥F
(
xk(μk), yk(μk), zk(μk), ξ i)∥∥2 – E

[∥∥F(x̄, ȳ, z̄, ξ )
∥∥2]

∣∣∣∣

+
∣∣∥∥φμk

(
xk(μk), yk(μk)

)∥∥2 –
∥∥φ0(x̄, ȳ)

∥∥2∣∣,

we have from (3.9) and (3.10) that

lim
k→+∞

θ k
μk

(
xk(μk), yk(μk), zk(μk)

)
= θ (x̄, ȳ, z̄), w.p.1. (3.11)

On the other hand, since (xk(μk), yk(μk), zk(μk)) is a global optimal solution of problem
(2.3), there holds

θ k
μk

(
xk(μk), yk(μk), zk(μk)

) ≤ θ k
μk

(x, y, z), ∀(x, y, z) ∈ Rn × Rn × Rl. (3.12)
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Letting k → +∞ in (3.12), we get from (3.11), Lemma 2.1, and the limit φ0 = limμ→0+ φμ

that

θ (x̄, ȳ, z̄) ≤ θ (x, y, z), ∀(x, y, z) ∈ Rn × Rn × Rl,

which indicates (x̄, ȳ, z̄) is a global optimal solution of problem (2.1). �

4 Convergence of weak stationary point
We first give some definitions associated with a weak stationary point of problem (2.1),
then we show that the sequence of weak stationary point for (2.2) converges to a weak sta-
tionary point for (2.1) as μ → 0+. Then we will consider the convergence of the stationary
point of (2.3) while μ = μk → 0+ as k → +∞.

Definition 4.1 Let g : Rn → R be locally Lipschitz continuous. The Clarke generalized
gradient of g at x0 is defined as

∂xg(x0) := Co
{

lim
x′→x0

∇xg
(
x′)

}
, (4.1)

where Co{X} denotes the convex hull of a set X.

Definition 4.2 A point (x̃, ỹ, z̃) satisfying the following equation is called a weak stationary
point of (2.1):

0 ∈ 2E
[∇(x,y,z)F(x̃, ỹ, z̃, ξ )T F(x̃, ỹ, z̃, ξ )

]
+ ∂(x,y,z)

∥∥φ0(x̃, ỹ)
∥∥2, (4.2)

where ∂(x,y,z)‖φ0(x̃, ỹ)‖2 denotes the Clarke generalized gradient of ‖φ0(x̃, ỹ)‖2 at (x̃, ỹ, z̃).

Definition 4.3 For each fixed μ, a point (x(μ), y(μ), z(μ)) satisfying the following equation
is called a weak stationary point of (2.2):

E
[∇(x,y,z)F

(
x(μ), y(μ), z(μ), ξ

)T F
(
x(μ), y(μ), z(μ), ξ

)]

+
(∇(x,y)φμ

(
x(μ), y(μ)

)T
φμ

(
x(μ), y(μ)

)
, 0

)
= 0, (4.3)

where 0 ∈ Rl is a zero vector.

Definition 4.4 For each fixed μ and k, a point (xk(μ), yk(μ), zk(μ)) satisfying the following
equation is called a stationary point of (2.3):

1
Nk

∑

ξ i∈�k

[∇(x,y,z)F
(
xk(μ), yk(μ), zk(μ), ξ i)T F

(
xk(μ), yk(μ), zk(μ), ξ i)]

+
(∇(x,y)φμ

(
xk(μ), yk(μ)

)T
φμ

(
xk(μ), yk(μ)

)
, 0

)
= 0. (4.4)

Especially, more details about weak stationary points can be seen in [13].

Theorem 4.1 Let (x(μ), y(μ), z(μ)) be a weak stationary point of (2.2) for each μ and
limμ→0+ x(μ) = x̃, limμ→0+ y(μ) = ỹ, limμ→0+ z(μ) = z̃. Suppose that ‖φμ(x, y)‖2 satisfies gra-
dient consistency. Then (x̃, ỹ, z̃) is a weak stationary point of problem (2.1).
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Proof Let D be a compact convex set containing the sequence {(x(μ), y(μ), z(μ))}. By the
twice continuous differentiability of F on the compact set D × � and Theorem 16.8 of
[12], we have

lim
μ→0+

E
[∇(x,y,z)F

(
x(μ), y(μ), z(μ), ξ

)T F
(
x(μ), y(μ), z(μ), ξ

)]

= E

[
lim

μ→0+
∇(x,y,z)F

(
x(μ), y(μ), z(μ), ξ

)T F
(
x(μ), y(μ), z(μ), ξ

)]

= E
[∇(x,y,z)F(x̃, ỹ, z̃, ξ )T F(x̃, ỹ, z̃, ξ )

]
. (4.5)

Since ∇(x,y)φμ(x, y) is continuously on D, there exists C3 > 0 such that

∥∥∇(x,y)φμ(x, y)
∥∥ ≤ C3. (4.6)

Noting (4.6) and the gradient consistency of ‖φμ(x, y)‖2, we know that the conditions of
Theorem 3.1 in [13] hold. Taking a limit in (4.3), by (4.5), and the results of Theorem 3.1
in [13], we obtain (4.2) immediately. That is, (x̃, ỹ, z̃) is a weak stationary point of problem
(2.1). �

Remark 4.1 The condition ‖φμ(x, y)‖2 satisfying gradient consistency has been proved in
[14]. In fact, the smoothing function φμ used in this paper is a special form of smoothing
function considered in [14].

Lemma 4.1 Suppose that limk→+∞ xk(μk) = x̃, limk→+∞ yk(μk) = ỹ, limk→+∞ zk(μk) = z̃,
w.p.1. Then we have that the following limit holds with probability one:

lim
k→+∞

1
Nk

∑

ξ i∈�k

n+l∑

t=1

Ft
(
xk(μk), yk(μk), zk(μk), ξ i) · ∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂xj

= E

[ n+l∑

t=1

Ft(x̃, ỹ, z̃, ξ ) · ∂Ft(x̃, ỹ, z̃, ξ )
∂xj

]

, j = 1, . . . , n.

Proof Let A be a compact convex set containing the sequence {(xk(μk), yk(μk), zk(μk))}.
By the twice continuous differentiability of F on the compact set A and the continuity of
F with respect to ξ on a compact set �, there exist constants C4 > 0, C5 > 0, C6 > 0 such
that

∥∥F(x, y, z, ξ )
∥∥ ≤ C4, (4.7)

∥∥∇(x,y,z)F(x, y, z, ξ )
∥∥
F ≤ C5, (4.8)

{
max

∥∥∇2
(x,y,z)Ft(x, y, z, ξ )

∥∥
F , t = 1, . . . , n + l

} ≤ C6, ∀(x, y, z, ξ ) ∈ A × �. (4.9)

Similar to obtaining (3.7), taking the twice continuous differentiability of F and (4.9) into
account, we have

∣∣Ft
(
xk(μk), yk(μk), zk(μk), ξ i) – Ft

(
x̃, ỹ, z̃, ξ i)∣∣

≤ C5
∥∥(

xk(μk) – x̃, yk(μk) – ỹ, zk(μk) – z̃
)∥∥, (4.10)
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∣∣∣∣
∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂xj
–

∂Ft(x̃, ỹ, z̃, ξ i)
∂xj

∣∣∣∣

≤ C6
∥∥(

xk(μk) – x̃, yk(μk) – ỹ, zk(μk) – z̃
)∥∥. (4.11)

Then, for j = 1, . . . , n, we have

∣∣∣∣∣
1

Nk

∑

ξ i∈�k

n+l∑

t=1

(
Ft

(
xk(μk), yk(μk), zk(μk), ξ i)) · ∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂xj

– E

[ n+l∑

t=1

(
Ft(x̃, ỹ, z̃, ξ )

) · ∂Ft(x̃, ỹ, z̃, ξ )
∂xj

]∣∣∣∣∣

≤ 1
Nk

∑

ξ i∈�k

n+l∑

t=1

∣∣Ft
(
xk(μk), yk(μk), zk(μk), ξ i) – Ft

(
x̃, ỹ, z̃, ξ i)∣∣

·
∣∣∣∣
∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂xj

∣∣∣∣

+
1

Nk

∑

ξ i∈�k

n+l∑

t=1

∣∣∣∣Ft
(
x̃, ỹ, z̃, ξ i) ·

(
∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂xj
–

∂Ft(x̃, ỹ, z̃, ξ i)
∂xj

)∣∣∣∣

+

∣∣∣∣∣
1

Nk

∑

ξ i∈�k

n+l∑

t=1

(
Ft

(
x̃, ỹ, z̃, ξ i) · ∂Ft(x̃, ỹ, z̃, ξ i)

∂xj

)

– E

[ n+l∑

t=1

Ft(x̃, ỹ, z̃, ξ ) · ∂Ft(x̃, ỹ, z̃, ξ )
∂xj

]∣∣∣∣∣

≤ (C5 + C6)
∥∥(

xk(μk) – x̃, yk(μk) – ỹ, zk(μk) – z̃
)∥∥

· 1
Nk

∑

ξ i∈�k

n+l∑

t=1

(∣∣∣∣
∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂xj

∣∣∣∣ +
∣∣Ft

(
x̃, ỹ, z̃, ξ i)∣∣

)

+

∣∣∣∣∣
1

Nk

∑

ξ i∈�k

n+l∑

t=1

(
Ft

(
x̃, ỹ, z̃, ξ i) · ∂Ft(x̃, ỹ, z̃, ξ i)

∂xj

)

– E

[ n+l∑

t=1

Ft(x̃, ỹ, z̃, ξ ) · ∂Ft(x̃, ỹ, z̃, ξ )
∂xj

]∣∣∣∣∣

k→+∞−−−−→ 0, w.p.1.,

where the second inequality follows from (4.8), (4.9), (4.10), (4.11), and the last limit fol-
lows from Lemma 2.1, (4.7), and (4.8). This means the conclusion holds. �

Theorem 4.2 Let (xk(μk), yk(μk), zk(μk)) be a stationary point to (2.3) for each k and
limk→+∞ xk(μk) = x̃, limk→+∞ yk(μk) = ỹ, limk→+∞ zk(μk) = z̃ w.p.1. Then (x̃, ỹ, z̃) is a weak
stationary point of problem (2.1) w.p.1.
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Proof Similar to the proof of Lemma 4.1, we have

lim
k→+∞

1
Nk

∑

ξ i∈�k

n+l∑

t=1

Ft
(
xk(μk), yk(μk), zk(μk), ξ i) · ∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂yj

= E

[ n+l∑

t=1

Ft(x̃, ỹ, z̃, ξ ) · ∂Ft(x̃, ỹ, z̃, ξ )
∂yj

]

, j = 1, . . . , n, (4.12)

lim
k→+∞

1
Nk

∑

ξ i∈�k

n+l∑

t=1

Ft
(
xk(μk), yk(μk), zk(μk), ξ i) · ∂Ft(xk(μk), yk(μk), zk(μk), ξ i)

∂zj

= E

[ n+l∑

t=1

Ft(x̃, ỹ, z̃, ξ ) · ∂Ft(x̃, ỹ, z̃, ξ )
∂zj

]

, j = 1, . . . , l. (4.13)

Noting (4.6) and the gradient consistency of ‖φμ(x, y)‖2, we know that the conditions of
Theorem 4.4 in [13] hold. Taking a limit in (4.4), by Lemma 4.1, (4.12), (4.13), and the
results of Theorem 4.4 in [13], we obtain (4.2) immediately. That is, (x̃, ỹ, z̃) is a weak sta-
tionary point of problem (2.1). �

5 Numerical examples
In this section, we use random generator rand to generate a random sequence {ξ 1, . . . , ξNk }
of ξ and employ the Matlab unconstrained optimization command fminunc to solve the
corresponding problems (2.1) and (2.3).

Example 5.1 Let ξ be the uniformly distributed random variable in (0, 1), and F : R2 ×
R2 × � → R2 is defined as follows:

F(x, y, ξ ) := y – f (x, ξ ) =

(
y1 – (x1 + ξx1x2)
y2 – (x2

2 + ξx1)

)

.

Let the parameter μ = 0.01. (1, 1)T , (1, 1)T are initial points of Example 5.1. The numer-
ical results are reported in Table 1, where (xk , yk) denotes the solutions of problem (2.3)
and (x∗, y∗) denotes the solution of problem (2.1). D = ‖(xk , yk) – (x∗, y∗)‖.

Example 5.2 Let ξ be the uniformly distributed random variable in (0, 1), and F : R2 ×
R2 × � → R2 is defined as follows:

F(x, y, z, ξ ) :=

(
y1 – (x2

1 + ξx1x2
2)

y2 – (ξx2
2 + x1)

)

.

Table 1 Computational results for Example 5.1

Nk x∗ = (0.0105, 0.0030)T , y∗ = (0.0089, 0.0094)T

xk yk D

103 (0.0115, 0.0030)T (0.0091, 0.0093)T 0.0010
104 (0.0114, 0.0030)T (0.0090, 0.0093)T 0.0009
105 (0.0112, 0.0029)T (0.0089, 0.0094)T 0.0007
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Table 2 Computational results for Example 5.2

Nk x∗ = (1.8420, –0.4211)T , y∗ = (3.1497, 2.3370)T

μk xk yk D

103 0.01 (1.9321, –0.5234)T (3.2850, 2.5873)T 0.3155
104 0.008 (1.8564, –0.4328)T (3.1589, 2.4692)T 0.1338
105 0.005 (1.8462, –0.4281)T (3.1503, 2.3981)T 0.0616

Let (1, 1)T , (1, 1)T be the initial points of Example 5.2. The numerical results are reported
in Table 2, where (xk , yk) denotes the solutions of problem (2.3) and (x∗, y∗) denotes the
solution of problem (2.1). D = ‖(xk , yk) – (x∗, y∗)‖.

6 Results and discussion
In this paper, we give a reasonable reformulation for solving SSOCCP, which is called ERM
model. To solve this ERM model, we pay attention to two problems: one is how to handle
the property of non-differentiability, the other is how to obtain the value of expectation
for the objective function. We employ a smoothing technique and a sample average ap-
proximation method to deal with the problems. Further, we show that the global solution
and weak stationary point of this smoothing sample average approximation ERM problem
converge to those of the true ERM model correspondingly.
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