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Abstract
Two conjectures about the pedal triangle are proved. For the first conjecture, the
product of the distances from an interior point to the vertices is mainly considered
and a lower bound is obtained by the geometric method. To prove the other one, an
analytic expression of the distance between the circumcenter and an interior point is
achieved by the distance geometry method. A procedure to transform the geometric
inequality to an algebraic one is presented. And then the proof is finished with the
help of a Maple package, Bottema. The proof process could be applied to similar
problems.
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1 Introduction
For an interior point P of a triangle ABC, let D, E, F denote the feet of the perpendiculars
from P to BC, CA, AB (may be produced), respectively. Then the triangle DEF is the pedal
triangle of P with respect to �ABC shown in Fig. 1. It is an elementary geometric object
and has been introduced in many textbooks such as [1] and [2], in which lots of theorems
about the pedal triangle were presented. Most of these results are equalities. In [3], Liu
puts forward some inequalities involving pedal triangles.

Let O, R, r, S denote the circumcenter, circumradius, inradius, and the area of �ABC,
respectively; a, b, c denote the lengths of line segments BC, CA, AB; R1, R2, R3, r1, r2, r3 de-
note the distances from P to A, B, C, D, E, F , respectively; and Rp denotes the circumradius
of �DEF , shown in Fig. 2.

In the last section of [3], some conjectures were presented. For conjectures (3.4) and
(3.5), we determine that they are both correct. Notations as above, these two conjectures
are as follows:

PO ≥ |R – 2 · Rp| (1)

and

R1R2R3

r1r2r3
≥ 8 · R2

p

r2 . (2)

Here, PO is the distance from P to the circumcenter O. (Actually, |PO| is more formal,
however, we usually use PO when there is no confusion.)
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Figure 1 Pedal triangle. The pedal triangle of the interior point P with
respect to triangle ABC

Figure 2 Notations. Notations of an interior point of a triangle

Although these two conjectures are about Rp, the circumradius of �DEF , by the follow-
ing well-known equation (Theorem 198, Corollary C, [2]),

Rp =
R1R2R3

2 · (R2 – PO2)
, (3)

we get an equivalent inequality of (1)

(R – PO)(R + PO)2 ≥ R1R2R3 ≥ (R – PO)2(R + PO). (4)

There are only three geometric variables involved above. One is R1R2R3, the product of the
distances from P to A, B, C, the other two are the circumradius of �ABC and the distance
from P to O. We could prove it in a geometric way.

For conjecture (2), an equivalent inequality by (3) is

R1R2R3 ≤ r2 · (R2 – PO2)2

2 · r1r2r3
. (5)

However, there are more variables in this inequality. We prove it in an algebraic way instead
of a geometric one.

The remaining parts are arranged as follows. First, according to the position of circum-
center, we prove conjecture (4) in three subcases in Sect. 2. After that, an analytic expres-
sion of PO is obtained by the distance geometry method [4]. Based on this expression,
conjecture (2) is transformed and proved with the help of a Maple package Bottema [5] in
Sect. 3. We also compare these two upper bounds of R1R2R3 in the last part.

2 Proof to the first conjecture
In this section, we present a geometric proof to conjecture (1). First, we recall a result,
Theorem 2 of [6] for the left-hand side inequality of (4). For the right-hand side, we divide



Huang Journal of Inequalities and Applications  (2018) 2018:72 Page 3 of 10

it into three subcases to construct this lower bound of R1R2R3 according to the position
of O in Proposition 1.

2.1 An upper bound of R1R2R3

For a point in a polytope, [6] presented an upper bound of the product of the distances
from the vertices. We just list them here.

Lemma 1 (Theorem 2 in [6]) Let x, x1, . . . , xm (m ≥ 2) be (not necessarily distinct) points
of the solid unit sphere Un of En such that x belongs to the convex hull of x1, . . . , xm. Then

m∏

i=1

‖x – xi‖ ≤ (
1 – ‖x‖) · (1 + ‖x‖)m–1. (6)

For 0 < ‖x‖ < 1, equality holds in (6) only under the following conditions: ‖xi‖ = 1,
i = 1, . . . , m, m – 2 of xi coincide with the point a(x) of Un farthest away from x, and x
lies on the chord bounded by the two remaining points.

In this lemma, En denotes the real n-dimensional Euclidean space and ‖x‖ is the Eu-
clidean norm of x.

When considering a triangle ABC and a point P that belongs to it, based on this lemma,
we have

R1R2R3 ≤ (R – PO) · (R + PO)2, (7)

and the equality holds if and only if one of the following conditions holds:
1. P lies on the chord joining two points of {A, B, C}, and the remaining one is farthest

away from P on the circumcircle of �ABC.
2. The circumcenter O is inside �ABC and P coincides with O.
3. P coincides with one of the vertices of �ABC.

That is to say, when P is an interior point of �ABC, we have inequality (7) and the equality
holds only when P coincides with O.

2.2 A lower bound of R1R2R3

For the right-hand side of (4), we have the following.

Proposition 1 Notations as above, for any interior point P of �ABC, we have

R1R2R3 ≥ (R – PO)2 · (R + PO), (8)

and the equality holds only when P coincides with the circumcenter O.

Proof We discuss this problem in three cases according to the position of O.
I. O is outside �ABC.
In this case, there must exist one side of �ABC (e.g., AB) such that O and the remaining

point (C) are located on its different sides (see Fig. 3).
For any interior point P of �ABC, draw a line passing through P, parallel to AB and

meeting the circumcircle in two points, then one point must be on the minor arc�AC and
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Figure 3 O is outside. The circumcenter is outside the triangle

Figure 4 Auxiliary lines. Auxiliary lines when O is outside �ABC

the other must be on the minor arc�CB. Let A2 denote the first one and the latter is denoted
by B2. Produce OP to intersect the circumcircle at two points P1 and P2 in which P1 is on
the minor arc�ACB and P2 is on the major arc�AB. Details are shown in Fig. 4. Then we
have:

• P1P2 is a diameter of the circumcircle.
• P1 is on the minor arc�B2CA2.
• The minor arc�P1A2 is smaller than the arc�P1A2A.
• The minor arc�P1B2 is smaller than the arc�P1B2B.

Therefore, ∠POA2 = ∠P1OA2 < ∠P1OA = ∠POA and ∠POB2 = ∠P1OB2 < ∠P1OB =
∠POB. Let us compare �POA2 and �POA. There is a common side PO. OA2 and OA
are both R, the circumradius. According to the law of cosines, we have PA > PA2. Simi-
larly, we have PB > PB2. Since the chord A2B2 and the diameter P2P1 intersect at the point
P, according to the intersecting chords theorem (also known as power of a point or secant
tangent theorem), we have PA2 · PB2 = PP1 · PP2 = (R – PO) · (R + PO). Additionally, we
have PC ≥ |OC – OP| = R – PO and the equality holds only when P lies on the radius OC.
Then there exist

R1R2R3 = PA · PB · PC > PA2 · PB2 · PC ≥ (R – PO)2 · (R + PO). (9)

II. O is on a side of �ABC.
Assume that O is on the side AB of �ABC. Draw a line passing through P and parallel

to AB. By a similar way, we can prove (8) for any interior point P of �ABC.
III. O is inside �ABC.
In this case, we need partition �ABC to three quadrilaterals. Produce AO, BO, CO to

meet BC, CA, AB in A1, B1, C1 respectively, so P must lie inside one of the quadrilaterals
CB1OA1C, B1AC1OB1 and C1BA1OC1, or on OA1 or OB1 or OC1.

When P coincides with O, PO = 0 and R1 = R2 = R3 = R, then the equality of (8) holds.
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Figure 5 O is inside. Auxiliary lines when P is in the quadrilateral
CB1OA1C

When P lies in a quadrilateral, say CB1OA1C (see Fig. 5), let us draw a line which is
parallel to AB, passes through P and meets the circumcircle in two points in which one
is on the minor arc�CA and the other is on the minor arc�BC. Let A2 and B2 denote the
former and the latter, respectively. Draw a line from O to P and produce it to intersect the
circumcircle at P1. Draw another line from P to O and produce it to meet the circumcircle
again in P2. And draw a line passing through O, parallel to AB and meeting the circumcircle
in two points. Let A0 (B0) denote the point on the minor arc �CA (�BC). Therefore, the
following properties are easy to prove:

• A2 lies on the minor arc�CA0 and B2 lies on the minor arc�B0C.
• P2 lies on the minor arc�AB and P1P2 is a diameter of the circumcircle.
• P1 lies on the minor arc�B2CA2.
• ∠P1OA2 < ∠P1OA0 < ∠P1OA and ∠P1OB2 < ∠P1OB0 < ∠P1OB.

Once again, comparing �POA2 and �POA, there is a common side PO and OA, OA2 are
both circumradius, then we have PA > PA2 according to the law of cosines. Similarly, we
could have PB > PB2. Applying the intersecting chords theorem to the chord A2B2 and the
diameter P1P2, we have

PB2 · PA2 = PP1 · PP2 = (R – PO)(R + PO). (10)

Additionally, PC ≥ OC –PO = R–PO and the equality holds only when P lies on the radius
OC of the circumcircle, we have

R1R2R3 = PA · PB · PC > PA2 · PB2 · PC ≥ (R – PO)2(R + PO). (11)

When P is in the quadrilateral B1AC1OB1 (C1BA1OC1), we draw the parallel line of BC
(AC) through P. When P is on the line segment OA1 (OB1, OC1) and does not coincide
with O, we draw the parallel line of AB (BC, AC) through P, respectively. And in a similar
way, we could obtain (8).

From all above, we achieve that (8) holds for every interior point P of �ABC and the
equality holds only when P coincides with O. �

Based on (7), (8), and (4), we determine that (1) is correct for any interior point P of
�ABC and the equality takes place if and only if P coincides with the circumcenter.

3 Proof to the second conjecture
First we use the barycentric coordinate system and the distance geometry method to
present an analytic expression of PO. And then we transform conjecture (2) equivalently
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to a polynomial inequality with four variables. After that, an inequality proving tool, Maple
package Bottema developed by Prof. Lu Yang and his collaborators, is invoked to help us
prove it.

Let (x, y, z) denote the barycentric coordinates of the interior point P with respect to
�ABC. And we choose the normalized coordinates. That is to say,

x =
S�PBC

S
, y =

S�PCA

S
, z =

S�PAB

S
, (12)

in which S�PBC denotes the area of the triangle PBC, similar as S�PCA and S�PAB do. There-
fore, we have x + y + z = 1. There are also some well-known formulas, we just list them
below without proof.

S =
1
4
√

(a + b + c)(b + c – a)(a + c – b)(a + b – c), (13)

r =
2S

a + b + c
, R =

abc
4S

, r1 =
2S · x

a
, r2 =

2S · y
b

, r3 =
2S · z

c
, (14)

R1 =
√

b2z2 + c2y2 + yz
(
b2 + c2 – a2

)
, (15)

R2 =
√

c2x2 + a2z2 + xz
(
a2 + c2 – b2

)
, (16)

R3 =
√

a2y2 + b2x2 + xy
(
a2 + b2 – c2

)
. (17)

What we need more is an explicit expression of PO.

Lemma 2 For any interior point P of �ABC, notations as above, we have

PO =

√
a2R2

1(b2 + c2 – a2) + b2R2
2(a2 + c2 – b2) + c2R2

3(a2 + b2 – c2) – a2b2c2

(a + b + c)(b + c – a)(a + c – b)(a + b – c)
. (18)

Proof We use the distance geometry method to achieve this equation.
Let �ABC be the reference triangle, for any point Q on the plane of �ABC, we take

(
QA2, QB2, QC2) (19)

as the coordinates of Q w.r.t. �ABC. Here, QA2 (QB2, QC2) is the square of the distance
between Q and A (B, C). Then the Cayley–Menger matrix of A, B, C, O, P is

CM =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c2 b2 R2 R2
1 1

c2 0 a2 R2 R2
2 1

b2 a2 0 R2 R2
3 1

R2 R2 R2 0 PO2 1
R2

1 R2
2 R2

3 PO2 0 1
1 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)
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Since these five points are on the same 2-dimensional plane, the (4, 5) minor of CM van-
ishes [7], i.e.,

∣∣∣∣∣∣∣∣∣∣∣∣

0 c2 b2 R2 1
c2 0 a2 R2 1
b2 a2 0 R2 1
R2

1 R2
2 R2

3 PO2 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (21)

By solving this equation, we obtain

PO2 =
1

(a + b + c)(b + c – a)(a + c – b)(a + b – c)
· (a2R2

1
(
b2 + c2 – a2)

+ b2R2
2
(
a2 + c2 – b2) + c2R2

3
(
a2 + b2 – c2) – 2a2b2c2) + R2. (22)

Based on (13) and (14), we have

R2(a + b + c)(b + c – a)(a + c – b)(a + b – c) = a2b2c2. (23)

Consequently, we achieve (18). �

From (5), we also have another equivalent inequality of (2):

r4 · (R2 – PO2)4 – 4(r1r2r3 · R1R2R3)2 ≥ 0. (24)

Substituting (13)–(18) into the left-hand side of (24), we get the following equivalent of
(2):

f
16a2b2c2 · (a + b + c)6(b + c – a)2(a + c – b)2(a + b – c)2 ≥ 0, (25)

where

f =
(
–x4y4z4 – x3y5z4 – x3y4z5 – x2y5z5)a30 +

(
–4x4y4z4

– 4x3y5z4 – 4x3y4z5 – 4x2y5z5)a29b +
(
–4x4y4z4 – 4x3y5z4

– 4x3y4z5 – 4x2y5z5)a29c +
(
–x5y3z4 + 5x4y4z4 + 6x3y5z4

+ 5x3y4z5 + x3y3z6 + 5x2y5z5 + x2y4z6)a28b2 +
(
–12x4y4z4

– 12x3y5z4 – 12x3y4z5 – 12x2y5z5)a28bc +
(
–x5y4z3 + 5x4y4z4

+ x3y6z3 + 5x3y5z4 + 6x3y4z5 + x2y6z4 + 5x2y5z5)a28c2

+ · · ·
+

(
–4x6y4z2 – 3x6y3z3 + x6y2z4 + 10x5y5z2 + 10x5y4z3

+ x5y3z4 + x5y2z5 + 5x4y5z3 + 11x4y4z4 + 6x4y3z5)b4c26

+
(
4x6y4z2 + 4x6y3z3 + 40x5y5z2 + 40x5y4z3 + 44x4y5z3
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+ 40x4y4z4 – 4x4y3z5)b3c27 +
(
x6y4z2 + x6y3z3 + 5x5y5z2

+ 5x5y4z3 + 6x4y5z3 + 5x4y4z4 – x4y3z5)b2c28

+
(
–4x5y5z2 – 4x5y4z3 – 4x4y5z3 – 4x4y4z4)bc29

+
(
–x5y5z2 – x5y4z3 – x4y5z3 – x4y4z4)c30.

Here, f is a homogeneous polynomial of degree 30 with respect to {a, b, c} with 496 terms,
while x, y, z are treated as parameters. It is impractical for many algorithms and methods
to prove f ≥ 0 directly, while there are some other constraints about a, b, c, x, y, and z.

Since a, b, c are the lengths of the three sides of �ABC, we could use three positive
variables u, v, w to express them as

a = u + v, b = u + w, c = v + w. (26)

Additionally, we could assume a ≥ b ≥ c without loss of generality, and set

a = u + v = 1, b = (1 – v) + w. (27)

Therefore, we have

u ≥ v ≥ w > 0, v ∈
(

0,
1
2

]
(28)

and

v =
1

2 + s
, w =

1
t + 1

v
=

1
2 + s + t

, (29)

in which s, t are both non-negative real numbers. Because P is an interior point of �ABC,
x, y, z should be positive and all less than 1. Since x + y + z = 1, we can set

z = 1 – x – y, x =
1

1 + p
, y =

1
q + 1

1–x
=

p
1 + p + p · q

, (30)

where p and q are both positive real numbers. Substituting (27),(29), and (30) into f , we
achieve an equivalent inequality of f ≥ 0:

22∑

i=11

(
si ·

22–i∑

i=0

(
hi,j · tj)

)
+

10∑

i=0

(
si ·

12∑

j=0

(
hi,j · tj)

)
≥ 0, (31)

in which all the coefficients, hi,j, are polynomials of p and q. Since s, t are non-negative
and p, q are positive, we can use the function xprove in the Maple package Bottema to
prove the positive semidefiniteness of hi,j. Calculation shows that all these polynomials
are positive semidefinite except h0,1 and h1,0. Then we verify the positive semidefiniteness
of h2,0s2 + h1,0s + h0,0/2 and h0,2t2 + h0,1t + h0,0/2 by xprove. Both of them are confirmed.
That is to say, (31) holds.
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Because all the terms hi,j · sitj except {h0,1t, h1,0s} are nonnegative, the polynomials
h2,0s2 + h1,0s + h0,0/2 and h0,2t2 + h0,1t + h0,0/2 are nonnegative, the equality of (31) holds if
and only if these things are all zero. Since p, q are both positive, there exist

h22,0 = 4p4q4(p2 + pq + 2p + 1
)2(p2q(p – 2)2 + p3q2 + p4 + p2q2 + 4p3

+ p2q + 6p2 + 2pq + 4p + 1
)(

p4q + p3q2 + p4 + 12p3q + p2q2

+ 4p3 + 5p2q + 6p2 + 2pq + 4p + 1
)

> 0,

h0,12 = (1 + p)2(pq + p + 1)2(4p3q + p2q2 + 6p2q + p2 + 2pq + 2p + 1
)4 > 0,

h0,0 = 16,777,216 · ((1 + p)2p10q10 + 2(2p + 5)(1 + p)3p9q9

+ p2q2(p6q6 + (1 + p)6)(6p6 + 56p5 – 34p4 + 153p3 + 161p2

+ 212p + 45
)

+ p3q3(1 + p)
(
p4q4 + (1 + p)4)(4p7 + 52p6 + 37p5

– 172p4 + 85p3 – 11p2 + 592p + 120
)

+ p4q4(1 + p)2(p8 + 20p7 – 83p6 – 45p5 – 233p4 – 113p3 – 427p2

+ 1064p + 210
)(

p2q2 + (1 + p)2)

+ p5(1 + p)3q5(2p8 + 32p7 – 15p6 – 60p5 – 240p4 – 210p3 – 650p2

+ 1288p + 252
)

+ 2p(2p + 5)(1 + p)11q + (1 + p)12)

= 0

⇔ p = 2 ∧ q =
3
2

. (32)

Therefore, the equality of (31) holds if and only if s = t = 0 ∧ p = 2 ∧ q = 3/2, i.e., a = b =
c = 1 ∧ x = y = z = 1/3.

From all above, (31) is proved, so are (25) and (24). That is to say, (2) is correct for �ABC
and its interior point P, and the equality of (2) holds if and only if �ABC is an equilateral
triangle and P is its circumcenter.

Remark 1 Since h0,0 ≥ 0 when p, q are both positive, h0,0|p=0 = 1, h0,0|q=0 = (p + 1)12, there
must exist ∂h0,0/∂p = 0 ∧ ∂h0,0/∂q = 0, if the equality h0,0 = 0 holds. Then we could use the
Maple function RealRootCounting to show that there is only one real solution for the semi-
algebraic system {h0,0 = 0, ∂h0,0/∂p = 0, ∂h0,0/∂q = 0, p > 0, q > 0}. Because h0,0|p=2,q=3/2 = 0,
it just presents a proof to the equivalent (32).

Remark 2 The function xprove in the Maple package Bottema is based on the dimensional-
decreasing algorithm ([5], Chap. 8) and the complete discrimination system for polyno-
mials [8]. It is quite a powerful tool for automated inequality proving; however, due to
the expansion of symbolic computation, when there are too many variables and the de-
gree is too high, the calculation will not be very efficient. The direct proof by xprove
to f ≥ 0 is not practical. We tried for more than six hours, but nothing returned. In
our proof, it takes three minutes to transform and prove the inequalities in Maple
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2016 on a laptop with Intel I5-3230 CPU and 8GB RAM. This package is available at
http://faculty.uestc.edu.cn/huangfangjian/en/article/167349/content/2378.htm.

Remark 3 Inequalities (4) and (5) could both be treated as the upper bounds of R1R2R3,
the product of the distances from an interior point to the vertices of a triangle. Actually,
we once tried to find the larger one between them, however, examples show that the com-
parison result varies. For example,

1. when a = 10, b = 2, c = 9, x = 1/10, y = 1/10, z = 4/5, we have

R1R2R3 ≈ 15,
r2(R2 – PO2)2

2r1r2r3
≈ 130, (R – PO)(R + PO)2 ≈ 92, (33)

2. when a = 10, b = 6, c = 8, x = 1/2, y = 1/3, z = 1/6, we have

R1R2R3 ≈ 88,
r2(R2 – PO2)2

2r1r2r3
≈ 115, (R – PO)(R + PO)2 ≈ 142. (34)

4 Conclusion
In this paper, we have proved two interesting conjectures about the pedal triangle of an in-
terior point of a triangle and analyzed the conditions when the equalities hold. We present
a geometric method to deal with the first one. For the second one, we use some algebraic
equations to transform it to a polynomial inequality and divide it into some inequalities
with fewer variables and lower degrees. And then a computer-aided tool is invoked to fin-
ish the proof. As we know, there are plenty of inequality proving algorithms and methods.
Taking advantages of these tools, we could think about complex issues. The procedure of
the latter proof could be applied to other similar problems.
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