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1 Introduction

In the past several decades, the dynamics of BAM neural networks has been widely inves-
tigated for their essential applications in classification, pattern recognition, optimization,
signal and image processing, and so on [1-41]. In 1987, Kosko [42] proposed the following
BAM neural network:

T = —ai(0) + X)L agfi(vi(t = 0(0) + 1, a1

D0 = —biit) + YLy bygi (it — 7()) + iy
where i=1,2,...,n,t > 0. Here, a; > 0,b; > 0 denote the time scales of the respective lay-
ers of the network; —a;u;(¢) and —b,v;(¢) stand for the stabilizing negative feedback of the
model. Noticing that the leakage delay often appears in the negative feedback term of neu-
ral networks (see [43-47]), Gopalsmay [48] studied the stability of the equilibrium and

periodic solutions for the following BAM neural network:

B0 — gt - 1) + L afy(t - o) + 1, )

% = —biyi(t - 'L'i(z)) + Z;;l bijgj(x/(t - Uj(l))) +7;
where i =1,2,...,n,t > 0. Since the delays in neural networks are usually time-varying in
the real world, Liu [49] discussed the global exponential stability for the following general
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BAM neural network with time-varying leakage delays:

B2 = —aii(t - 8:0) + YLy agfi 0yt - 0y() + Ly 13)
dy; .
yd—t(t) = =byi(t —nit) + 207 bigj(aj(t — 7y (8)) + .

However, so far, there have been rare reports on the existence and exponential stability
of anti-periodic solutions of neural networks, especially for neural networks with leakage
delays. Furthermore, the existence of anti-periodic solutions can be applied to help bet-
ter describe the dynamical properties of nonlinear systems [49-65]. So we think that the
investigation on the existence and stability of anti-periodic solutions for neural networks
with leakage delays has significant value. Inspired by the ideas and considering the change
of system parameters in time, we can modify neural network model (1.3) as follows:

da;it) = —ai(t = 8i(8)) + 2Ly ag(O)fi (it = 0(1))) + Li(2), (1.4)

YO — byt - i) + 0 by(Ogi g (¢ - T(0) + ). '
The main objective of this article is to analyze the exponential stability behavior of anti-
periodic oscillations of (1.4). Based on the fundamental solution matrix, Lyapunov func-
tion, and fundamental function sequences, we establish a sufficient condition ensuring the
existence and global exponential stability of anti-periodic solutions of (1.4). The derived
findings can be used directly to numerous specific networks. Besides, computer simula-
tions are performed to support the obtained predictions. Our findings are a good comple-
ment to the work of Gopalsmay [48] and Liu [49].

The paper is planned as follows. In Sect. 2, several notations and preliminary results are
prepared. In Sect. 3, we give a sufficient condition for the existence and global exponential
stability of anti-periodic solution of (1.4). In Sect. 4, we present an example to show the
correctness of the obtained analytic findings.

Remark 1.1 A time delay that exists in the negative feedback term (or called leakage
term or forgetting term) of neural networks is called leakage delay. If there exists an anti-
periodic solution in a dynamical system, then we can say that the system has anti-periodic
oscillations.

2 Preliminary results
In this segment, several notations and lemmas will be given.
For any vector V' = (v1,v,..., v,)T and matrix D = (dij)nxn» we define the norm as

1
2

1
n 2 n
v = (Z v%> , Dl = (Zd?,) :
i=1 i=1

respectively. Let

T = {sup max &;(t), sup max 7;(¢),sup max oj(t), sup max ri,'(t)},
teR 1si=n teR 1=i=n teR 1=sij=n teR 1=ij=n

0(5) = (9105, 0206), - 0u(9) s V() = (V1(), Yals)s o, Un(9)
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where ¢;(s) € C([-7,0],R), ¥;(s) € C([-7,0],R),i =1,2,...,n, we define

—-7<5<0 i-1 —-7<s<0 i-1

lgll = sup (ZI%(S)IZ) . llyli= sup (ZI%(s)P) :

We assume that system (1.4) always satisfies the following initial conditions:

xio = @i(s), s€[-7,0], 2.1)
Yio = ¥i(s), se€[-7,0]
Let x(£) = (x1(£),%2(2), ..., %,(£)) T, y() = (1(£),y2(2), ..., y.(t))T be the solution of system
(1.4) with initial conditions (2.1). We say the solution x(£) = (x1(£),%2(2), ..., %,(t)) T, y(¢) =
31(®),y2(8), ..., y.()T is T-anti-periodic on R?" if x;(t + T) = —x;(t),y:(t + T) = —y;(t) for
allteRandi=1,2,...,n where T is a positive constant.
Throughout this paper, for i,j = 1,2,...,n, it will be assumed that there exist constants
such that

8 =supé;(z), n! = sup n;(z), al.*/ = sup a;(2),

teR ter teRr
by; = sup by (t), 7 =sup 7;(¢), o, =supoy(t)
terR teR teR

and ¢ - 8;(¢) > 0, —n;(¢t) > 0.
We also assume that the following conditions hold.
(H1) Forj=1,2,...,n, there exist constants Ly > 0, L, > O,M; >0, and M}fg > 0 such that

i) ~ | < Lylu—vl, 1) <M,
g() - gW)| < Liglu—vl, 1gi(w)] <M,

forall u,v € R.
(H2) Forallt,u e Rand i,j=1,2,...,n,

ai(t + T)fi(u) = —a;(t)fi(—u), bt + T)gi(u) = —by(t)gi(—u),
8;(t+T) = 6,(2), nit + T) = ni(t), oy(t + T) = oy(2),
Tt + T) = 7(8), L+ T)=-L@), Jit+T)=-J),
where T is a positive constant.
It is clear that the conditions can be fulfilled; for example, let a;;(t) = 0.2| cos ¢|,f;(u) =

u’7,i,j=1,2,...,n, then we have a;(¢ + T)f;(u) = —ay(t)f;(—u).
(H3) The following inequality holds:

g(a,é; + bm;) <1,

where « = miny<;<,{a;, b;},i=1,2,...,n.
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Definition 2.1 The solution (x*(t),y*(t))” of system (1.4) is said to globally exponentially
stable if there exist constants 8 > 0 and M > 1 such that

> o) % @) + >y - y; @) < Me P (o — 0" P + v - v
i=1

i=1
for each solution (x(t), y(¢))” of system (1.4).

Next, we present three important lemmas which are necessary for proving our main
results in Sect. 3.

Lemma 2.1 Let

then we have
llexpAt|| < v/2e™

forallt>0.

Proof Since

A= —a; 0 ’
0 -b

it follows that

—a;t 0
exp At = (eo ebit> .

By the definition of matrix norm, we get

1
lexpAtl = (24 + &)} < 3 g

Lemma 2.2 Assume that

2§ 2
—2a;+a}8t + 3 aidfasly + 3 af jf’
a2 n 2(1-¢j) 2(1-¢j)
+ Y g ardl + Z,- 1bin *bl’;ng bl’;L}g <0,
(H4) K

—2b; + bn} + > bin; b:;L]g +3 b,

2(1 5) 1-&;)
+y o alsta aiLy ”L]f 7+ bt <0,

where 0 <¢; <1(i=1,2,3,4,5,6) are any constants. Then there exists B > 0 such that

n
ﬁ—2ai+a?8;+2ai8+ L/f +Z aj; ]f
j=1
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+Z“25* & +Zb e 2P 2 <,

jig jig

n
B ~2bi+binf + ) _bin b;LJg +Zbu jg
+Ztl28+ 20 gt 2P el <0,
b i

ks
Proof Let
0ulB)= B - 2al+a26*+2a6* ayLy + Z ajLy
" " 21— 2(1-¢) Bt
# Dol byl b, T,
ta(ﬁ):ﬁ—zbi+b2 +sz'71 iLig +va /4
2 2(1-¢)) L B85 ;
+Z“ 8fa ;;L]f ' t/LJf }+bi77i+eﬂn"

Obviously, 0;:(8) (j = 1,2;i=1,2,...,n) is a continuously differential function. We can eas-

ily check that
201- .
dgh =148 YL ais e + Ty 2 i bing b;ng( & Tz;b:; /g AR
hmﬁ—>+oo 01i(B) = +00, 01:(0) <0,
dQZZ =1+4; Yiliaista :;L,f( e Sja ;L]f( P n} bin; +efi 5 0,

11mﬁe+oo Q2i(ﬂ) =400, QZi(O) <0.

By using the intermediate value theorem, we have that there exist constants g > 0 (i = 1,2)
such that

o(#)=0, j=12
Let Bo = min{B}, B}, then it follows that S, > 0 and
0j(o) =0, j=1,2.
This completes the proof of Lemma 2.2. d

Lemma 2.3 Assume that (H1), (H3), and (H4) are satisfied. Then, for any solution
(1), 228), %0 (), Y1, Y25+, ) T of system (1.4), there exists a constant

-1
= |:1 - \/—i(aiéf + bm?)} [@5;(6{21\4; +1i+)
o

+ a;;M; + I+ b} (b:;]\/[f +]i+) + bl.*jM;fg +]l.+]
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such that
’xi(t)| <o%, |yi(t)| <o* i=12,...,m,
forallt>0.
Proof From (1.4), we have
da;t(t) = —a;x;(t) + a;[x;(t) — x;(t — 8;(¢))] + Z;il ai,'(t)ﬁ(y,'(t - O'[j(t))) + I,(¢), (2.2)
DO — _buyi(t) + bilyilt) — yilt — ni(e)] + > im1 bii(0)g (it — 7 (1)) + ().
Then we have
da;i;t) = —ax;(t) + a; ftt—di(t) x(s)ds + Z;’zl ay(O)f(y;(t — o;(1))) + I;(2), 2.3)
DO — pyie) + i [}, 2 ds + X0 bO)gi gt — 1) + Ji(o).
Thus
B0 = —qi(t) + ay [}y - aii(s — 81(s))
+ 200 ai8)fi (s — 0y(s))) + Li(s)] ds
+ 2 ()it = 0y(1) + L(2), 2.4)
P = =bi(0) + i [ o [=biyils = mi(s)
+ 2070 bi(9)gi(xi(s — Ti(5))) + Ji(s)] ds
+ 200 bi(6)gi(x(t — 7(2)) + Jio).
Let

Sii(0),5:(8) = a; / [—aixi (s=8:9) + Y _ ay()f (3 (s - 03(s))) + Ii(s):| ds

t—(S,' 0] j=1

+ Y ay@fi(y(t - 05(0)),

j=1

Salxi(t), yi(t) = b; |:—biyi (s=ni(s)) + Y _ by()gi((s - () +]i(5):| ds

t-n;(t) j=1

+ ) b0 (%t - 7(0)),

Jj=1
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then system (1.4) can be written in the following equivalent form:
Z;(t) < Azii(2) + f (x:(2), yi(2)) + L(2). (2.5)

Solving inequality (2.5), we have

t
zii(t) < "'2;;(0) +/ I f (x:(5), 9i(5)) + Lu(t) ] ds.
0
It follows from Lemma 2.1 that

|zi(®) | < V2| z:(0) || + V2 /0 e CI[||f (xi(s), 7i(s)) | + [Z(s)| ] ds

<V2lgl* + gu —e )
x (a6} (|oi(t — 8:0) | + afMl + I7) + afM, + I}
+bin] (yi(e = m(0)] + byM§ +J7) + bjMf + /]
< V2ol + ?
<[] (laue)| + ajht] + 1) + s + 1}

i

(1-e)

+ bin (Iza(6)|| + bEMS + 1) + biM; + ]} ]

2

<V2llg|*+ %
X [a,-S;'(”zﬁ(t) H + a;;ZVI; +Ii+) + a;ji\/f; +1I

+ bin (2O + ;M5 + 1) + bjMT + . (2.6)

P+ 1] ol (M ) + M5+
Let
2 -1
o = |:1 - %(4,8: + b,?];')i| [alér(a;’M]f + Iz+)
vasM] + I+ bin (BMS +77) + byME + 7).

Then it follows that |x;(¢)] < o™, |y;(£)] < 0*,i=1,2,...,n, for all £ > 0. This completes the
proof of Lemma 2.3. d

3 Main results
In this section, we present our main result that there exists an exponentially stable anti-
periodic solution of (1.4).
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Theorem 3.1 Assume that (H1)—(H4) hold true. Then any solution (x*(t),y* ()T of system
(1.4) is globally exponentially stable.

Proof Let u;(t) = x;(t) — x5 (£), vi(t) = yi(£) — y7(t),i = 1,2,..., n. It follows from system (2.4)
that

WO _gaut) + ai [} [—am(s ~5(5)

;11 aii(s)(f;(y(s — oijs f()/* s —0i(s))] ds
o ag (O - a,,(t») — [}t - o3®)),
L = —bvi(8) + by [, o [=bivi(s = ni(s))
+ 27 bys)(gi(x(s — i5(s))) — gj(aey (s — 7i(s))))] s
+ 20700 bi(0) (gt = 7;(1)) — gt — 75(2)))),

which leads to

: u(jltt = —a~u2(t) + au(t) ftt s [~ aitti(s = 8i(5))
+2 i1 @i(8)(fi(yils — a,,(s ) =i (s —oy(s)] ds
+ Mz(t) Z, 1 @i (Ot = 0(6) = ;07 (€ = 055(2))))s
= —bv;(t) + bvi() ft_ [=bivi(s = ni(s))
+ 21 bii(9) (gl (s — Tz;(S))) g (s — 7;(s))] ds
+vi(8) 37, by(0) (gt — Ti(8))) — g o (¢ — 75(2))).

In view of condition (H1), we get

du? (¢) ¢
o < —2aul(0) + au(0) [y o [—ails = 8,(s))

o1 4 (f(j(s = 03(5))) =i} (s — 0(s))))] ds
+ui(t) Yo ay ()t — 0(0))) = 7 (¢ = 0(1)))),

avi(t) (33)
#E—Zbﬂ/()+bvl !/;'7 sz(S m( ))
+ 20 bii(s)(gi (s (s — 75(5))) — gi(x (s — ()1 ds
+vi(8) 371, bi(0)(g(xi(t — T3(8)) — gl (¢ — 73(2)))).
Then
@ =< —2a»u2(t) +a;08] [a; (u + uz(t 8:(1)))
Y aj(L ,f’ 20)+ Ly Ve - 85(0)]
n + / 2 2
e + 21 a (L u; (t) + L (t 8;(H))s (3.4)
= < =2bivi(t) + bin] [bi(v} + V?(t n:(2)))
+ 30 (L V) +Lf;“"’ W2t - 75(1)))]
+ / 1 z] ]gvlz(t) +L - EI (t_ Tij(t)))r

where 0 < §,6,<1,j=1,2,...,n.
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Now we consider the following Lyapunov function:

V(e) =€’y ui @) + e Y Vi)

i=1 i=1

20+ Bs+8;(t 2
+ a;é; / e 2(s)ds
Z .

®)

214
+ZZ“5+ ayly // POy (s) ds

i=1 j=1 4 8l1(t)

n
2(1-§) Bls+8:(¢
+Z z;L,f /tah(t)e j (s)ds
—0jj

i=1

+ Z b} / P (”’“(t))vf(s) ds

t=1;(t)

n n ¢
2(1-¢; S 2
b [ e ds

i=1 j=1

t
(1-¢; i 2
+Zb%g ’ f L&) ds (3.5)
—ty

i=1

where 8 is given by Lemma 2.2. Differentiating V() along solutions to system (1.4), to-
gether with (3.3), we have

avie) < "
& =P [Z ui(t) + ;vﬁm}
+eft Z:—zaiuf(t) +a;8} [ai(uf +ul(t - 8:(1)))

j=1

+Za,, Ly u2()+ Ly 2 (e - %(t)))}

+Zal] " uz(t +Ly; 20 2(t 8,,(t)))}

n

+eﬁf2:—2biv?<t) + b} |:b,(v v (E=mi(0)
j=1

. Z b 25, 2 l‘2g(17£/)u12 (t — Tij(t))):|

N Z b+ Ll‘éVlz(t (lfs/)ujz (t — -c,j(t))) }

n
+ Z a8t [P (2) — ePlut(t - 8:(0)) ]
i1
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O ad a2 e o)

i=1 j=1

e o aply [P PO - 5,(0)]

i=1
n
+ 3 2 [P U2 () — P2 (1 - i(0))]

i=1

P Y bt - e 0)

i=1 j=1

+sz, o [P TOR(e) - P (e - 7)) ]

—eﬁt|:,3 2a; + a8 +Za8+ ajL 1f +Za” i +Zczzt3"e’3‘S

n
21— 21- )
+) b +b:;L1g 9 B0 4 b;;L]g i eﬁrll(t)i|xf(t)

j=1

+eﬂt|:,6 2b; + b*n; +Zbﬂh iLie +Zbu it

21-5) 21-§) g5 ¢ L
+Z“25+ ajly e v aiL e 1 el }y (®

<eﬁt|:,3 2a,+a28++2a8+ a; 1f +Zal] i +Zu26+ Ao

n

ThtL &) I 2(1-¢)) /3f
+ bin bl/ ;g +biL e :|xl (¢)
j=1

+eﬁt|:,3 2b; + by} +mel iLie +Zbu e

at +
+ Za%v ,;L,f ,,L]f i + by e ] yA(t). (3.6)

It follows from Lemma 2.2 that 22® < 0, which implies that V(¢) < V(0) for all £ > 0. Thus

Pt |:Z ul(t) + Z vl-z(t):|
i=1 i=1
<Y u(0)+ Y v (0)
i=1 i=1
+ Za28+ / (”‘S"(o))uiz(s) ds

(0)
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L 2(1-§) B(s+8;(0)) 2
+ZZ¢8 lJ/f / el vj(s)ds

i=1 j=1 61/(0)

0
2(1-)) Bls+8;(0)) 2
+E z/L/f /6“(0)«9 i v/(s)ds
5

i=1

0

n
+ Z b?n;' f eﬁ(“”"(o))v?(s) ds
i=1

-1;(0)

n n 0
2(1-¢)) 5(0)) 2
bt [ s

=1 j=1 7;j(0)

2(1-¢;) .
o [ g

—Tjj (0)

IA

lo ="+ v~ v’ Zﬂzﬁ* o —¢°|’

+Zza5+ 209 Ly e
i=1 j=1 ﬂ
15; ;3(3
+Z z]L]_f ¥ ”w w ||
i=1
n
b2 -
+; nlﬁe
n o n 21
—&j
D) TR T

i=1 j=1

2(1-
+thi /4 7 /3 & ”9" @ ”

= |:1+Za28+ 5 +22b,nl i jgl % ﬁeﬂri}

i=1 j=1

1
+Zbu ng / ﬁfuj|”¢ 2 H
|:1+Zzaa+ aj ]Zf(l %; B8}

i=1 j=1
PVt LS }nw I

Let

_ 20+ 5 +h+ 2(1-¢) BT 4206 1 Bt
91_1+Z”5 e +Zzb buLJg '36 ZbuLJg 8¢ s

i=1 j=1 i=1

n n
) - ls, ; lé-‘/ Lo 5 g2 Lot
br=1+) ) adiajLy '+Z ajLy 'y i3
i=1

i=1 j=1

Page 11 of 17

(3.7)
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and choose
M = max{6;,0,} > 1

Then Eq. (3.7) can be rewritten as

RAC ZV B < Me o —*|* + |v - v |’]
i=1

for all £ > 0. Then
3 ity = w0+ D [y - y; 0 < Me P o - 0" + | - v
i=1 i=1

for all £ > 0. Thus the solution (x(t),y(t))T of system (1.4) is globally exponentially sta-
ble. O

Theorem 3.2 Assume that (H1)—(H4) are satisfied. Then system (1.4) has exactly one T-
anti-periodic solution which is globally stable.

Proof It follows from system (1.4) and (H2) that for each k € N, we have

d

7 [(—l)k“xi(t + (k + 1)T)]

= ()" [—ami (£ + (k+ 1)T = 8(¢ + (k + 1)T))

+ Y ag(t+ (k+ DTyt + (k+ DT — oyt + (k + 1)T)))

j=1
+1(¢t + (k+1)T)
= —a;(-1) i (t + (k + DT - 8,(2))

+ 3 agOf((1F (e + o+ DT - 03(8))) + 1i(0), (3.8)

j=1

d
E[(—l)k”yi(t +(k+1)T)]

=(- 1)"*1[ biyi(t+ (k+ )T —ni(t + (k + 1)T))

+ Y by(t+ (k+ D)T)g(w (e + (k+ DT — 7t + (k + 1)T)))
j=1

+Ji(e+ (k+ 1)T):|
= ~bi(-1)"1y; (¢ + (k + )T - n;(2))

+ 3 byOg (D (¢ + (k+ DT = 7(0))) +Ji(0). (3.9)

j=1



Xu et al. Journal of Inequalities and Applications (2018) 2018:68 Page 13 0of 17

Let

() = (-1 (£ + (k + DT), (=1 ey (£ + (k + DT),..., (-1}, (e + k+ D T)),

y(t) = ((—l)k+1 ( (k + l)T) (-1)%+Ly (t+ (k+ 1)T),...,(—1)k+1y,,(t+ (k+ 1)T))T.

Obviously, for any k € N, (x(¢),y(¢)) is also a solution of system (1.4). If the initial func-
tion @;(s), ¥i(s) (i = 1,2,...,n) is bounded, it follows from Theorem 3.1 that there exists a

constant y > 1 such that
|1 (¢ + (k + 1)T) = (1) xi(¢ + kT)|

< Me —B(t+kT) sup Z|xl t+ T)+x1( )|2

—-7<5<0

< ye PUKD) (3.10)

where t + kKT >0,i=1,2,...,n. Since for any k € N we have

k

(—l)k”xi(t +(k+1)T) =x,(2) + Z[(—l)’”x,(t +(+1)T) - (-1Yxi(¢ +jT)],  (3.11)

Jj=0

then
k
D+ (k+ DT) < |xi(e)| + Z‘(—l)’“xi(t +(+ 1)T) = (=1Yxi(¢ +jT)]. (3.12)
=0

By Lemma 2.3, we know that the solutions of system (1.4) are bounded. In view of (3.10)
and (3.12), we can easily know that {(~=1)**1x;(t + (k + 1) T)} uniformly converges to a con-
tinuous function x*(£) = (x}(£), x3(£), ..., x%(¢))T on any compact set of R”. In a similar way,
we can easily prove that {(—1)**1y;(¢ + (k + 1) T)} uniformly converges to a continuous func-
tion y*(t) = (v (2), y5(¢),...,¥: ()T on any compact set of R".

Now we show that x*(¢) is a T-anti-periodic solution of (1.4). Firstly, x*(¢) is T-anti-

periodic since

X (t+T)= Jim (-1 x(¢t + T + kT)

=— lim (D%t + (k+1)T) = —a* (o). (3.13)
(k+1)—>o00
Then we can conclude that x}(¢) is T-anti-periodic on R. Similarly, y;(¢) is also T-anti-
periodic on R. Thus we can conclude that (x*(¢),y*(¢))7 is the solution of system (1.4).
In fact, together with the continuity of the right-hand side of system (1.4), let k — oo,

we can easily get

dx*(8)

= —ax (= 8i(0) + 3L ag(t)fi(y (£ — 03(1)) + Li(),
YO byt - mi() + Y0 byl0)g (& - () + Ti(e).

(3.14)
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Therefore, (x*(£),y*(¢))” is a solution of (1.4). Finally, by applying Theorem 3.1, it is easy
to check that (x*(£),y*(¢))” is globally exponentially stable. This completes the proof of
Theorem 3.2. O

4 An example
In this section, we give an example to illustrate our main results derived in the previous
sections. Consider the following BAM neural network with time-varying delays in the

leakage terms:

B0 = —ay(t - 810) + X ay@f 0t - o1y(0) + 11 (2),
% = —ayo(t = 85(8)) + Y7 ary(f 05t — 03 (1)) + a(0),
DO = —byyi (£ = (@) + Xy b(Ogi(E - 10j(8) + 11 (0),
d”“ ~byys(t = ma(®) + Yo7, bay()gi(axi(t — To(0)) + Ja(8),

(4.1)

where

[5:(0) 8(2)] [ 0.05]sine]  0.05]sint]
- 0.04|cost| 0.04|cost|

an(t) an(t)| [0.3|cost| 0.3|cost]|
as(t) an(®)| |05|singl 0.5]sint|

-bn(t) bia(t) | | 0.03[cost| 0.03]cost]
bn(t) by@)| |0.05]sinf] 0.05]sing|

-Il(t) I(t)| |0.5cost 0.5co0st ai ay| |2
(@) () | 0.5sint 0.5sint | by by| |2

Set fi(u) = gi(u) = (ju + 1| = lu - 1]),j = 1,2. Then Ly = g, = M/f = 1,8 =8} =
0.05,a3; = 0.3,a3; = 0.5,n7 = n; = 0.04,b]; = 0.03,b5,=0.05,j = 1,2. It is easy to verify that

NN
| I

2
i(alﬁ;’ +bin}) ~0.12726 < 1
o

and

—2a1+a23++2a18+a1] i +Z ay; /f
j=1
21— 2l-s;
+Z“25++mef 1iLsg ! + byl ' = 28620,
—2a2+a28 +Za28 a;, ]f +Z ay; ]f

2
+X:ai2 +Zb277+b+ 206) | pr 207 =-2.04<0,

2j~jg 21 g
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Figure 1 Transient response of state variables xi (t), x2(t), y1 (t), and y»(t)

2
~2by +biny +Zb1’71 o +Zb11 jg
=1

2(1-§)) 2(1-§))
+Za28+ ayLy 7 +apLy 7+ binf = -3.256 <0,

~2by + bln} + me*b;/ L szl o

Z assayly ™ vayly ™ + by = -3.024 <0,

Then all the conditions (H1)—(H4) hold. Thus system (4.1) has exactly one 7 -anti-periodic
solution which is globally exponentially stable. The results are illustrated in Fig. 1.

5 Conclusions

In this paper, we have investigated the asymptotic behavior of BAM neural networks with
time-varying delays in the leakage terms. Applying the fundamental solution matrix of
coeflicient matrix, we obtained a series of new sufficient conditions to guarantee the ex-
istence and global exponential stability of an anti-periodic solution for the BAM neural
networks with time-varying delays in the leakage terms. The obtained conditions are easy
to check in practice. Finally, an example is included to illustrate the feasibility and effec-

tiveness.
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