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Abstract
In a real uniformly convex and uniformly smooth Banach space, some new monotone
projection iterative algorithms for countable maximal monotone mappings and
countable weakly relatively non-expansive mappings are presented. Under mild
assumptions, some strong convergence theorems are obtained. Compared to
corresponding previous work, a new projection set involves projection instead of
generalized projection, which needs calculating a Lyapunov functional. This may
reduce the computational labor theoretically. Meanwhile, a new technique for finding
the limit of the iterative sequence is employed by examining the relationship
between the monotone projection sets and their projections. To check the
effectiveness of the new iterative algorithms, a specific iterative formula for a special
example is proved and its computational experiment is conducted by codes of Visual
Basic Six. Finally, the application of the new algorithms to a minimization problem is
exemplified.
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1 Introduction and preliminaries
Let E be a real Banach space with E∗ its dual space. Suppose that C is a nonempty closed
and convex subset of E. The symbol 〈·, ·〉 denotes the generalized duality pairing between
E and E∗. The symbols “→” and “⇀” denote strong and weak convergence either in E or
in E∗, respectively.

A Banach space E is said to be strictly convex [1] if for ∀x, y ∈ E which are linearly inde-
pendent,

‖x + y‖ < ‖x‖ + ‖y‖.
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The above inequality is equivalent to the following:

‖x‖ = ‖y‖ = 1, x 	= y ⇒
∥
∥
∥
∥

x + y
2

∥
∥
∥
∥

< 1.

A Banach space E is said to be uniformly convex [1] if for any two sequences {xn} and
{yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn + yn‖ = 2, limn→∞ ‖xn – yn‖ = 0 holds.

If E is uniformly convex, then it is strictly convex.
The function ρE : [0, +∞) → [0, +∞) is called the modulus of smoothness of E [2] if it is

defined as follows:

ρE(t) = sup

{
1
2
(‖x + y‖ + ‖x – y‖) – 1 : x, y ∈ E,‖x‖ = 1,‖y‖ ≤ t

}

.

A Banach space E is said to be uniformly smooth [2] if ρE(t)
t → 0, as t → 0.

The Banach space E is uniformly smooth if and only if E∗ is uniformly convex [2].
We say E has Property (H) if for every sequence {xn} ⊂ E which converges weakly to

x ∈ E and satisfies ‖xn‖ → ‖x‖ as n → ∞ necessarily converges to x in the norm.
If E is uniformly convex and uniformly smooth, then E has Property (H).
With each x ∈ E, we associate the set

J(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖f ‖2}, ∀x ∈ E.

Then the multi-valued mapping J : E → 2E∗ is called the normalized duality mapping
[1]. Now, we list some elementary properties of J .

Lemma 1.1 ([1, 2])
(1) If E is a real reflexive and smooth Banach space, then J is single valued;
(2) if E is reflexive, then J is surjective;
(3) if E is uniformly smooth and uniformly convex, then J–1 is also the normalized

duality mapping from E∗ into E. Moreover, both J and J–1 are uniformly continuous
on each bounded subset of E or E∗, respectively;

(4) for x ∈ E and k ∈ (–∞, +∞), J(kx) = kJ(x).

For a nonlinear mapping U , we use F(U) and N(U) to denote its fixed point set and null
point set, respectively; that is, F(U) = {x ∈ D(U) : Ux = x} and N(U) = {x ∈ D(U) : Ux =
0}.

Definition 1.2 ([3]) A mapping T ⊂ E ×E∗ is said to be monotone if, for ∀yi ∈ Txi, i = 1, 2,
we have 〈x1 – x2, y1 – y2〉 ≥ 0. The monotone mapping T is called maximal monotone if
R(J + θT) = E∗ for θ > 0.

Definition 1.3 ([4]) The Lyapunov functional ϕ : E × E∗ → (0, +∞) is defined as fol-
lows:

ϕ(x, y) = ‖x‖2 – 2
〈

x, j(y)
〉

+ ‖y‖2, ∀x, y ∈ E, j(y) ∈ J(y).
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Definition 1.4 ([5]) Let B : C → C be a mapping, then
(1) an element p ∈ C is said to be an asymptotic fixed point of B if there exists a

sequence {xn} in C which converges weakly to p such that xn – Bxn → 0, as n → ∞.
The set of asymptotic fixed points of B is denoted by F̂(B);

(2) B : C → C is said to be strongly relatively non-expansive if F̂(B) = F(B) 	= ∅ and
ϕ(p, Bx) ≤ ϕ(p, x) for x ∈ C and p ∈ F(B);

(3) an element p ∈ C is said to be a strong asymptotic fixed point of B if there exists a
sequence {xn} in C which converges strongly to p such that xn – Bxn → 0, as
n → ∞. The set of strong asymptotic fixed points of B is denoted by F̃(B);

(4) B : C → C is said to be weakly relatively non-expansive if F̃(B) = F(B) 	= ∅ and
ϕ(p, Bx) ≤ ϕ(p, x) for x ∈ C and p ∈ F(B).

Remark 1.5 It is easy to see that strongly relatively non-expansive mappings are weakly
relatively non-expansive mappings. However, an example in [6] shows that a weakly rela-
tively non-expansive mapping is not a strongly relatively non-expansive mapping.

Lemma 1.6 ([5]) Let E be a uniformly convex and uniformly smooth Banach space and
C be a nonempty closed and convex subset of E. If B : C → C is weakly relatively non-
expansive, then F(B) is a closed and convex subset of E.

Lemma 1.7 ([3]) Let T ⊂ E × E∗ be maximal monotone, then
(1) N(T) is a closed and convex subset of E;
(2) if xn → x and yn ∈ Txn with yn ⇀ y, or xn ⇀ x and yn ∈ Txn with yn → y, then

x ∈ D(T) and y ∈ Tx.

Definition 1.8 ([4])
(1) If E is a reflexive and strictly convex Banach space and C is a nonempty closed and

convex subset of E, then for each x ∈ E there exists a unique element v ∈ C such
that ‖x – v‖ = inf{‖x – y‖ : y ∈ C}. Such an element v is denoted by PCx and PC is
called the metric projection of E onto C.

(2) Let E be a real reflexive, strictly convex, and smooth Banach space and C be a
nonempty closed and convex subset of E, then for ∀x ∈ E, there exists a unique
element x0 ∈ C satisfying ϕ(x0, x) = inf{ϕ(y, x) : y ∈ C}. In this case, ∀x ∈ E, define
�C : E → C by �Cx = x0, and then �C is called the generalized projection from E
onto C.

It is easy to see that �C is coincident with PC in a Hilbert space.

Maximal monotone mappings and weakly or strongly relatively non-expansive map-
pings are different types of important nonlinear mappings due to their practical back-
ground. Much work has been done in designing iterative algorithms either to approximate
a null point of maximal monotone mappings or a fixed point of weakly or strongly rela-
tively non-expansive mappings, see [5–10] and the references therein. It is a natural idea
to construct iterative algorithms to approximate common solutions of a null point of max-
imal monotone mappings and a fixed point of weakly or strongly relatively non-expansive
mappings, which can be seen in [11–15] and the references therein. Now, we list some
closely related work.
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In [12], Wei et al. presented the following iterative algorithms to approximate a common
element of the set of null points of the maximal monotone mapping T ⊂ E × E∗ and the
set of fixed points of the strongly relatively non-expansive mapping S ⊂ E × E, where E is
a real uniformly convex and uniformly smooth Banach space:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, r1 > 0,

yn = (J + rnT)–1J(xn + en),

zn = J–1[αnJxn + (1 – αn)Jyn],

un = J–1[βnJxn + (1 – βn)JSzn],

Hn = {z ∈ E : ϕ(z, zn) ≤ αnϕ(z, xn) + (1 – αn)ϕ(z, xn + en)},
Vn = {z ∈ E : ϕ(z, un) ≤ βnϕ(z, xn) + (1 – βn)ϕ(z, zn)},
Wn = {z ∈ E : 〈z – xn, Jx1 – Jxn〉 ≤ 0},
xn+1 = �Hn∩Vn∩Wn (x1), n ∈ N ,

(1.1)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, r1 > 0,

yn = (J + rnT)–1J(xn + en),

zn = J–1[αnJx1 + (1 – αn)Jyn],

un = J–1[βnJx1 + (1 – βn)JSzn],

Hn = {z ∈ E : ϕ(z, zn) ≤ αnϕ(z, x1) + (1 – αn)ϕ(z, xn + en)},
Vn = {z ∈ E : ϕ(z, un) ≤ βnϕ(z, x1) + (1 – βn)ϕ(z, zn)},
Wn = {z ∈ E : 〈z – xn, Jx1 – Jxn〉 ≤ 0},
xn+1 = �Hn∩Vn∩Wn (x1), n ∈ N ,

(1.2)

and

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, r1 > 0,

yn = (J + rnT)–1J(xn + en),

zn = J–1[αnJxn + (1 – αn)Jyn],

un = J–1[βnJxn + (1 – βn)JSzn],

H1 = {z ∈ E : ϕ(z, z1) ≤ α1ϕ(z, x1) + (1 – α1)ϕ(z, x1 + e1)},
V1 = {z ∈ E : ϕ(z, u1) ≤ β1ϕ(z, x1) + (1 – β1)ϕ(z, z1)},
W1 = E,

Hn = {z ∈ Hn–1 ∩ Vn–1 ∩ Wn–1 : ϕ(z, zn) ≤ αnϕ(z, xn) + (1 – αn)ϕ(z, xn + en)},
Vn = {z ∈ Hn–1 ∩ Vn–1 ∩ Wn–1 : ϕ(z, un) ≤ βnϕ(z, xn) + (1 – βn)ϕ(z, zn)},
Wn = {z ∈ Hn–1 ∩ Vn–1 ∩ Wn–1 : 〈z – xn, Jx1 – Jxn〉 ≤ 0},
xn+1 = �Hn∩Vn∩Wn (x1), n ∈ N .

(1.3)

Under some mild assumptions, {xn} generated by (1.1), (1.2), or (1.3) is proved to be
strongly convergent to �N(T)∩F(S)(x1). Compared to projective iterative algorithms (1.1)
and (1.2), iterative algorithm (1.3) is called monotone projection method since the pro-
jection sets Hn, Vn, and Wn are all monotone in the sense that Hn+1 ⊂ Hn, Vn+1 ⊂ Vn, and
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Wn+1 ⊂ Wn for n ∈ N . Theoretically, the monotone projection method will reduce the
computation task.

In [13], Klin-eam et al. presented the following iterative algorithm to approximate a com-
mon element of the set of null points of the maximal monotone mapping A ⊂ E × E∗ and
the sets of fixed points of two strongly relatively non-expansive mappings S, T ⊂ C × C,
where C is the nonempty closed and convex subset of a real uniformly convex and uni-
formly smooth Banach space E.

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = J–1[αnJxn + (1 – αn)JTzn],

zn = J–1[βnJxn + (1 – βn)JS(J + rnA)–1Jxn],

Hn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)},
Vn = {z ∈ C : 〈z – xn, Jx1 – Jxn〉 ≤ 0},
xn+1 = �Hn∩Vn (x1), n ∈ N .

(1.4)

Under some assumptions, {xn} generated by (1.4) is proved to be strongly convergent to
�N(A)∩F(S)∩F(T)(x1).

In [14], Wei et al. extended the topic to the case of finite maximal monotone mappings
{Ti}m1

i=1 and finite strongly relatively non-expansive mappings {Sj}m2
j=1. They constructed the

following two iterative algorithms in a real uniformly convex and uniformly smooth Ba-
nach space E:

⎧

⎪⎪⎨

⎪⎪⎩

x1 ∈ E, r > 0,

yn = J–1[βnJxn +
∑m1

i=1 βn,iJ(J + rTi)–1Jxn],

xn+1 = J–1[αnJxn +
∑m2

j=1 αn,jJSjyn], n ∈ N ,

(1.5)

and

⎧

⎪⎪⎨

⎪⎪⎩

x1 ∈ E, r > 0,

yn = J–1[βnJxn + (1 – βn)J(J + rT1)–1J(J + rT2)–1J · · · (J + rTm1 )–1Jxn],

xn+1 = J–1[αnJxn + (1 – αn)JS1S2 · · ·Sm2 yn], n ∈ N .

(1.6)

Under some assumptions, {xn} generated by (1.5) or (1.6) is proved to be weakly conver-
gent to v = limn→∞ �(

⋂m1
i=1 N(Ti))∩(

⋂m2
j=1 F(Sj))

(xn).
Inspired by the previous work, in Sect. 2.1, we shall construct some new iterative al-

gorithms to approximate the common element of the sets of null points of countable
maximal monotone mappings and the sets of fixed points of countable weakly relatively
non-expansive mappings. New proof techniques can be found, restrictions are mild, and
error is considered. In Sect. 2.2, an example is listed and a specific iterative formula is
proved. Computational experiments which show the effectiveness of the new abstract it-
erative algorithms are conducted. In Sect. 2.3, an application to the minimization problem
is demonstrated.

The following preliminaries are also needed in our paper.

Definition 1.9 ([16]) Let {Cn} be a sequence of nonempty closed and convex subsets of E,
then
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(1) s- lim inf Cn, which is called strong lower limit, is defined as the set of all x ∈ E such
that there exists xn ∈ Cn for almost all n and it tends to x as n → ∞ in the norm.

(2) w- lim sup Cn, which is called weak upper limit, is defined as the set of all x ∈ E such
that there exists a subsequence {Cnk } of {Cn} and xnk ∈ Cnk for every nk and it tends
to x as nk → ∞ in the weak topology;

(3) if s- lim inf Cn = w- lim sup Cn, then the common value is denoted by lim Cn.

Lemma 1.10 ([16]) Let {Cn} be a decreasing sequence of closed and convex subsets of E,
i.e., Cn ⊂ Cm if n ≥ m. Then {Cn} converges in E and lim Cn =

⋂∞
n=1 Cn.

Lemma 1.11 ([17]) Suppose that E is a real reflexive and strictly convex Banach space.
If lim Cn exists and is not empty, then {Pcn x} converges weakly to Plim Cn x for every x ∈ E.
Moreover, if E has Property (H), the convergence is in norm.

Lemma 1.12 ([18]) Let E be a real smooth and uniformly convex Banach space, and let
{un} and {vn} be two sequences of E. If either {un} or {vn} is bounded and ϕ(un, vn) → 0, as
n → ∞, then un – vn → 0, as n → ∞.

Lemma 1.13 ([19]) Let E be a real uniformly convex Banach space and r ∈ (0, +∞). Then
there exists a continuous, strictly increasing, and convex function ω : [0, 2r] → [0, +∞) with
ω(0) = 0 such that

∥
∥kx + (1 – k)y

∥
∥

2 ≤ k‖x‖2 + (1 – k)‖y‖2 – k(1 – k)ω
(‖x – y‖)

for k ∈ [0, 1], x, y ∈ E with ‖x‖ ≤ r and ‖y‖ ≤ r.

2 Strong convergence theorems and experiments
2.1 Strong convergence for infinite maximal monotone mappings and infinite

weakly relatively non-expansive mappings
In this section, we suppose that the following conditions are satisfied:

(A1) E is a real uniformly convex and uniformly smooth Banach space and J : E → E∗ is
the normalized duality mapping;

(A2) Ti ⊂ E × E∗ is maximal monotone and Si : E → E is weakly relatively
non-expansive for each i ∈ N ;

(A3) {sn,i} and {τn} are two real number sequences in (0, +∞) for i, n ∈ N . {αn} is a real
number sequence in (0, 1) for n ∈ N ;

(A4) {εn} is the error sequence in E.

Algorithm 2.1
Step 1. Choose u1, ε1 ∈ E. Let s1,i ∈ (0, +∞) for i ∈ N . α1 ∈ (0, 1) and τ1 ∈ (0, +∞). Set

n = 1, and go to Step 2.
Step 2. Compute vn,i = (J + sn,iTi)–1J(un + εn) and wn,i = J–1[αnJun + (1 – αn)JSivn,i] for

i ∈ N . If vn,i = un + εn and wn,i = J–1[αnJun + (1 – αn)J(un + εn)] for all i ∈ N , then stop;
otherwise, go to Step 3.
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Step 3. Construct the sets Vn, Wn, and Un as follows:

⎧

⎪⎪⎨

⎪⎪⎩

V1 = E,

Vn+1,i = {z ∈ E : 〈vn,i – z, J(un + εn) – Jvn,i〉 ≥ 0},
Vn+1 = (

⋂∞
i=1 Vn+1,i) ∩ Vn,

⎧

⎪⎪⎨

⎪⎪⎩

W1 = E,

Wn+1,i = {z ∈ Vn+1,i : ϕ(z, wn,i) ≤ αnϕ(z, un) + (1 – αn)ϕ(z, vn,i)},
Wn+1 = (

⋂∞
i=1 Wn+1,i) ∩ Wn,

and

Un+1 =
{

z ∈ Wn+1 : ‖u1 – z‖2 ≤ ∥
∥PWn+1 (u1) – u1

∥
∥

2 + τn+1
}

,

go to Step 4.
Step 4. Choose any element un+1 ∈ Un+1 for n ∈ N .
Step 5. Set n = n + 1, and return to Step 2.

Theorem 2.1 If, in Algorithm 2.1, vn,i = un + εn and wn,i = J–1[αnJun + (1 – αn)J(un + εn)]
for all i ∈ N , then un + εn ∈ (

⋂∞
i=1 N(Ti)) ∩ (

⋂∞
i=1 F(Si)).

Proof Since vn,i = un +εn, then from Step 2 in Algorithm 2.1, we know that Jvn,i + sn,iTivn,i =
Jvn,i for all i ∈ N , which implies that sn,iTivn,i = 0 for i ∈ N . Therefore, un + εn ∈ ⋂∞

i=1 N(Ti).
Since wn,i = J–1[αnJun + (1 – αn)J(un + εn)] = J–1[αnJun + (1 – αn)JSivn,i], then in view of

Lemma 1.1 vn,i = Sivn,i for i, n ∈ N . Thus vn,i = un + εn ∈ ⋂∞
i=1 F(Si), n ∈ N .

This completes the proof. �

Theorem 2.2 Suppose (
⋂∞

i=1 N(Ti))∩ (
⋂∞

i=1 F(Si)) 	= ∅, infn sn,i > 0 for i ∈ N , 0 < supn αn < 1,
τn → 0, and εn → 0, as n → ∞. Then the iterative sequence un → y0 = P⋂∞

n=1 Wn (u1) ∈
(
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)), as n → ∞.

Proof We split the proof into eight steps.
Step 1. Vn is a nonempty subset of E.
In fact, we shall prove that (

⋂∞
i=1 N(Ti)) ∩ (

⋂∞
i=1 F(Si)) ⊂ Vn, which ensures that Vn 	= ∅.

For this, we shall use inductive method. Now, ∀p ∈ (
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)).
If n = 1, it is obvious that p ∈ V1 = E. Since Ti is monotone, then

〈

v1,i – p, J(u1 + ε1) – Jv1,i
〉

= 〈v1,i – p, s1,iTiv1,i – s1,iTip〉 ≥ 0.

Thus p ∈ V2,i, which ensures that p ∈ V2.
Suppose the result is true for n = k + 1. Then, if n = k + 2, we have

〈

vk+1,i – p, J(uk+1 + εk+1) – Jvk+1,i
〉

= 〈vk+1,i – p, sk+1,iTivk+1,i – sk+1,iTip〉 ≥ 0.

Then p ∈ Vk+2,i, which ensures that p ∈ Vk+2.
Therefore, by induction, (

⋂∞
i=1 N(Ti)) ∩ (

⋂∞
i=1 F(Si)) ⊂ Vn for n ∈ N .
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Step 2. Wn is a nonempty closed and convex subset of E for n ∈ N .
Since ϕ(z, wn,i) ≤ αnϕ(z, un) + (1 – αn)ϕ(z, vn,i) is equivalent to 〈z, 2αnJun + 2(1 – αn)Jvn,i –

2Jwn,i〉 ≤ αn‖un‖2 + (1 – αn)‖vn,i‖2 – ‖wn,i‖2, then it is easy to see that Wn,i is closed and
convex for i, n ∈ N . Thus Wn is closed and convex for n ∈ N .

Next, we shall use inductive method to show that (
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)) ⊂ Wn for
n ∈ N , which ensures that Wn 	= ∅ for n ∈ N .

In fact, ∀p ∈ (
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)).
If n = 1, it is obvious that p ∈ W1 = E. Then, from the definition of weakly relatively

non-expansive mappings, we have

ϕ(p, wn,i) ≤ α1ϕ(p, u1) + (1 – α1)ϕ(p, Siv1,i)

≤ α1ϕ(p, u1) + (1 – α1)ϕ(p, v1,i).

Combining this with Step 1, we know that p ∈ W2,i for i ∈ N . Therefore, p ∈ W2.
Suppose the result is true for n = k + 1. Then, if n = k + 2, we know from Step 1 that

p ∈ Vk+2,i for i, k ∈ N . Moreover,

ϕ(p, wk+1,i) ≤ αk+1ϕ(p, uk+1) + (1 – αk+1)ϕ(p, Sivk+1,i)

≤ αk+1ϕ(p, uk+1) + (1 – αk+1)ϕ(p, vk+1,i),

which implies that p ∈ Wk+2,i, and then p ∈ (
⋂∞

i=1 Wk+2,i) ∩ Wk+1 = Wk+2. Therefore, by
induction,

∅ 	=
( ∞

⋂

i=1

N(Ti)

)

∩
( ∞

⋂

i=1

F(Si)

)

⊂ Wn for n ∈ N .

Step 3. Set yn = PWn+1 (u1). Then yn → y0 = P⋂∞
n=1 Wn (u1), as n → ∞.

From the construction of Wn in Step 3 of Algorithm 2.1, Wn+1 ⊂ Wn for n ∈ N .
Lemma 1.10 implies that lim Wn exists and lim Wn =

⋂∞
n=1 Wn 	= ∅. Since E has Property

(H), then Lemma 1.11 implies that yn → y0 = P⋂∞
n=1 Wn (u1), as n → ∞.

Step 4. {un} is well defined.
It suffices to show that Un 	= ∅. From the definitions of PWn+1 (u1) and infimum, we know

that for τn+1 there exists bn ∈ Wn+1 such that

‖u1 – bn‖2 ≤
(

inf
z∈Wn+1

‖u1 – z‖
)2

+ τn+1 =
∥
∥PWn+1 (u1) – u1

∥
∥

2 + τn+1.

This ensures that Un+1 	= ∅ for n → ∞.
Step 5. un+1 – yn → 0 as n → ∞.
Since un+1 ∈ Un+1 ⊂ Wn+1, then in view of Lemma 1.13 and the fact that Wn is convex,

we have, for ∀k ∈ (0, 1),

‖yn – u1‖2 ≤ ∥
∥kyn + (1 – k)un+1 – u1

∥
∥

2

≤ k‖yn – u1‖2 + (1 – k)‖un+1 – u1‖2 – k(1 – k)ω
(‖yn – un+1‖

)

.
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Therefore,

kω
(‖yn – un+1‖

) ≤ ‖un+1 – u1‖2 – ‖yn – u1‖2 ≤ τn+1.

Letting k → 1, then yn – un+1 → 0 as n → ∞. Since yn → y0, then un → y0, as n → ∞.
Step 6. un – vn,i → 0 for i ∈ N , as n → ∞.
Since yn+1 ∈ Wn+2 ⊂ Wn+1 ⊂ Vn+1, then

0 ≤ 2
〈

vn,i – yn+1, J(un + εn) – Jvn,i
〉

= 2
〈

yn+1 – vn,i, Jvn,i – J(un + εn)
〉

= ϕ(yn+1, un + εn) – ϕ(yn+1, vn,i) – ϕ(vn,i, un + εn)

≤ ϕ(yn+1, un + εn) – ϕ(vn,i, un + εn).

Thus, by using Step 5 and by letting εn → 0, we have

ϕ(vn,i, un + εn) ≤ ϕ(yn+1, un + εn)

= ϕ(yn+1, yn) + ϕ(yn, un + εn) + 2
〈

yn+1 – yn, Jyn – J(un + εn)
〉

≤ (‖yn+1‖‖Jyn+1 – Jyn‖ + ‖yn+1 – yn‖‖yn‖
)

+
(‖yn‖

∥
∥Jyn – J(un + εn)

∥
∥ + ‖yn+1 – un – εn‖‖un + εn‖

)

+ 2‖yn+1 – yn‖
∥
∥Jyn – J(un + εn)

∥
∥ → 0,

as n → ∞. Using Lemma 1.12, vn,i – un – εn → 0 for i ∈ N , as n → ∞. Since εn → 0, then
vn,i – un → 0 for i ∈ N , as n → ∞. Since un → y0, then vn,i → y0 for i ∈ N , as n → ∞.

Step 7. wn,i – un → 0 for i ∈ N , as n → ∞.
Since un+1 ∈ Un+1 ⊂ Wn+1, then noticing Steps 5 and 6,

ϕ(un+1, wn,i) ≤ αnϕ(un+1, un) + (1 – αn)ϕ(un+1, vn,i) → 0,

as n → ∞. Lemma 1.12 implies that un+1 – wn,i → 0, as n → ∞. Since un → y0, then
wn,i → y0 for i ∈ N , as n → ∞.

Step 8. y0 = P⋂∞
n=1 Wn (u1) ∈ (

⋂∞
i=1 N(Ti)) ∩ (

⋂∞
i=1 F(Si)).

Since vn,i = (J + sn,iTi)–1J(un + εn), then Jvn,i + sn,iTivn,i = J(un + εn). Since vn,i → y0, un →
y0, εn → 0 and infn sn,i > 0, then Tivn,i → 0 for i ∈ N , as n → ∞. Using Lemma 1.7, y0 ∈
⋂∞

i=1 N(Ti).
Since wn,i = J–1[αnJun + (1 –αn)JSivn,i], then in view of Lemma 1.1, Sivn,i → y0, as n → ∞.

Lemma 1.6 implies that y0 ∈ ⋂∞
i=1 F(Si).

This completes the proof. �
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Corollary 2.3 If i ≡ 1, denote by T the maximal monotone mapping and by S the weakly
relatively non-expansive mapping, then Algorithm 2.1 reduces to the following:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ E, ε1 ∈ E,

vn = (J + snT)–1J(un + εn),

wn = J–1[αnJun + (1 – αn)JSvn],

V1 = W1 = E,

Vn+1 = {z ∈ E : 〈vn – z, J(un + εn) – Jvn〉 ≥ 0} ∩ Vn,

Wn+1 = {z ∈ Vn+1 : ϕ(z, wn) ≤ αnϕ(z, un) + (1 – αn)ϕ(z, vn)} ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N ,

where {εn} ⊂ E, {sn} ⊂ (0,∞), {τn} ⊂ (0,∞), and {αn} ⊂ (0, 1). Then
(1) Similar to Theorem 2.1, if vn = un + εn and wn = J–1[αnJun + (1 – αn)J(un + εn)] for all

n ∈ N , then un + εn ∈ N(T) ∩ F(S).
(2) Suppose that E, {εn}, {τn}, and {αn} satisfy the same conditions as those in

Theorem 2.2. If N(T) ∩ F(S) = ∅ and infn sn > 0, then the iterative sequence
un → y0 = P⋂∞

n=1 Wn (u1) ∈ N(T) ∩ F(S), as n → ∞.

Algorithm 2.2 Only doing the following changes in Algorithm 2.1, we get Algorithm 2.2:

wn,i = J–1[αnJu1 + (1 – αn)JSivn,i
]

for all i ∈ N ,

and

⎧

⎪⎪⎨

⎪⎪⎩

W1 = E,

Wn+1,i = {z ∈ Vn+1,i : ϕ(z, wn,i) ≤ αnϕ(z, u1) + (1 – αn)ϕ(z, vn,i)},
Wn+1 = (

⋂∞
i=1 Wn+1,i) ∩ Wn.

Theorem 2.4 If, in Algorithm 2.2, vn,i = un + εn and wn,i = J–1[αnJu1 + (1 – αn)J(un + εn)]
for all i ∈ N , then un + εn ∈ (

⋂∞
i=1 N(Ti)) ∩ (

⋂∞
i=1 F(Si)).

Proof Similar to Theorem 2.1, the result follows. �

Theorem 2.5 We only change the condition that 0 < supn αn < 1 in Theorem 2.2 by
αn → 0, as n → ∞. Then the iterative sequence un → y0 = P⋂∞

n=1 Wn (u1) ∈ (
⋂∞

i=1 N(Ti)) ∩
(
⋂∞

i=1 F(Si)), as n → ∞.

Proof Copy Steps 1, 3, 4, 5, and 6 in Theorem 2.2 and make slight changes in the following
steps.

Step 2. Wn is a nonempty closed and convex subset of E for n ∈ N .
Since ϕ(z, wn,i) ≤ αnϕ(z, u1) + (1 – αn)ϕ(z, vn,i) is equivalent to 〈z, 2αnJu1 + 2(1 – αn)Jvn,i –

2Jwn,i〉 ≤ αn‖u1‖2 + (1 – αn)‖vn,i‖2 – ‖wn,i‖2, then it is easy to see that Wn,i is closed and
convex for i, n ∈ N . Thus Wn is closed and convex for n ∈ N .
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Next, we shall use inductive method to show that (
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)) ⊂ Wn for
n ∈ N , which ensures that Wn 	= ∅ for n ∈ N .

In fact, ∀p ∈ (
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)).
If n = 1, it is obvious that p ∈ W1 = E. Then, from the definition of weakly relatively

non-expansive mappings, we have

ϕ(p, w1,i) ≤ α1ϕ(p, u1) + (1 – α1)ϕ(p, Siv1,i)

≤ α1ϕ(p, u1) + (1 – α1)ϕ(p, v1,i).

Combining this with Step 1, we know that p ∈ W2,i for i ∈ N . Therefore, p ∈ W2.
Suppose the result is true for n = k + 1. Then, if n = k + 2, we know from Step 1 that

p ∈ Vk+2,i for i, k ∈ N . Moreover,

ϕ(p, wk+1,i) ≤ αk+1ϕ(p, u1) + (1 – αk+1)ϕ(p, Sivk+1,i)

≤ αk+1ϕ(p, u1) + (1 – αk+1)ϕ(p, vk+1,i),

which implies that p ∈ Wk+2,i and then p ∈ (
⋂∞

i=1 Wk+2,i) ∩ Wk+1 = Wk+2. Therefore, by
induction, ∅ 	= (

⋂∞
i=1 N(Ti)) ∩ (

⋂∞
i=1 F(Si)) ⊂ Wn for n ∈ N .

Step 7. wn,i – un → 0 for i ∈ N , as n → ∞.
Since un+1 ∈ Un+1 ⊂ Wn+1, then in view of the facts that αn → 0 and Step 6,

ϕ(un+1, wn,i) ≤ αnϕ(un+1, u1) + (1 – αn)ϕ(un+1, vn,i) → 0,

as n → ∞, for i ∈ N . Lemma 1.12 implies that wn,i – un → 0 for i ∈ N , as n → ∞.
Step 8. y0 = P⋂∞

n=1 Wn (u1) ∈ (
⋂∞

i=1 N(Ti)) ∩ (
⋂∞

i=1 F(Si)).
In the same way as Step 8 in Theorem 2.2, we have y0 ∈ ⋂∞

i=1 N(Ti). Since wn,i =
J–1[αnJu1 + (1 – αn)JSivn,i], then Sivn,i → y0, as n → ∞. Thus in view of Lemma 1.6,
y0 ∈ ⋂∞

i=1 F(Si).
This completes the proof. �

Corollary 2.6 If i ≡ 1, denote by T the maximal monotone mapping and by S the weakly
relatively non-expansive mapping, then Algorithm 2.2 reduces to the following:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ E, ε1 ∈ E,

vn = (J + snT)–1J(un + εn),

wn = J–1[αnJu1 + (1 – αn)JSvn],

V1 = W1 = E,

Vn+1 = {z ∈ E : 〈vn – z, J(un + εn) – Jvn〉 ≥ 0} ∩ Vn,

Wn+1 = {z ∈ Vn+1 : ϕ(z, wn) ≤ αnϕ(z, u1) + (1 – αn)ϕ(z, vn)} ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N ,

where {εn} ⊂ E, {sn} ⊂ (0,∞), {τn} ⊂ (0,∞) and {αn} ⊂ (0, 1). Then
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(1) Similar to Theorem 2.4, if vn = un + εn and wn = J–1[αnJu1 + (1 – αn)J(un + εn)], then
un + εn ∈ N(T) ∩ F(S) for all n ∈ N .

(2) Suppose that E, {εn}, {τn}, and {αn} satisfy the same conditions as those in
Theorem 2.5. If N(T) ∩ F(S) = ∅ and infn sn > 0, then the iterative sequence
un → y0 = P⋂∞

n=1 Wn (u1) ∈ N(T) ∩ F(S) as n → ∞.

Remark 2.7 Compared to the existing related work, e.g., [12–14], strongly relatively non-
expansive mappings are extended to weakly relatively non-expansive mappings. Moreover,
in our paper, the discussion on this topic is extended to the case of infinite maximal mono-
tone mappings and infinite weakly relatively non-expansive mappings.

Remark 2.8 Calculating the generalized projection �Hn∩Vn∩Wn (x1) in [12] or �Hn∩Vn (x1)
in [13] is replaced by calculating the projection PWn+1 (u1) in Step 3 in our Algorithms 2.1
and 2.2, which makes the computation easier.

Remark 2.9 A new proof technique for finding the limit y0 = P⋂∞
n=1 Wn (u1) is employed

in our paper by examining the properties of the projective sets Wn sufficiently, which is
quite different from that for finding the limit �N(T)∩F(S)(x1) in [12] or �N(A)∩F(S)∩F(T)(x1)
in [13].

Remark 2.10 Theoretically, the projection is easier for calculating than the generalized
projection in a general Banach space since the generalized projection involves a Lyapunov
functional. In this sense, iterative algorithms constructed in our paper are new and more
efficient.

2.2 Special cases in Hilbert spaces and computational experiments
Corollary 2.11 If E reduces to a Hilbert space H, then iterative Algorithm 2.1 becomes the
following one:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ H , ε1 ∈ H ,

vn,i = (I + sn,iTi)–1(un + εn),

wn,i = αnun + (1 – αn)Sivn,i,

V1 = W1 = H ,

Vn+1,i = {z ∈ H : 〈vn,i – z, un + εn – vn,i〉 ≥ 0},
Vn+1 = (

⋂∞
i=1 Vn+1,i) ∩ Vn,

Wn+1,i = {z ∈ Vn+1,i : ‖z – wn,i‖2 ≤ αn‖z – un‖2 + (1 – αn)‖z – vn,i‖2},
Wn+1 = (

⋂∞
i=1 Wn+1,i) ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N .

(2.1)

The results of Theorems 2.1 and 2.2 are true for this special case.
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Corollary 2.12 If E reduces to a Hilbert space H, then iterative Algorithm 2.2 becomes the
following one:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ H , ε1 ∈ H ,

vn,i = (I + sn,iTi)–1(un + εn),

wn,i = αnu1 + (1 – αn)Sivn,i,

V1 = W1 = H ,

Vn+1,i = {z ∈ H : 〈vn,i – z, un + εn – vn,i〉 ≥ 0},
Vn+1 = (

⋂∞
i=1 Vn+1,i) ∩ Vn,

Wn+1,i = {z ∈ Vn+1,i : ‖z – wn,i‖2 ≤ αn‖z – u1‖2 + (1 – αn)‖z – vn,i‖2},
Wn+1 = (

⋂∞
i=1 Wn+1,i) ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N .

(2.2)

The results of Theorems 2.4 and 2.5 are true for this special case.

Corollary 2.13 If, further i ≡ 1, then (2.1) and (2.2) reduce to the following two cases:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ H , ε1 ∈ H ,

vn = (I + snT)–1(un + εn),

wn = αnun + (1 – αn)Svn,

V1 = W1 = H ,

Vn+1 = {z ∈ H : 〈vn – z, un + εn – vn〉 ≥ 0} ∩ Vn,

Wn+1 = {z ∈ Vn+1 : ‖z – wn‖2 ≤ αn‖z – un‖2 + (1 – αn)‖z – un‖2} ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N ,

(2.3)

and

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ H , ε1 ∈ H ,

vn = (I + snT)–1(un + εn),

wn = αnu1 + (1 – αn)Svn,

V1 = W1 = H ,

Vn+1 = {z ∈ H : 〈vn – z, un + εn – vn〉 ≥ 0} ∩ Vn,

Wn+1 = {z ∈ Vn+1 : ‖z – wn‖2 ≤ αn‖z – u1‖2 + (1 – αn)‖z – un‖2} ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N .

(2.4)

The results of Corollaries 2.3 and 2.6 are true for the special cases, respectively.
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Remark 2.14 Take H = (–∞, +∞), Tx = 2x, and Sx = x for x ∈ (–∞, +∞). Let εn = αn =
τn = 1

n and sn = 2n–1 for n ∈ N . Then T is maximal monotone and S is weakly relatively
non-expansive. Moreover, N(T) ∩ F(S) = {0}.

Remark 2.15 Taking the example in Remark 2.14 and choosing the initial value u1 = 1 ∈
(–∞, +∞), we can get an iterative sequence {un} by algorithm (2.3) in the following way:

⎧

⎨

⎩

u1 = 1 ∈ (–∞, +∞),

un+1 = u1+vn–
√

(u1–vn)2+τn+1
2 , n ∈ N ,

(2.5)

where vn = un+εn
1+2sn

, n ∈ N . Moreover, un → 0 ∈ N(T) ∩ F(S), as n → ∞.

Proof We can easily see from iterative algorithm (2.3) that

vn =
un + εn

1 + 2sn
for n ∈ N (2.6)

and

wn = αnun + (1 – αn)vn for n ∈ N . (2.7)

To analyze the construction of set Wn, we notice that |z – wn|2 ≤ αn|z – un|2 + (1 –αn)|z –
vn|2 is equivalent to

[

2αnun + 2(1 – αn)vn – 2wn
]

z ≤ αnu2
n + (1 – αn)v2

n – w2
n. (2.8)

In view of (2.7), compute the left-hand side of (2.8):

[

2αnun + 2(1 – αn)vn – 2wn
]

z

=
[

2αnun + 2(1 – αn)vn – 2αnun – 2(1 – αn)vn
]

z

≡ 0 for n ∈ N . (2.9)

Meanwhile, compute the right-hand side of (2.8):

αnu2
n + (1 – αn)v2

n – w2
n

= αnu2
n + (1 – αn)v2

n – α2
nu2

n – 2αn(1 – αn)unvn – (1 – αn)2v2
n

= αn(1 – αn)u2
n + αn(1 – αn)v2

n – 2αn(1 – αn)unvn

= αn(1 – αn)(un – vn)2 for n ∈ N . (2.10)

Using (2.8)–(2.10), we get

Wn+1 = Vn+1 ∩ Wn for n ∈ N . (2.11)
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Next, we shall use inductive method to show that

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < vn+1 < vn < 1,

vn > 1
2n+1(n+1) ,

Vn+1 = (–∞, vn],

Wn+1 = Vn+1,

Un+1 = [u1 –
√

(u1 – vn)2 + τn+1, vn],

we may choose un+1 = u1+vn–
√

(u1–vn)2+τn+1
2 for n ∈ N .

(2.12)

In fact, if n = 1, then v1 = u1+ε1
1+2s1

= 2
3 , thus V2 = (–∞, v1] ∩ V1 = (–∞, v1]. From (2.11), W2 =

V2 ∩ W1 = V2. And then PW2 (u1) = v1 = 2
3 . So we have

U2 =
{

z ∈ W2 : |u1 – z| ≤
√

∣
∣PW2 (u1) – u1

∣
∣
2 + τ2

}

=
[

1 –
√

1
9

+
1
2

, 1 +
√

1
9

+
1
2

]

∩
(

–∞,
2
3

]

=
[

1 –
√

1
9

+
1
2

,
2
3

]

=
[

u1 –
√

(u1 – v1)2 + τ2, v1
]

.

Therefore, we may choose u2 ∈ U2 as follows:

u2 =
u1 + v1 –

√

(u1 – v1)2 + τ2

2
.

From (2.6), v2 = u2+ε2
1+2s2

= 4
15 –

√
22

60 . Then 0 < v2 < v1 < 1. And it is easy to see v1 > 1
21+1(1+1) .

Thus (2.12) is true for n + 1.
Suppose (2.12) is true for n = k, that is,

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < vk+1 < vk < 1,

vk > 1
2k+1(k+1) ,

Vk+1 = (–∞, vk],

Wk+1 = Vk+1,

Uk+1 = [u1 –
√

(u1 – vk)2 + τk+1, vk],

we may choose uk+1 = u1+vk –
√

(u1–vk )2+τk+1
2 .

Then, for n = k + 1, we first analyze the set Vk+2.
Note that uk+1 + εk+1 – vk+1 = (1 + 2sk+1)vk+1 – vk+1 = 2sk+1vk+1 > 0, then 〈vk+1 – z, uk+1 +

εk+1 – vk+1〉 ≥ 0 is equivalent to z ≤ vk+1. Then

Vk+2 = (–∞, vk+1] ∩ Vk+1 = (–∞, vk+1] ∩ (–∞, vk] = (–∞, vk+1].

From (2.11),

Wk+2 = Vk+2 ∩ Wk+1 = (–∞, vk+1] ∩ Vk+1 = Vk+2.
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Now, we analyze set Uk+2.
Since 0 < vk+1 < 1 = u1, then PWk+2 (u1) = vk+1. Thus |u1 – z| ≤ √|PWk+2 (u1) – u1|2 + τk+2

is equivalent to u1 –
√

(u1 – vk+1)2 + τk+2 ≤ z ≤ u1 +
√

(u1 – vk+1)2 + τk+2.
It is easy to check that u1 +

√

(u1 – vk+1)2 + τk+2 > 1 > vk+1, and u1 –
√

(u1 – vk+1)2 + τk+2 <
u1 – (u1 – vk+1) = vk+1.

Thus Uk+2 = [u1 –
√

(u1 – vk+1)2 + τk+2, vk+1]. Then we may choose uk+2 ∈ Uk+2 such that

uk+2 =
u1 + vk+1 –

√

(u1 – vk+1)2 + τk+2

2
.

Now, we show that vk+2 > 0.
Since

vk+2 =
uk+2 + εk+2

1 + 2sk+2

=
u1+vk+1–

√
(u1–vk+1)2+τk+2

2 + 1
k+2

1 + 2k+2

=
1

(k + 2)(1 + 2k+2)
+

1 + vk+1 –
√

(u1 – vk+1)2 + 1
k+2

2(1 + 2k+2)
,

then

vk+2 > 0 ⇔ 1
k + 2

+
1 + vk+1

2
>

√

(1 – vk+1)2 + 1
k+2

2

⇔ 1
(k + 2)2 +

1
k + 2

+
vk+1

k + 2
+ vk+1 >

1
4(k + 2)

,

which is obviously true. Thus vk+2 > 0.
Next, we show that vk+1 > 1

2k+2(k+2) .
Since vk+1 = uk+1+εk+1

1+2sk+1
= (k+1)uk+1

(k+1)(1+2k+1) + 1
(k+1)(1+2k+1) , then

vk+1 >
1

2k+2(k + 2)

⇔ (k + 1)uk+1 + 1 >
(k + 1)(1 + 2k+1)

2k+2(k + 2)

⇔ (k + 1)
1 + vk –

√

(1 – vk)2 + 1
k+1

2
>

k + 1 – k2k+1 – 3 · 2k+1

2k+2(k + 2)

⇔ (1 + vk) +
3 + k

(k + 1)(k + 2)
–

1
2k+1(k + 2)

>
√

(1 – vk)2 +
1

k + 1

⇔
[

3 + k
(k + 1)(k + 2)

–
1

2k+1(k + 2)

]2

+ 4vk + 2vk

[
3 + k

(k + 1)(k + 2)
–

1
2k+1(k + 2)

]

+ 2
[

3 + k
(k + 1)(k + 2)

–
1

2k+1(k + 2)

]

>
1
k

. (2.13)
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Note that

2
[

3 + k
(k + 1)(k + 2)

–
1

2k+1(k + 2)

]

–
1

k + 1
=

k2k+1 + 2k+3 – 2k – 2
2k+1(k + 1)(k + 2)

> 0,

then (2.13) is true, which implies that vk+1 > 1
2k+2(k+2) .

Finally, we show that vk+2 < vk+1.
From the definition of uk+2, we have uk+2 < 1+vk+1–(1–vk+1)

2 = vk+1. Then vk+2 < vk+1+ 1
k+2

1+2k+2 .

Since vk+1 > 1
2k+2(k+2) , then vk+1+ 1

k+2
1+2k+2 – vk+1 =

1
k+2 –2k+2vk+1

1+2k+2 < 0, which implies that vk+2 < vk+1.
Therefore, by induction, (2.12) is true for n ∈ N . Since 0 < vn+1 < vn < 1, then limn→∞ vn

exists. Set a = limn→∞ vn. From (2.12), limn→∞ un = a and from (2.6), a = 0. Then in view
of (2.7), limn→∞ wn = 0. That is, limn→∞ wn = limn→∞ vn = limn→∞ un = 0.

This completes the proof. �

Remark 2.16 We next do a computational experiment on (2.5) in Remark 2.15 to check
the effectiveness of iterative algorithm (2.3). By using the codes of Visual Basic Six, we get
Table 1 and Fig. 1, from which we can see the convergence of {un}, {vn}, and {wn}.

Table 1 Numerical results of {un}, {vn}, and {wn} with initial u1 = 1.0

n vn wn un

1 0.666666666666667 1.00000000000000 1.00000000000000
2 0.188493070669609 0.315479212008828 0.442465353348047
3 0.047734978022387 0.063917141637640 0.096281468868147
4 0.013887781581545 0.006938907907725 –0.01390771311373
5 0.005016751133393 –0.00287604161289 –0.03444721259803
6 0.002022073632571 –0.00418691873111 –0.03523188054954
7 0.000854971429905 –0.00391942854572 –0.03256582839944
8 0.000371596957448 –0.00362300404227 –0.02949958193595
9 0.000164574841194 –0.00281862431655 –0.02668421757849
10 0.000073908605586 –0.002357850182411 –0.02424367927438

Figure 1 Convergence of {un}, {vn}, and {wn}
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Remark 2.17 Similar to Remark 2.15, considering the same example in Remark 2.14 and
choosing the initial value u1 = 1 ∈ (–∞, +∞), we can get an iterative sequence {un} by
algorithm (2.4) in the following way:

⎧

⎨

⎩

u1 = 1 ∈ (–∞, +∞),

un+1 = u1+vn–
√

(u1–vn)2+τn+1
2 , n ∈ N ,

(2.14)

where vn = un+εn
1+2sn

and wn = αnu1 + (1 – αn)vn for n ∈ N . Then {un}, {vn}, and {wn} converge
strongly to 0 ∈ N(T) ∩ F(S), as n → ∞.

Remark 2.18 We do a computational experiment on (2.14) in Remark 2.17 to check the
effectiveness of iterative algorithm (2.4). By using the codes of Visual Basic Six, we get
Table 2 and Fig. 2, from which we can see the convergence of {un}, {vn}, and {wn}.

2.3 Applications to minimization problems
Let h : E → (–∞, +∞] be a proper convex, lower-semicontinuous function. The subdif-
ferential ∂h of h is defined as follows: ∀x ∈ E,

∂h(x) =
{

z ∈ E∗ : h(x) + 〈y – x, z〉 ≤ h(y),∀y ∈ E
}

.

Theorem 2.19 Let E, S, {εn}, {sn}, {τn}, and {αn} be the same as those in Corollary 2.3. Let
h : E → (–∞, +∞] be a proper convex, lower-semicontinuous function. Let {un} be gener-

Table 2 Numerical esults of {un}, {vn}, and {wn} with initial u1 = 1.0

n vn wn un

1 0.666666666666667 1.00000000000000 1.00000000000000
2 0.188493070669609 0.594246535334805 0.442465353348047
3 0.047734978022387 0.365156652014924 0.096281468868147
4 0.013887781581545 0.260415836186159 –0.01390771311373
5 0.005016751133393 0.204013400906715 –0.03444721259803
6 0.002022073632571 0.168351728027143 –0.03523188054954
7 0.000854971429905 0.143589975511347 –0.03256582839944
8 0.000371596957448 0.125325147337767 –0.02949958193595
9 0.000164574841194 0.111257399858839 –0.02668421757849
10 0.000073908605586 0.100066517745027 –0.02424367927438
11 0.000033552200238 0.090939592909307 –0.02216063262202
12 0.000015364834636 0.083347417765083 –0.02038360583157
13 0.000007086981657 0.076929618752290 –0.01885943628695
14 0.000003288762206 0.071431625279192 –0.01754220267938
15 0.000001534136645 0.066668098527535 –0.01639454294823
16 0.000000718881060 0.062500673950994 –0.01538669196834
17 0.000000338196904 0.058823847714733 –0.01449504667360
18 0.000000159662486 0.055555706347903 –0.01370083322728
19 0.000000075612039 0.052631650579827 –0.01298901840146
20 0.000000035908223 0.050000034112812 –0.01234746359706
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Figure 2 Convergence of {un}, {vn}, and {wn}

ated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ E, ε1 ∈ E,

vn = arg minz∈E{h(z) + 1
2sn

‖z‖2 – 1
sn

〈z, J(un + εn)〉},
wn = J–1[αnJun + (1 – αn)JSvn],

V1 = W1 = E,

Vn+1 = {z ∈ E : 〈vn – z, J(un + εn) – Jvn〉 ≥ 0} ∩ Vn,

Wn+1 = {z ∈ Vn+1 : ϕ(z, wn) ≤ αnϕ(z, un) + (1 – αn)ϕ(z, vn)} ∩ Wn,

Un+1 = {z ∈ Wn+1 : ‖u1 – z‖2 ≤ ‖PWn+1 (u1) – u1‖2 + τn+1},
un+1 ∈ Un+1, n ∈ N .

Then
(1) if vn = un + εn and wn = J–1[αnJun + (1 – αn)J(un + εn)] for all n ∈ N , then

un + εn ∈ N(∂h) ∩ F(S).
(2) If N(∂h) ∩ F(S) 	= ∅ and infn sn > 0, then the iterative sequence

un → yo = P⋂∞
n=1 Wn (u1) ∈ N(∂h) ∩ F(S), as n → ∞.

Proof Similar to [11], vn = arg minz∈E{h(z) + 1
2sn

‖z‖2 – 1
sn

〈z, J(un + εn)〉} is equivalent to
0 ∈ ∂h(vn) + 1

sn
Jun – 1

sn
J(un + εn). Then vn = (J + sn∂h)–1J(un + εn). So, Corollary 2.3 ensures

the desired results.
This completes the proof. �

Theorem 2.20 We only do the following changes in Theorem 2.19: wn = J–1[αnJu1 + (1 –
αn)JSvn] and Wn+1 = {z ∈ Vn+1 : ϕ(z, wn) ≤ αnϕ(z, u1) + (1 – αn)ϕ(z, vn)} ∩ Wn. Then, under
the assumptions of Corollary 2.6, we still have the result of Theorem 2.19.
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