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Abstract
In this paper, we consider a kind of p-Laplacian neutral Rayleigh equation with
singularity of attractive type,

(φp(u(t) – cu(t – δ))′
)
′ + f (t,u′(t)) + g(t,u(t)) = e(t).

By applications of an extension of Mawhin’s continuation theorem, sufficient
conditions for the existence of periodic solution are established.
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1 Introduction
As is well known, the Rayleigh equation can be derived from many fields, such as physics,
mechanics and engineering technique fields, and an important question is whether this
equation can support periodic solutions. In 1977, Gaines and Mawhin [1] introduced some
continuation theorems and applied this theorem to discussing the existence of solutions
for the Rayleigh equation [1, p. 99]

u′′ + f
(
u′) + g(t, u) = 0.

Gaines and Mawhin’s work has attracted the attention of many scholars in the field of the
Rayleigh equations. More recently, the existence of periodic solutions for Rayleigh equa-
tion was extensively studied (see [2–11] and the references therein). Some classical tools
have been used to study Rayleigh equation in the literature, including the method of upper
and lower solutions [6], the time map continuation theorem [7, 9], fixed point theory [4],
the Manásevich–Mawhin continuation theorem [10, 11], and coincidence degree theory
[2, 3, 5, 8].

Recently there have been published some results on singular Rayleigh equations [12–
16]. In 2015, Wang and Ma [15] investigated the following singular Rayleigh equation:

u′′ + f
(
t, u′) + g(u) = p(t),
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where g had a repulsive singularity at the origin, i.e.,

lim
u→0+

g(u) = –∞. (1.1)

By applications of the limit properties of the time map, the authors obtained the result
of the existence of periodic solution for this equation. Afterwards, by using topological
degree theory, Chen and Lu [12] discussed that the existence of periodic solution for the
following singular Rayleigh equations:

u′′ + f
(
t, u′) + ϕ(t)u(t) –

1
ur(t)

= h(t). (1.2)

The authors found new methods for estimating a lower priori bounds of periodic solutions
to equation (1.2). Recently, Xin and Cheng [16] investigated a kind of neutral Rayleigh
equation with singularity of repulsive type,

(
u(t) – cu(t – δ)

)′′ + f
(
t, u′(t)

)
+ g

(
t, u(t)

)
= e(t), (1.3)

where g(t, u) = g1(t, u) + g0(u) and g0 had a strong singularity at u = 0, i.e.,

lim
u→0+

∫ u

1
g0(s) ds = +∞. (1.4)

By applications of coincidence degree theory, the authors found the existence of positive
periodic solution for equation (1.3).

All the aforementioned results are related to Rayleigh equation or neutral Rayleigh equa-
tion with singularity of repulsive type. Naturally, a new question arises: how p-Laplacian
neutral Rayleigh equation works on singularity of attractive type? Besides practical inter-
ests, the topic has obvious intrinsic theoretical significance. To answer this question, in
this paper, we consider a kind of p-Laplacian neutral Rayleigh equation with singularity of
attractive type,

(
φp

(
u(t) – cu(t – δ)

)′)′ + f
(
t, u′(t)

)
+ g

(
t, u(t)

)
= e(t), (1.5)

where p > 1, ϕp(u) = |u|p–2u for u �= 0 and ϕp(0) = 0; |c| �= 1 and δ is a constant with 0 ≤
δ < ω; e : R → R is continuous periodic functions with e(t + ω) – e(t) ≡ 0 and

∫ T
0 e(t) dt =

0; f is for continuous functions defined on R
2 and periodic in t with f (t, ·) = f (t + ω, ·)

and f (t, 0) = 0, g(t, u) = g0(u) + g1(t, u), here g1 : R × (0, +∞) → R is an L2-Carathéodory
function, g1(t, ·) = g1(t + ω, ·); g0 ∈ C((0,∞);R) has an attractive singularity at the origin,
i.e.,

lim
u→0+

∫ u

1
g0(s) ds = –∞. (1.6)

Obviously, the attractive condition (1.6) is in contradiction with the repulsive singularity
of (1.1) and (1.4). Therefore, the above methods of [12, 15, 16] are no long applicable to
the proof of existence of a periodic solution for (1.5) with singularity of attractive type. So
we need to find a new method to get over it.
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In this paper, by applications of an extension of Mawhin’s continuation theorem in [17]
and some analysis techniques, we see the existence of a positive periodic solution for (1.5).
Our results improve and extend the results in [12, 15, 16].

2 Preliminary lemmas
For convenience, define

C1
ω =

{
u ∈ C1(R,R) : u(t + ω) = u(t)

}
,

which is a Banach space endowed with the norm ‖ · ‖ define by ‖u‖ = max{‖u‖∞,‖u′‖∞},
for all x, and

‖u‖∞ = max
t∈[0,ω]

∣
∣u(t)

∣
∣,

∥
∥u′∥∥∞ = max

t∈[0,ω]

∣
∣u′(t)

∣
∣.

Lemma 2.1 (see [18]) If |c| �= 1, then the operator (Au)(t) := u(t)–cu(t –δ) has a continuous
inverse A–1 on the space Cω , and satisfying

(
A–1f

)
(t) =

⎧
⎨

⎩
f (t) +

∑∞
j=1 cjf (t – jδ), for |c| < 1,∀f ∈ Cω,

– f (t+δ)
c –

∑∞
j=1

1
cj+1 f (t + (j + 1)δ), for |c| > 1,∀f ∈ Cω.

Lemma 2.2 If |c| �= 1, then operator A–1 satisfying

∫ ω

0

∣
∣(A–1f

)
(t)

∣
∣p dt ≤ 1

|1 – |c||p
∫ ω

0

∣
∣f (t)

∣
∣p dt, ∀f ∈ Cω, here 1 ≤ p < ∞.

Proof We first consider |c| < 1. From Lemma 2.1, we have

∫ ω

0

∣∣(A–1f
)
(t)

∣∣p dt =
∫ ω

0

∣
∣∣
∣∣

∞∑

j=0

cjf (t – jδ)

∣
∣∣
∣∣

p

dt

≤
∫ ω

0

( ∞∑

j=0

∣∣cjf (t – jδ)
∣∣
)p

dt

≤ 1
(1 – |c|)p

∫ ω

0

∣
∣f (t)

∣
∣p dt.

Similarly, for |c| > 1, we can get

∫ ω

0

∣
∣(A–1f

)
(t)

∣
∣p dt ≤ 1

(|c| – 1)p

∫ ω

0

∣
∣f (t)

∣
∣p dt.

Therefore, we have

∫ T

0

∣
∣(A–1f

)
(t)

∣
∣p dt ≤ 1

|1 – |c||p
∫ T

0

∣
∣f (t)

∣
∣p dt. �

Lemma 2.3 (see [19]) If u ∈ C1
ω(R,R), and there exists a point t∗ ∈ [0,ω] such that |u(t∗)| <

d, then

‖u‖∞ ≤ d +
1
2

∫ ω

0

∣
∣u(t)

∣
∣′ dt
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and

(∫ ω

0

∣∣u(t)
∣∣p dt

) 1
p

≤
(

ω

πp

)(∫ ω

0

∣∣u′(t)
∣∣2 dt

) 1
p

+ dω
1
p ,

where 1 ≤ p < ∞, πp = 2
∫ (p–1)/p

0
ds

(1– sp
p–1 )1/p = 2π (p–1)1/p

p sin(π/p) .

The following lemma involves the consequences of Theorem 3.1 of [17].

Lemma 2.4 Assume that condition |c| �= 1, � is an open bounded set in C1
ω . If:

(i) for each λ ∈ (0, 1) the equation

(
φp(Au)′(t)

)′ + λf
(
t, u′(t)

)
+ λg

(
t, u(t)

)
= λe(t) (2.1)

has no solution on ∂�;
(ii) the equation

F(a) :=
1
ω

∫ ω

0
g(t, a) dt = 0

has no solution on ∂� ∩R;
(iii) the Brouwer degree

deg{F ,� ∩R, 0} �= 0,

then Eq. (2.1) has at least one periodic solution on �̄.

3 Main results: positive periodic solution for (1.5)
In this section, we will consider the existence of a positive periodic solution for (1.5) with
singularity.

Theorem 3.1 Assume that the following conditions hold:
(H1) there exists a positive constant K such that |f (t, v)| ≤ K , for (t, v) ∈R×R;
(H2) there exist positive constants D1 and D2 with D1 > D2 > 0 such that g(t, u) < –K for

(t, u) ∈R× (D1, +∞) and g(t, u) > K for (t, u) ∈R× (0, D2);
(H3) there exist positive constants a, b such that

–g(t, u) ≤ aup–1 + b, for all u > 0.

Then (1.5) has at least one positive solution with period ω if ω(1+|c|)
1
p a

1
p

|1–|c|| < 2
p–1

p .

Proof Firstly, we will claim that the set of all possible ω-periodic solutions of (2.1) is
bounded. Let u(t) ∈ C1

ω be an arbitrary solution of (2.1) with period ω.
We claim that there exists a point t0 ∈ [0,ω] such that

0 < u(t0) ≤ D1. (3.1)
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Integrating both sides of (2.1) over [0,ω], we have

∫ ω

0

[
f
(
t, u′(t)

)
+ g

(
t, u(t)

)]
dt = 0. (3.2)

Therefore, from (H1), we have

–Kω ≤
∫ ω

0
g
(
t, u(t)

)
dt ≤ Kω.

From (H2), we know that there exist two points t0, τ ∈ (0, T), such that

u(t0) ≤ D1, and u(τ ) > D2. (3.3)

Since u(t) > 0, t ∈ [0,ω], we get 0 < u(t0) ≤ D1. Equation (3.1) is proved.
Then, from Lemma 2.3, we have

‖u‖∞ ≤ D1 +
1
2

∫ ω

0

∣∣u′(s)
∣∣ds. (3.4)

Multiplying both sides of (2.1) by (Au)(t) and integrating over [0,ω], we get

∫ ω

0

(
φp(Au)′(t)

)′(Au)(t) dt + λ

∫ ω

0
f
(
t, u′(t)

)
(Au)(t) dt + λ

∫ ω

0
g
(
t, u(t)

)
(Au)(t) dt

= λ

∫ ω

0
e(t)(Au)(t) dt,

i.e.
∫ ω

0

∣∣(Au)′(t)
∣∣p dt = λ

∫ ω

0
f
(
t, u′(t)

)
(Au)(t) dt + λ

∫ ω

0
g
(
t, u(t)

)
(Au)(t) dt

– λ

∫ ω

0
e(t)(Au)(t) dt. (3.5)

From (H1), we have
∫ ω

0

∣
∣(Au)′(t)

∣
∣p dt

≤ (
1 + |c|)

∫ ω

0

∣∣f
(
t, u′(t)

)∣∣∣∣u(t)
∣∣dt +

∫ ω

0

∣∣g
(
t, u(t)

)∣∣∣∣u(t)
∣∣dt +

∫ ω

0

∣∣e(t)
∣∣∣∣u(t)

∣∣dt

≤ (
1 + |c|)‖u‖∞

(∫ ω

0

∣∣f
(
t, u′(t)

)∣∣dt +
∫ ω

0

∣∣g
(
t, u(t)

)∣∣dt +
∫ ω

0

∣∣e(t)
∣∣dt

)

≤ (
1 + |c|)‖u‖∞

(
Kω + ‖e‖∞ω +

∫ ω

0

∣∣g
(
t, u(t)

)∣∣dt
)

. (3.6)

We get from (H1), (H3) and (3.2)

∫ ω

0

∣∣g
(
t, u(t)

)∣∣dt =
∫

g(t,u(t))≥0
g+(

t, u(t)
)

dt –
∫

g(t,u(t))≤0
g–(

t, u(t)
)

dt

= –2
∫

g(t,u(t))≤0
g–(

t, u(t)
)

dt +
∫ ω

0
f
(
t, u′(t)

)
dt
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≤ 2a
∫ ω

0

∣∣u(t)
∣∣p–1 dt + 2bω + Kω

≤ 2aω‖u‖p–1
∞ + 2bω + Kω, (3.7)

where g– := min{g(t, u), 0}. Substituting (3.4) and (3.7) into (3.6), we have

∫ ω

0

∣∣(Au)′(t)
∣∣p dt ≤ (

1 + |c|)‖u‖∞
(
2aω‖u‖p–1

∞ + 2bω + 2Kω + ‖e‖∞ω
)

= 2
(
1 + |c|)aω‖u‖p

∞ +
(
1 + |c|)N1‖u‖∞

≤ 2
(
1 + |c|)aω

(
D1 +

1
2

∫ ω

0

∣∣u′(t)
∣∣dt

)p

+
(
1 + |c|)N1

(
D1 +

1
2

∫ ω

0

∣
∣u′(t)

∣
∣dt

)

=
(1 + |c|)aω

2p–1

(
1 +

2D1∫ ω

0 |u′(t)|dt

)p(∫ ω

0

∣
∣u′(t)

∣
∣dt

)p

+
1
2
(
1 + |c|)N1

∫ ω

0

∣
∣u′(t)

∣
∣dt +

(
1 + |c|)N1D1,

where N1 := 2bω + 2Kω + ‖e‖∞ω. For a given constant ζ > 0, which is only dependent on
k > 0, we have

(1 + u)k ≤ 1 + (1 + k)u, for u ∈ [0, ζ ].

Therefore, we have

∫ ω

0

∣
∣(Au)′(t)

∣
∣p dt ≤ (1 + |c|)aω

2p–1

(
1 +

2D1p
∫ ω

0 |u′(t)|dt

)(∫ ω

0

∣
∣u′(t)

∣
∣dt

)p

+
1
2
(
1 + |c|)N1

∫ ω

0

∣
∣u′(t)

∣
∣dt +

(
1 + |c|)N1D1

=
(1 + |c|)aω

2p–1

(∫ ω

0

∣∣u′(t)
∣∣dt

)p

+
(1 + |c|)aωD1p

2p–2

(∫ ω

0

∣∣u′(t)
∣∣dt

)p–1

+
1
2
(
1 + |c|)N1

∫ ω

0

∣
∣u′(t)

∣
∣dt +

(
1 + |c|)N1D1. (3.8)

By application of Lemma 2.1, we have

∫ ω

0

∣∣u′(t)
∣∣dt =

∫ ω

0

∣∣(A–1Au′)(t)
∣∣dt

≤
∫ ω

0 |(Au)′(t)|dt
|1 – |c||

≤ ω
1
q (

∫ ω

0 |(Au)′(t)|p dt)
1
p

|1 – |c|| , (3.9)

since (Au′)(t) = (Au)′(t) and 1
p + 1

q = 1. Apply the inequality

(a + b)k ≤ ak + bk , for a, b > 0, 0 < k < 1.
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Substituting (3.8) into (3.9), we have

∫ ω

0

∣∣u′(t)
∣∣dt ≤ ω

1
q ( (1+|c|)aω

2p–1 )
1
p
∫ ω

0 |u′(t)|dt + ω
1
q ( (1+|c|)aωD1p

2p–2 )
1
p (

∫ ω

0 |u′(t)|dt)
p–1

p

|1 – |c||

+
ω

1
q ( 1

2 (1 + |c|)N1
∫ ω

0 |u′(t)|dt)
1
p + ω

1
q ((1 + |c|)N1D1)

1
p

|1 – |c|| .

Since ω(1+|c|)
1
p a

1
p

|1–|c|| < 2
p–1

p , it is easy to see that there exists a positive constant M′
1 such that

∫ ω

0

∣∣u′(t)
∣∣dt ≤ M′

1. (3.10)

From (3.4) and (3.10), we have

‖u‖∞ ≤ D1 +
1
2

∫ ω

0

∣∣u′(t)
∣∣dt ≤ D1 +

1
2

M′
1 := M1. (3.11)

As (Au)(0) = (Au)(ω), there exists t1 ∈ [0,ω] such that (Au)′(t1) = 0, while φp(0) = 0, we
have

∣∣φp
(
(Au)′(t)

)∣∣ =
∣∣∣
∣

∫ t

t1

(
φp

(
(Au)′(s)

))′ ds
∣∣∣
∣

≤ λ

∫ ω

0

∣∣f
(
t, u′(t)

)∣∣dt + λ

∫ ω

0

∣∣g
(
t, u(t)

)∣∣dt + λ

∫ ω

0

∣∣e(t)
∣∣dt, (3.12)

where t ∈ [t1, t1 + ω]. In view of (H1), (3.7) and (3.12), we have

∥∥φp(Au)′
∥∥∞ = max

t∈[0,ω]

{∣∣φp
(
(Au)′(t)

)∣∣∞
}

= max
t∈[t1,t1+ω]

{∣∣
∣∣

∫ t

t1

(
φp

(
(Au)′(s)

))′ ds
∣∣
∣∣

}

≤ λ

(∫ ω

0

∣
∣f

(
t, u′(t)

∣
∣dt +

∫ ω

0

∣
∣g

(
t, u(t)

)∣∣dt +
∫ ω

0

∣
∣e(t)

∣
∣dt

)

≤ λ
(
Kω + 2aω‖u‖p–1

∞ + 2bω + Kω + ‖e‖∞ω
)

≤ λ
(
2aωMp–1

1 + 2Kω + 2bω + ‖e‖∞ω
)

:= λM′
2. (3.13)

We claim that there exists a positive constant M2 > M′
2 + 1 such that, for all t ∈ R,

∥
∥u′∥∥∞ ≤ M2. (3.14)

In fact, if u′ is not bounded, there exists a positive constant M′′
2 such that ‖u′‖∞ > M′′

2 for
some u′ ∈R. Therefore, we have

∥∥φp(Au)′
∥∥∞ =

∥∥φp
(
Au′)∥∥∞ =

∥∥Au′∥∥p–1
∞

=
(
1 + |c|)p–1∥∥u′∥∥p–1

∞ ≥ (
1 + |c|)p–1M′′p–1

2 := M∗
2.

Then it is a contradiction. So (3.14) holds.



Xin et al. Journal of Inequalities and Applications  (2018) 2018:58 Page 8 of 11

On the other hand, it follows by (2.1) that

(
φp(Au)′(t)

)′ + λf
(
t, u′(t)

)
+ λ

(
g0

(
u(t)

)
+ g1

(
t, u(t)

))
= λe(t). (3.15)

Multiplying both sides of (3.15) by u′(t) we get

(
φp(Au)′(t)

)′u′(t) + λf
(
t, u′(t)

)
u′(t) + λ

(
g0

(
u(t)

)
+ g1

(
t, u(t)

))
u′(t)

= λe(t)u′(t). (3.16)

Let τ ∈ [0,ω] be as in (3.3), for any τ ≤ t ≤ ω, we integrate (3.16) on [τ , t] and get

λ

∫ u(t)

u(τ )
g0(v) dv = λ

∫ t

τ

g0
(
u(s)

)
u′(s) ds

= –
∫ t

τ

(
φp(Au)′(s)

)′u′(s) ds – λ

∫ t

τ

f
(
s, u′(s)

)
u′(s) ds

– λ

∫ t

τ

g1
(
s, u(s)

)
u′(s) ds + λ

∫ t

τ

e(s)u′(s) ds. (3.17)

By (3.7), (3.11) and (3.14), we have

∣
∣∣
∣

∫ t

τ

(
φp(Au)′(s)

)′u′(s) ds
∣
∣∣
∣

≤
∫ T

0

∣
∣(φp(Au)′(s)

)′∣∣∣∣u′(s)
∣
∣ds

≤ λ
∥
∥u′∥∥∞

(∫ ω

0

∣
∣f

(
t, u′(t)

)
dt +

∫ ω

0

∣
∣g

(
t, u(t)

)∣∣dt +
∫ ω

0

∣
∣e(t)

∣
∣dt

)

≤ λM2
(
Kω + 2aω|u‖p–1

∞ + 2bω + Kω + ‖e‖∞ω
)

≤ λM2
(
2Kω + 2aωMp–1

1 + 2bω + ‖e‖∞ω
)
.

Moreover, from (H1) and (3.14)

∣∣
∣∣

∫ t

τ

f
(
s, u′(s)

)
u′(s) ds

∣∣
∣∣ ≤

∫ T

0

∣
∣f

(
s, u′(s)

)∣∣
∣
∣u′(s)

∣
∣ds ≤ KM2ω,

∣
∣∣
∣

∫ t

τ

g1
(
s, u(s)

)
u′(s) ds

∣
∣∣
∣ ≤

∫ T

0

∣∣g1
(
s, u(s)

)∣∣∣∣u′(s)
∣∣ds ≤ M2|gM1 |

√
ω,

where gM1 = max0≤u≤M1 |g1(t, u)| ∈ L2(0,ω).

∣∣
∣∣

∫ t

τ

e(s)u′(s) ds
∣∣
∣∣ ≤

∫ ω

0

∣
∣e(s)

∣
∣
∣
∣u′(s)

∣
∣ds ≤ ‖e‖∞ωM2.

With these inequalities we can derive from (3.17) that

∣∣∣
∣

∫ u(t)

u(τ )
g0(v) dv

∣∣∣
∣ ≤ M2

(
3Kω + 2aωMp–1

1 + 2bω + 2‖e‖∞ω + |gM1 |
√

ω
)
.
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In view of (1.6), we know there exists M3 > 0 such that

u(t) ≥ M3, ∀t ∈ [τ ,ω]. (3.18)

The case t ∈ [0, τ ] can be treated similarly.
Having in mind (3.11), (3.14) and (3.18), we define

� =
{

u ∈ X : E1 < u(t) < E2 and
∣
∣u′(t)

∣
∣ < E3 ∀t ∈R

}
,

where 0 < E1 < min{D2, M3}, E2 > max{M1, D1} and E3 > M2. We know that (2.1) has no
solution on ∂� as λ ∈ (0, 1) and when u(t) ∈ ∂� ∩R, u(t) = E2 or u(t) = E1, from (3.4), we
know that E2 + 1 > D1; therefore, from (H2) we see that

1
ω

∫ ω

0
g(t, E2) dt < 0

and

1
ω

∫ ω

0
g(t, E1) dt > 0.

So condition (ii) is also satisfied. Set

H(u,μ) = μu + (1 – μ)
1
ω

∫ ω

0
g(t, u) dt,

where x ∈ ∂� ∩R, μ ∈ [0, 1], we have

uH(u,μ) = μu2 + (1 – μ)
u
ω

∫ ω

0
g(t, u) dt �= 0,

and thus H(u,μ) is a homotopic transformation and

deg{F ,� ∩R, 0} = deg

{
1
ω

∫ ω

0
g(t, u) dt,� ∩R, 0

}

= deg{u,� ∩R, 0} �= 0.

So condition (iii) is satisfied. In view of Lemma 2.1, there exists a solution with period ω. �

4 Example
Example 4.1 Consider the following p-Laplacian neutral Rayleigh equation with singular-
ity:

(
φp

(
u(t) –

1
4

u(t – δ)
)′)′

– cos2(2t) sin u′(t) –
1

3π4 (sin 4t + 2)u3(t) +
1

uμ

= sin2(2t), (4.1)

where μ ≥ 1 and p = 4, δ is a constant and 0 ≤ δ < ω.
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It is clear that ω = π
2 , c = 1

4 , e(t) = sin2(2t), f (t, v) = – cos2(2t) sin v, g(t, u) = – 1
3π3 (sin 4t +

2)u4(t) + 1
uμ(t) . Choose K = 1, D1 = 2, D2 = 1, a = 1

π4 , it is obvious that (H1), (H2) and (H3)
hold. Next, we consider

ω(1 + |c|) 1
p a

1
p

2
p–1

p |1 – |c||

=
π
2 (1 + 1

4 ) 1
4 ( 1

π4 ) 1
4

2 3
4 (1 – 1

4 )

≈ 1.057
1.783

< 1.

Therefore, by Theorem 3.1, (4.1) has at least one nonconstant π
2 -periodic solution.

5 Conclusions
In this article we introduce the existence of a periodic solution for a p-Laplacian neu-
tral Rayleigh equation with singularity of attractive type. Due to the attractive condition
being in contradiction with the repulsive condition, the methods of [12, 15, 16] are no
long applicable to the proof of a periodic solution for equation (1.5) with singularity of at-
tractive singularity. In this paper, we give attractive conditions (1.6) and (H3), and we see
the existence of a periodic solution for (1.5) by applications of the extension of Mawhin’s
continuation theorem [17]. Moreover, in view of the mathematical points, the results sat-
isfying the conditions of an attractive singularity are valuable to understand the periodic
solution for Rayleigh equations.
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