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Abstract
The goal of compressed sensing is to reconstruct a sparse signal under a few linear
measurements far less than the dimension of the ambient space of the signal.
However, many real-life applications in physics and biomedical sciences carry some
strongly nonlinear structures, and the linear model is no longer suitable. Compared
with the compressed sensing under the linear circumstance, this nonlinear
compressed sensing is much more difficult, in fact also NP-hard, combinatorial
problem, because of the discrete and discontinuous nature of the �0-norm and the
nonlinearity. In order to get a convenience for sparse signal recovery, we set the
nonlinear models have a smooth quasi-linear nature in this paper, and study a
non-convex fraction function ρa in this quasi-linear compressed sensing. We propose
an iterative fraction thresholding algorithm to solve the regularization problem (QPλ

a )
for all a > 0. With the change of parameter a > 0, our algorithm could get a promising
result, which is one of the advantages for our algorithm compared with some
state-of-art algorithms. Numerical experiments show that our method performs
much better than some state-of-the-art methods.
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1 Introduction
In compressed sensing (see, e.g., [1, 2]), the problem of reconstructing a sparse signal un-
der a few linear measurements which are far fewer than the dimension of the ambient
space of the signal can be modeled into the following �0-minimization:

(P0) min
x∈Rn

‖x‖0 subject to Ax = b, (1)

where A ∈ R
m×n is an m × n real matrix of full row rank with m < n, and b ∈ R

m is a
nonzero real vector of m-dimension, and ‖x‖0 is the �0-norm of the real vector x, which
counts the number of the nonzero entries in x (see, e.g., [3–5]). In general, the problem (P0)
is computational and NP-hard because of the discrete and discontinuous nature of the �0-
norm. However, many real-life applications in physics and biomedical sciences carry some
strongly nonlinear structures [6], so that the linear model in problem (P0) is no longer suit-
able. In this nonlinear case, we consider a map A : Rn →R

m, which is no longer necessarily
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linear, and reconstruct a sparse vector x ∈R
n from the measurements b ∈R

m given by

A(x) = b. (2)

Compared with the �0-minimization under the linear circumstance, this nonlinear mini-
mization is much more difficult, in fact also NP-hard, combinatorial problem, because of
the discrete and discontinuous nature of the �0-norm and the nonlinearity. In order to get
a convenience for sparse signal recovery, in this paper, we set the nonlinear models have
a smooth quasi-linear nature. By this means, there exists a Lipschitz map

F : Rn →R
m×n (3)

such that

A(x) = F(x)x (4)

for all x ∈R
n. So, the �0-minimization under the quasi-linear case can be mathematically

viewed as the following form:

(QP0) min
x∈Rn

‖x‖0 subject to F(x)x = b. (5)

In fact, the minimization (QP0) under the quasi-linear case is also combinatorial and NP-
hard [6, 7]. To overcome this problem, the authors in [6, 7] proposed the �1-minimization

(QP1) min
x∈Rn

‖x‖1 subject to F(x)x = b (6)

for the constrained problem and

(
QPλ

1
)

min
x∈Rn

{∥∥F(x)x – b
∥
∥2

2 + λ‖x‖1
}

(7)

for the regularization problem, where ‖x‖1 =
∑n

i=1 |xi| is the �1-norm of vector x.
In [6, 7], the authors have shown that the �1-norm minimization can really make an ex-

act recovery in some specific conditions. In general, however, these conditions are always
hard to satisfied in practice. Moreover, the regularization problem (QPλ

1 ) always leads to
a biased estimation by shrinking all the components of the vector toward zero simulta-
neously, and sometimes results in over-penalization in the regularization model (QPλ

1 ) as
the �1-norm in linear compressed sensing.

In pursuit of better reconstruction results, in this paper, we propose the following frac-
tion minimization:

(
QPλ

a
)

min
x∈Rn

{∥∥F(x)x – b
∥∥2

2 + λPa(x)
}

, (8)

where

Pa(x) =
n∑

i=1

ρa(xi), a > 0 (9)



Cui et al. Journal of Inequalities and Applications  (2018) 2018:59 Page 3 of 11

Figure 1 Behavior of the fraction function ρa(t) for
various values of a > 0

and

ρa(t) =
a|t|

a|t| + 1
(10)

is the fraction function which performs outstanding in image restoration [8], linear com-
pressed sensing [9] and matrix rank minimization problem [10]. Clearly, with the change
of parameter a > 0, the non-convex function Pa(x) could approximately interpolate the
�0-norm

lim
a→+∞ρa(xi) =

⎧
⎨

⎩
0 if xi = 0;

1 if xi �= 0.
(11)

Figure 1 shows the behavior of the fraction function ρa(t) for various values of a > 0.
The rest of this paper is organized as follows. Some preliminary results that are used in

this paper are given in Sect. 2. In Sect. 3, we propose an iterative fraction thresholding al-
gorithm to solve the regularization problem (QPλ

a) for all a > 0. In Sect. 3, we present some
numerical experiments to demonstrate the effectiveness of our algorithm. The concluding
remarks are presented in Sect. 4.

2 Preliminaries
In this section, we give some preliminary results that are used in this paper.

Define a function of β ∈R as

fλ(β) = (β – γ )2 + λρa(β) (12)

and let

proxβ

a,λ(γ ) � arg min
β∈R

fλ(β). (13)

Lemma 1 (see [9–11]) The operator proxβ

a,λ defined in (13) can be expressed as

proxβ

a,λ(γ ) =

⎧
⎨

⎩
ga,λ(γ ) if |γ | > t∗

a,λ;

0 if |γ | ≤ t∗
a,λ,

(14)
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Figure 2 Plot of the threshold function ga,λ for a = 1
and λ = 0.25

Figure 3 Plot of the threshold function ga,λ for a = 2
and λ = 0.25

where ga,λ(γ ) is defined as

ga,λ(γ ) = sign(γ )
( 1+a|γ |

3 (1 + 2 cos( φ(γ )
3 – π

3 )) – 1
a

)
, (15)

φ(γ ) = arccos

(
27λa2

4(1 + a|γ |)3 – 1
)

and the threshold value satisfies

t∗
a,λ =

⎧
⎨

⎩
t1
a,λ if λ ≤ 1

a2 ;

t2
a,λ if λ > 1

a2 ,
(16)

where

t1
a,λ =

λ

2
a, t2

a,λ =
√

λ –
1

2a
. (17)

Figures 2, 3, 4, and 5 show the plots of the threshold function ga,λ for a = 1, 2, 3, 5, and
λ = 0.25.

Figures 6 and 7 show the plots of the hard/soft threshold functions with λ = 0.25.
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Figure 4 Plot of the threshold function ga,λ for a = 3
and λ = 0.25

Figure 5 Plot of the threshold function ga,λ for
a = 5, and λ = 0.25

Figure 6 Plot of the hard threshold function with
λ = 0.25

Definition 1 The iterative thresholding operator Ga,λ can be defined by

Ga,λ(x) =
(
proxβ

a,λ(x1), . . . , proxβ

a,λ(xn)
)
, (18)

where proxβ

a,λ is defined in Lemma 1.

3 Thresholding representation theory and algorithm for problem (QPλ
a )

In this section, we establish a thresholding representation theory of the problem (QPλ
a),

which underlies the algorithm to be proposed. Then an iterative fraction thresholding
algorithm (IFTA) is proposed to solve the problem (QPλ

a) for all a > 0.
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Figure 7 Plot of the soft threshold function with
λ = 0.25

3.1 Thresholding representation theory
For any fixed positive parameters λ > 0, μ > 0, a > 0 and x ∈R

n, let

C1(x) =
∥
∥F(x)x – b

∥
∥2

2 + λPa(x) (19)

and

C2(x, y) = μ
∥
∥F(y)x – b

∥
∥2

2 + λμPa(x) – μ
∥
∥F(y)x – F(y)y

∥
∥2

2 + ‖x – y‖2
2. (20)

It is clear that C2(x, x) = μC1(x) for all μ > 0.

Theorem 1 For any λ > 0 and 0 < μ < L–1∗ with ‖F(x∗)x – F(x∗)x∗‖2
2 ≤ L∗‖x – x∗‖2

2.
If x∗ is the optimal solution of minx∈Rn C1(x), then x∗ is also the optimal solution of
minx∈Rn C2(x, x∗), that is,

C2
(
x∗, x∗) ≤ C2

(
x, x∗)

for any x ∈R
n.

Proof By the definition of C2(x, y), we have

C2
(
x, x∗) = μ

∥∥F
(
x∗)x – b

∥∥2
2 + λμPa(x) – μ

∥∥F
(
x∗)x – F

(
x∗)x∗∥∥2

2 +
∥∥x – x∗∥∥2

2

≥ μ
∥∥F

(
x∗)x – b

∥∥2
2 + λμPa(x)

≥ μC1
(
x∗)

= C2
(
x∗, x∗). �

Theorem 2 For any λ > 0, μ > 0 and solution x∗ of minx∈Rn C1(x), minx∈Rn C2(x, x∗) is
equivalent to

min
x∈Rn

{∥∥x – Bμ

(
x∗)∥∥2

2 + λμPa(x)
}

, (21)

where Bμ(x∗) = x∗ + μF(x∗)
(b – F(x∗)x∗).
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Proof By the definition, C2(x, y) can be rewritten as

C2
(
x, x∗) =

∥∥x –
(
x∗ – μF

(
x∗)
F

(
x∗)x∗ + μF

(
x∗)
b

)∥∥2
2 + λμPa(x) + μ‖b‖2

2 +
∥∥x∗∥∥2

2

– μ
∥∥F

(
x∗)x∗∥∥2

2 –
∥∥x∗ – μF

(
x∗)
F

(
x∗)x∗ + μF

(
x∗)
b

∥∥2
2

=
∥∥x – Bμ

(
x∗)∥∥2

2 + λμPa(x) + μ‖b‖2
2 +

∥∥x∗∥∥2
2 – μ

∥∥F
(
x∗)x∗∥∥2

2 –
∥∥Bμ

(
x∗)∥∥2

2,

which implies that minx∈Rn C2(x, x∗) for any λ > 0, μ > 0 is equivalent to

min
x∈Rn

{∥∥x – Bμ

(
x∗)∥∥2

2 + λμPa(x)
}

. �

Combining Theorem 2, Theorem 1 and Lemma 1, the thresholding representation of
(QPλ

a) can be concluded by

x∗ = Ga,λμ

(
Bμ

(
x∗)), (22)

where the operator Ga,λμ is defined in Definition 1 and obtained by replacing λ with λμ.
With the thresholding representations (22), the IFTA for solving the regularization prob-
lem (QPλ

a) can be naturally defined as

xk+1 = Ga,λμ

(
Bμ

(
xk)), k = 0, 1, 2, . . . , (23)

where Bμ(xk) = xk + μF(xk)
(b – F(xk)xk).

3.2 Adjusting the values for the regularization parameter λ > 0
In this subsection, the cross-validation method (see [9, 10, 12]) is accepted to automati-
cally adjust the value for the regularization parameter λ > 0. In other words, when some
prior information is known for a regularization problem, this selection is more reason-
able and intelligent. Suppose that the vector x∗ of sparsity r is the optimal solution of the
regularization problem (QPλ

a), and without loss of generality, set

∣∣Bμ

(
x∗)∣∣

1 ≥ ∣∣Bμ

(
x∗)∣∣

2 ≥ · · · ≥ ∣∣(Bμ

(
x∗)∣∣

r ≥ ∣∣(Bμ

(
x∗)∣∣

r+1 ≥ · · · ≥ ∣∣(Bμ

(
x∗)∣∣

n ≥ 0.

Then it follows from (14) that

∣∣Bμ

(
x∗)∣∣

i > t∗
a,λμ ⇔ i ∈ {1, 2, . . . , r},

∣∣Bμ

(
x∗)∣∣

i ≤ t∗
a,λμ ⇔ i ∈ {r + 1, r + 2, . . . , n},

where t∗
a,λμ is obtained by replacing λ with λμ in t∗

a,λ.
By t2

a,λμ ≤ t1
a,λμ, we have

⎧
⎨

⎩
|Bμ(x∗)|r ≥ t∗

a,λμ ≥ t2
a,λμ =

√
λμ – 1

2a ;

|Bμ(x∗)|r+1 < t∗
a,λμ ≤ t1

a,λμ = λμ

2 a.
(24)

It follows that

2|Bμ(x∗)|r+1

aμ
≤ λ ≤ (2a|Bμ(x∗)|r + 1)2

4a2μ
. (25)
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From (25), we obtain

λ ∈
[

2|Bμ(x∗)|r+1

aμ
,

(2a|Bμ(x∗)|r + 1)2

4a2μ

]
.

We denote by λ1 and λ2 the left and the right of the above interval, respectively:

λ1 =
2|Bμ(x∗)|r+1

aμ
and λ2 =

(2a|Bμ(x∗)|r + 1)2

4a2μ
.

A choice of λ is

λ =

⎧
⎨

⎩
λ1 if λ1 ≤ 1

a2μ
;

λ2 if λ1 > 1
a2μ

.

Since x∗ is unknown, and xk is the best available approximation to x∗, so we can take

λ =

⎧
⎨

⎩
λ1,k = 2|Bμ(xk )|r+1

aμ
if λ1,k ≤ 1

a2μ
;

λ2,k = (2a|Bμ(xk )|r+1)2

4a2μ
if λ1,k > 1

a2μ
,

(26)

in the kth iteration. That is, (26) can be used to automatically adjust the value of the reg-
ularization parameter λ > 0 during iteration.

Remark 1 Notice that (26) is valid for any μ > 0 satisfying 0 < μ ≤ ‖F(xk)‖–2
2 . In general,

we can take μ = μk = 1–ε

‖F(xk )‖2
2

with any small ε ∈ (0, 1) below. Especially, the threshold value

is t∗
a,λμ = λμ

2 a when λ = λ1,k , and t∗
a,λμ =

√
λμ – 1

2a when λ = λ2,k .

3.3 Iterative fraction thresholding algorithm (IFTA)
Based on the thresholding representation (23) and the analyses given in Sect. 3.2, the pro-
posed iterative fraction thresholding algorithm (IFTA) for regularization problem (QPλ

a)
can be naturally described in Algorithm 1.

Remark 2 The convergence of IFTA is not proved theoretically in this paper, and this is
our future work.

4 Numerical experiments
In the section, we carry out a series of simulations to demonstrate the performance of
IFTA, and compare them with those obtained with some state-of-art methods (iterative
soft thresholding algorithm (ISTA) [6, 7]), iterative hard thresholding algorithm (IHTA)
[6, 7]. In our numerical experiments, we set

F(x) = A1 + ηf
(‖x – x0‖2

)
A2, (27)

where A1 ∈ R
100×400 is a fixed Gaussian random matrix, x0 ∈ R

400 is a reference vector,
f : [0,∞) →R is a positive and smooth Lipschitz continuous function with f (t) = ln(t + 1),
η is a sufficiently small scaling factor (we set η = 0.003), and A2 ∈ R

30×100 is a fixed matrix
with every entry equals 1. Then the form of nonlinearity considered in (27) is a quasi-
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Algorithm 1 Iterative fraction thresholding algorithm (IFTA)
Initialize: Given x0 ∈R

n, μ0 = 1–ε

‖F(x0)‖2
2

(0 < ε < 1) and a > 0;
while not converged do

zk := Bμk (xk) = xk + μkF(xk)
(y – F(xk)xk), λ1,k = 2|Bμk (xk )|r+1
aμk

, λ2,k = (2a|Bμk (xk )|r+1)2

4a2μk
,

μk = 1–ε

‖F(xk )‖2
2

;

if λ1,k ≤ 1
a2μk

then
λ = λ1,k ; t∗

a,λμk
= λμk a

2
for i = 1 : length(x)
1. |zk

i | > t∗
a,λμk

, then xk+1
i = ga,λkμk (zk

i );
2. |zk

i | ≤ t∗
a,λμk

, then xk+1
i = 0;

else
λ = λ2,k ; t∗ =

√
λμk – 1

2a ;
for i = 1 : length(x)
1. |zk

i | > t∗
a,λμk

, then xk+1
i = ga,λkμk (zk

i );
2. |zk

i | ≤ t∗
a,λμk

, then xk+1
i = 0;

end
k → k + 1;

end while
return: xk+1.

linear, and the more detailed accounts of the setting in the form of (27) can be found in
[6, 7]. By randomly generating such sufficiently sparse vectors x0 (choosing the nonzero
locations uniformly over the support in random, and their values from N(0, 1)), we gener-
ate vectors b. In this way, we know the sparsest solution to F(x0)x0 = b, and we are able to
compare this with algorithmic results. The stopping criterion is usually as follows:

‖xk – xk–1‖2

‖xk‖2
≤ Tol,

where xk and xk–1 are numerical results from two continuous iterative steps and Tol is a
given small number. The success is measured by computing

relative error =
‖x∗ – x0‖2

‖x0‖2
≤ Re,

where x∗ is the numerical results generated by IFTA, and Re is also a given small number.
In all of our experiments, we set Tol = 10–8 to indicate the stopping criterion, and set
Re = 10–4 to indicate a perfect recovery of the original sparse vector x0.

Figure 8 shows the success rate of three algorithms in the recovery of a sparse signal
with different cardinality. In this experiment, we repeatedly perform 30 tests and present
average results and take a = 2.5.

Figure 9 shows the relative error between the solution x∗ and the given signal x0. In this
experiment, we repeatedly perform 30 tests and present average results and take a = 2.5.

The graphs presented in Fig. 8 and Fig. 9 show the performance of the ISTA, IHTA and
IFTA in recovering the true (sparsest) signals. From Fig. 8, we can see that IFTA performs
best, and IST algorithm the second. From Fig. 9, we see that the IFTA has the smallest
relative error value with sparsity growing.
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Figure 8 Success rate of three algorithms in the
recovery of a sparse signal with different cardinality.
In this experiment, we repeatedly perform 30 tests
and present average results and take a = 2.5

Figure 9 Relative error between the solution x∗ and
the given signal x0. In this experiment, we
repeatedly perform 30 tests and present average
results and take a = 2.5

5 Conclusion
In this paper, we take the fraction function as the substitution for �0-norm in quasi-linear
compressed sensing. An iterative fraction thresholding algorithm is proposed to solve the
regularization problem (QPλ

a) for all a > 0. With the change of parameter a > 0, our al-
gorithm could get a promising result, which is one of the advantages for our algorithm
compared with some state-of-art algorithms. We also provide a series of experiments to
assess performance of our algorithm and the experiment results have illustrated that our
algorithms is able to address the sparse signal recovery problems in nonlinear systems.
Compared with ISTA and IHTA, IFTA performs best in sparse signal recovery and has
the smallest relative error value with sparsity growing. However, the convergence of our
algorithm is not proved theoretically in this paper, and it is our future work.
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