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Abstract
The Schwarz algorithm for a class of elliptic quasi-variational inequalities with
nonlinear source terms is studied in this work. The authors prove a new error estimate
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1 Introduction
In the present paper, we consider the numerical solution of elliptic quasi-variational in-
equalities with nonlinear right-hand side. This kind of problem has many applications in
impulse control (see [1–4]). The existence, uniqueness, and regularity of the continuous
and the discrete solution have been studied and established in the past years (see [3–7]).
To estimate a new error of the solution, we apply the Schwarz algorithm, so we split the
domain into two overlapping sub-domains such that each sub-domain has its own gener-
ated triangulations. In this approach we transform the nonlinear problem into a sequence
of linear problems in each sub-domain.

To prove the main result of this paper, we construct two discrete auxiliary sequences
of Schwarz, and we estimate the error between continuous and discrete Schwarz iterates.
The proof is based on a discrete L∞-stability property with respect to both the boundary
condition and the source term for variational inequality, while in [8] the proof is based
on a stability property with respect to the boundary condition for variational inequality.
Regarding research in this domain, for the linear case we refer the reader to [8–12], and
for the nonlinear case we refer to [13–15]. The analysis of geometrical convergence of the
Schwarz algorithm has been proven in [8, 16, 17].

This paper consists of two parts. In the first, we formulate the problem of continuous
and discrete quasi-variational inequality, we show the monotonicity and stability proper-
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ties of discrete solution, then we define the Schwarz algorithm for two sub-domains with
overlapping non-matching grids. In the second part, we establish two auxiliary Schwarz
sequences, and we prove the main result of this work.

2 An overlapping Schwarz method for elliptic quasi-variational inequalities
with nonlinear source terms

2.1 Formulation of the problem
Let � be an open bounded polygon in R2 with sufficiently smooth boundary ∂�. We define
the bilinear form, for any u, v ∈ H1(�),

a(u, v) =
∫

�

( ∑
1≤i,j≤2

aij
∂u
∂xi

∂v
∂xj

+
∑

1≤j≤2

aj
∂u
∂xj

v + a0uv
)

dx, (2.1)

the coefficients aij(x), aj(x), a0(x) are supposed to be sufficiently smooth and satisfy the
following conditions:

∑
1≤i,j≤2

aij(x)ξiξj ≥ α|ξ |2, ξ ∈ R2,α > 0, x ∈ �, (2.2)

a0(x) ≥ β > 0, ∀x ∈ �. (2.3)

We also suppose that the bilinear form is continuous and strongly coercive

∃α > 0 : a(v, v) ≥ α‖v‖2
H1(�). (2.4)

Let the obstacle Mu of impulse control be defined by

Mu(x) = k + inf u(x + ξ ), x ∈ �, ξ ≥ 0, x + ξ ∈ �, k > 0. (2.5)

The operator M maps L∞(�) into itself and possesses the following properties [1]:

Mu ≤ Mũ, whenever u ≤ ũ, (2.6)

M(u + c) ≤ Mu + c, with c a positive constant (2.7)

and a closed convex set

Kg(u) =
{

v ∈ H1(�) : v = g on ∂�, v ≤ Mu in �
}

, (2.8)

where g is a regular function satisfying

g ∈ W 2,p(�), 2 ≤ p < ∞. (2.9)

Let f (·) be the right-hand side supposed nondecreasing and Lipschitz continuous of con-
stant σ such that

σ /β < 1. (2.10)
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We consider the following elliptic quasi-variational inequality (Q.V.I):
⎧⎨
⎩

find u ∈ Kg(u) solution of

a(u, v – u) ≥ (f (u), v – u), ∀v ∈ Kg(u),
(2.11)

(·, ·) denotes the usual inner product in L2(�).
Thanks to [1], the (QVI) (2.11) has a unique solution; moreover, u satisfies the regularity

property

u ∈ W 2,p(�), 2 ≤ p < ∞.

Let τ h be a standard regular and quasi-uniform finite element triangulation in �, h be-
ing the mesh size. Let Vh denote the standard piecewise linear finite element space. The
discrete counterpart of (2.11) consists of

⎧⎨
⎩

find uh ∈ Kh
g (uh) such that

a(uh, vh – uh) ≥ (f (uh), vh – uh), ∀vh ∈ Kh
g (uh),

(2.12)

where

Kh
g (uh) =

{
vh ∈ Vh ⊂ H1(�)/vh = πhg on ∂�, vh ≤ rhMuh in τ h}, (2.13)

rh is the usual restriction operator in � and πh is an interpolation operator on ∂�.
Let ϕi, i = 1, 2, . . . , m(h), be basis functions of the space Vh. We shall assume that the

matrix A produced by

Aij = a(ϕi,ϕj) (2.14)

is M-matrix [18].

2.2 Monotonicity and L∞-stability properties
We consider the linear case, for example, f = f (w). Let (f , g), (̃f , g̃) be a pair of data of linear
functions, and

ξh = ∂h(f , rhMξh,πhg) ∈ Kh
g (ξh)

is the solution of inequality

a(ξh, vh – ξh) ≥ (f , vh – ξh), ∀vh ∈ Kh
g (ξh),

respectively

ξ̃h = ∂h (̃f , rhMξ̃h,πh̃g) ∈ Kh
g̃ (̃ξh)

is the solution of inequality

a(̃ξh, vh – ξ̃h) ≥ (̃f , vh – ξ̃h), ∀vh ∈ Kh
g̃ (̃ξh).

Then we give the monotonicity result.
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Lemma 1 If f ≥ f̃ , g ≥ g̃ , then ∂h(f , rhMξh,πhg) ≥ ∂h (̃f , rhMξ̃h,πh̃g).

Proof Let us reason by recurrence.
For n = 0: let ξ 0

h (resp. ξ̃ 0
h ) be the solution of equation

⎧⎨
⎩

a(ξ 0
h , vh) = (f , ξ 0

h ), ∀vh ∈ Vh,

vh = πhg, on ∂�.

By the maximum principle, we have

ξ 0
h ≥ ξ̃ 0

h ,

and hence by assumption (2.6)

rhMξ 0
h ≥ rhMξ̃ 0

h ,

putting

ξ 1
h = ∂h

(
f , rhMξ 0

h ,πhg
)
,

(resp.)

ξ̃ 1
h = ∂h

(̃
f , rhMξ̃ 0

h ,πh̃g
)
,

applying the monotonicity result for (V.I), we get

ξ 1
h ≥ ξ̃ 1

h .

Now, we define the following sequences:

ξn
h = ∂h

(
f , rhMξn–1

h ,πhg
)
,

(resp.)

ξ̃n
h = ∂h

(̃
f , rhMξ̃n–1

h ,πh̃g
)
,

and we assume that

ξn
h ≥ ξ̃n

h .

By (2.6), it follows that

rhMξn
h ≥ rhMξ̃n

h ,

therefore, applying again the monotonicity result for (V.I), we obtain

ξn+1
h ≥ ξ̃n+1

h .
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Finally, if n −→ ∞ (see [1]), we get

ξh ≥ ξ̃h,

which concludes the proof. �

The proposition below establishes an L∞-stability property of the solution with respect
to the data.

Proposition 1 Under conditions of Lemma 1, we have

∥∥∂h(f , rhMξh,πhg) – ∂h (̃f , rhMξ̃h,πh̃g)
∥∥

L∞(�) ≤ max

{
1
β

‖f – f̃ ‖L∞(�),‖g – g̃‖L∞(∂�)

}
.

Proof Firstly, set

� = max

{
1
β

‖f – f̃ ‖L∞(�),‖g – g̃‖L∞(∂�)

}
,

we have

a(̃ξh, vh – ξ̃h) ≥ (̃f , vh – ξ̃h)

and

a(�, vh – ξ̃h) = �(a0, vh – ξ̃h).

By summation, we get

a(̃ξh + �, vh – ξ̃h) ≥ (̃f + a0�, vh – ξ̃h)

and

a
(̃
ξh + �, (vh + �) – (̃ξh + �)

) ≥ (̃
f + a0�, (vh + �) – (̃ξh + �)

)
.

If we put

ξh = ξ̃h + �, vh = vh + �,

then

a(ξh, vh – ξh) ≥ (̃f + a0�, vh – ξh),

therefore

ξh = ∂h
(̃
f + a0�, rhMξ h,πh (̃g + �)

)
,
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where

ξh ≤ rhMξh = rhM(̃ξh + �).

By (2.7), it follows that

ξ̃h ≤ rhMξ̃h,

so

∂h
(̃
f + a0�, rhMξh,πh (̃g + �)

)
= ∂h (̃f , rhMξ̃h,πh̃g) + �.

Secondly, we have

f ≤ f̃ + ‖f – f̃ ‖L∞(�)

≤ f̃ +
a0

β
‖f – f̃ ‖L∞(�)

≤ f̃ + a0�

and

g ≤ g̃ + ‖g – g̃‖L∞(∂�)

≤ g̃ + �.

Using Lemma 1, we get

∂h(f , rhMξh,πhg) ≤ ∂h
(̃
f + a0�, rhM(̃ξh + �),πh (̃g + �)

)

= ∂h (̃f , rhMξ̃h,πh̃g) + �,

then

ξh ≤ ξ̃h + �.

Similarly, interchanging the roles of the couples (f , g) and (̃f , g̃), we obtain

ξ̃h ≤ ξh + �,

which completes the proof. �

The following result is due to [6].

Theorem 1 There exists a constant c independent of h such that

∥∥∂h(f , rhMξh,πhg) – ∂(f , Mξ , g)
∥∥

L∞(�) ≤ ch2| log h|2.
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2.3 The continuous Schwarz algorithm
We consider the problem: find u ∈ K0(u) such that

a(u, v – u) ≥ (
f (u), v – u

)
, ∀v ∈ K0(u), (2.15)

where K0(u) is defined in (2.8) with g = 0.
We split � into two overlapping polygonal sub-domains �1 and �2 such that

�1 ∩ �2 �= ∅, � = �1 ∪ �2,

and u satisfies the local regularity condition

u|�i ∈ W 2,p(�i), 2 ≤ p < ∞.

We set �i = ∂�i ∩ �j, where ∂�i denotes the boundary of �i. The intersection of �1 and
�2 is assumed to be empty. We will always assume to simplify that �1, �2 are smooth.

For w ∈ C0(�i), we define

V (w)
i =

{
v ∈ H1(�i)/v = 0 on ∂� ∩ ∂�i, v = w on �i

}
, i = 1, 2.

We associate with problem (2.15) the couple (u1, u2) ∈ V (u2)
1 × V (u1)

2 such that
⎧⎨
⎩

a1(u1, v – u1) ≥ (f (u1), v – u1), ∀v ∈ V (u2)
1 ,

u1 ≤ Mu1, v ≤ Mu1 in �1,
(2.16)

⎧⎨
⎩

a2(u2, v – u2) ≥ (f (u2), v – u2), ∀v ∈ V (u1)
2 ,

u2 ≤ Mu2, v ≤ Mu2 in �2,
(2.17)

where

ai(u, v) =
∫

�i

( ∑
1≤l,j≤2

alj
∂u
∂xl

∂v
∂xj

+
∑

1≤j≤2

aj
∂u
∂xj

v + a0uv
)

dx, i = 1, 2,

ui = u|�i , i = 1, 2.

Let u0 ∈ C0(�) be the initial value such that

a
(
u0, v

)
=

(
f
(
u0), v

)
, ∀v ∈ H1

0 (�). (2.18)

We define the Schwarz sequence (un+1
1 ) on �1 such that un+1

1 ∈ V (un
2 )

1 solves
⎧⎨
⎩

a1(un+1
1 , v – un+1

1 ) ≥ (f (un
1), v – un+1

1 ), ∀v ∈ V (un
2 )

1 ,

un+1
1 ≤ Mun

1, v ≤ Mun
1 in �1,

(2.19)

and respectively (un+1
2 ) on �2 such that un+1

2 ∈ V (un
1 )

2 solves
⎧⎨
⎩

a2(un+1
2 , v – un+1

2 ) ≥ (f (un
2), v – un+1

2 ), ∀v ∈ V (un
1 )

2 ,

un+1
2 ≤ Mun

2, v ≤ Mun
2 in �2,

(2.20)
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where

u0
1 = u0 in �1, u0

2 = u0 in �2,

un+1
1 = 0 in � \ �1, un+1

2 = 0 in � \ �2.

We give a geometrical convergence theorem (see [8]).

Theorem 2 The sequences (un+1
1 , un+1

2 ), n ≥ 0 converge geometrically to the solution (u1, u2)
of system (2.16)–(2.17). More precisely, there exist two constants 0 < k1, k2 < 1 such that

∥∥u1 – un+1
1

∥∥
L∞(�1) ≤ kn

1 kn
2
∥∥u0 – u

∥∥
L∞(�1),∥∥u2 – un+1

2
∥∥

L∞(�2) ≤ kn
1 kn

2
∥∥u0 – u

∥∥
L∞(�2).

2.4 The discretization
Let τ hi be a standard regular and quasi-uniform finite element triangulation in �i; i = 1, 2,
hi being the mesh size. We assume that τ h1 and τ h2 are mutually independent on �1 ∩�2,
in the sense that a triangle belonging to τ hi does not necessarily belong to τ hj , i �= j. Let
Vhi = Vhi (�i) be the space of continuous piecewise linear functions on τ hi which vanish
on ∂� ∩ ∂�i. For given w ∈ C0(�i), we set

V (w)
hi

=
{

vhi ∈ Vhi /vhi = πhi (w) on �i
}

, i = 1, 2,

where πhi denotes a suitable interpolation operator on �i. We give the discrete counterpart
of the Schwarz algorithm defined in (2.19) and (2.20) as follows.

Let u0
hi

= rhi u0 be given, we define the discrete Schwarz sequence (un+1
1h1

) on �1 such that

un+1
1h1

∈ V
(un

2h2
)

h1
solves

⎧⎨
⎩

a1(un+1
1h1

, vh1 – un+1
1h1

) ≥ (f (un
1h1

), vh1 – un+1
1h1

), ∀vh1 ∈ V
(un

2h2
)

h1
,

un+1
1h1

≤ rh1 Mun
1h1

vh1 ≤ rh1 Mun
1h1

in τ h1 ,
(2.21)

and on �2 the sequence un+1
2h2

∈ V
(un

1h1
)

h2
solves

⎧⎨
⎩

a2(un+1
2h2

, vh2 – un+1
2h2

) ≥ (f (un
2h2

), vh2 – un+1
2h2

), ∀vh2 ∈ V
(un

1h1
)

h2
,

un+1
2h2

≤ rh2 Mun
2h2

vh2 ≤ rh2 Mun
2h2

in τ h2 ,
(2.22)

with

u0
1h1 = u0

h1 in �1, u0
2h2 = u0

h2 in �2.

We will also assume that the respective matrices produced by problems (2.21) and (2.22)
are M-matrices [18].

3 L∞-error analysis
The aim of this section is to show the main result of this paper. To that end, we start by
introducing two discrete auxiliary sequences and prove a fundamental lemma.
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3.1 Two discrete auxiliary sequences
For w0

ihi
= u0

hi
, we define the sequence wn+1

1h1
∈ V (un

2 )
h1

, discrete solution of V.I

⎧⎨
⎩

a1(wn+1
1h1

, vh1 – wn+1
1h1

) ≥ (f (un
1), vh1 – wn+1

1h1
), ∀vh1 ∈ V (un

2 )
h1

,

wn+1
1h1

≤ rh1 Mwn
1h1

vh1 ≤ rh1 Mwn
1h1

in τ h1 ,
(3.1)

respectively the sequence wn+1
2h2

∈ V (un
1 )

h2
satisfies

⎧⎨
⎩

a2(wn+1
2h2

, vh2 – wn+1
2h2

) ≥ (f (un
2), vh2 – wn+1

2h2
), ∀vh2 ∈ V (un

1 )
h2

,

wn+1
2h2

≤ rh2 Mwn
2h2

vh2 ≤ rh2 Mwn
2h2

in τ h2 .
(3.2)

To simplify the notation, we take

| · |1 = ‖ · ‖L∞(�1), | · |2 = ‖ · ‖L∞(�2),

‖ · ‖1 = ‖ · ‖L∞(�1), ‖ · ‖2 = ‖ · ‖L∞(�2),

h1 = h2 = h, rh1 = rh2 = rh, πh1 = πh2 = πh.

It is clear that wn
ihi

, i = 1, 2, is the finite element approximations of un
i defined in (2.19),

(2.20), respectively, where f (·) is Lipschitz continuous and ‖f (un
i ‖i ≤ c (independent of n).

The following lemma will play a crucial role in proving the main result of this paper.

Lemma 2 Let (un+1
i ), (un+1

ih ), i = 1, 2, be the respective sequences defined in (2.19), (2.20),
(2.21), and (2.22). Then there exists a constant c independent of h and n such that

∥∥un+1
i – un+1

ih
∥∥

i ≤ c(n + 1)h2| log h|2, i = 1, 2.

Proof Let θ = σ /β , under assumption (2.10), we have

θ < 1.

Let us prove by inductionfor n = 0:

∥∥u1
1 – u1

1h
∥∥

1 ≤ ∥∥u1
1 – w1

1h
∥∥

1 +
∥∥w1

1h – u1
1h

∥∥
1.

Applying Theorem 1 and Proposition 1, putting f = f (u0
1), f̃ = f (u0

1h), we obtain

∥∥u1
1 – u1

1h
∥∥

1 ≤ ch2| log h|2 + max

{
1
β

∥∥f
(
u0

1
)

– f
(
u0

1h
)∥∥

1,
∣∣u0

2 – u0
2h

∣∣
1

}

≤ ch2| log h|2 + max
{
θ
∥∥u0

1 – u0
1h

∥∥
1,

∣∣u0
2 – u0

2h
∣∣
1

}
.

If

max
{
θ
∥∥u0

1 – u0
1h

∥∥
1,

∣∣u0
2 – u0

2h
∣∣
1

}
= θ

∥∥u0
1 – u0

1h
∥∥

1,
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then

∥∥u1
1 – u1

1h
∥∥

1 ≤ ch2| log h|2 + θ
∥∥u0

1 – u0
1h

∥∥
1

≤ ch2| log h|2 +
∥∥u0

1 – u0
1h

∥∥
1.

Making use of an error estimate for elliptic variational equations [19], we obtain

∥∥u1
1 – u1

1h
∥∥

1 ≤ ch2| log h|2 + ch2| log h| ≤ ch2| log h|2,

and if

max
{
θ
∥∥u0

1 – u0
1h

∥∥
1,

∣∣u0
2 – u0

2h
∣∣
1

}
=

∣∣u0
2 – u0

2h
∣∣
1,

then

∥∥u1
1 – u1

1h
∥∥

1 ≤ ch2| log h|2 +
∣∣u0

2 – u0
2h

∣∣
1

≤ ch2| log h|2 +
∥∥u0

2 – u0
2h

∥∥
2.

Making use again of an error estimate for elliptic variational equations [19], we obtain

∥∥u1
1 – u1

1h
∥∥

1 ≤ ch2| log h|2 + ch2| log h|
≤ ch2| log h|2.

Similarly, we have in domain �2

∥∥u1
2 – u1

2h
∥∥

2 ≤ ∥∥u1
2 – w1

2h
∥∥

2 +
∥∥w1

2h – u1
2h

∥∥
2

≤ ch2| log h|2 + max

{
1
β

∥∥f
(
u0

2
)

– f
(
u0

2h
)∥∥

2,
∣∣u0

1 – u0
1h

∣∣
2

}

≤ ch2| log h|2 + max
{
θ
∥∥u0

2 – u0
2h

∥∥
2,

∣∣u0
1 – u0

1h
∣∣
2

}
.

If

max
{
θ
∥∥u0

2 – u0
2h

∥∥
2,

∣∣u0
1 – u0

1h
∣∣
2

}
= θ

∥∥u0
2 – u0

2h
∥∥

2,

therefore

∥∥u1
2 – u1

2h
∥∥

2 ≤ ch2| log h|2 + θ
∥∥u0

2 – u0
2h

∥∥
2

≤ ch2| log h|2 +
∥∥u0

2 – u0
2h

∥∥
2

≤ ch2| log h|2 + ch2| log h|
≤ ch2| log h|2,

and if

max
{
θ
∥∥u0

2 – u0
2h

∥∥
2,

∣∣u0
1 – u0

1h
∣∣
2

}
=

∣∣u0
1 – u0

1h
∣∣
2,
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then

∥∥u1
2 – u1

2h
∥∥

2 ≤ ch2| log h|2 +
∣∣u0

1 – u0
1h

∣∣
2

≤ ch2| log h|2 +
∥∥u0

1 – u0
1h

∥∥
1

≤ ch2| log h|2 + ch2| log h|
≤ ch2| log h|2.

Let us now assume that

∥∥un
1 – un

1h
∥∥

1 ≤ cnh2| log h|2

and

∥∥un
2 – un

2h
∥∥

2 ≤ cnh2| log h|2.

Consequently,

∥∥un+1
1 – un+1

1h
∥∥

1 ≤ ∥∥un+1
1 – wn+1

1h
∥∥

1 +
∥∥wn+1

1h – un+1
1h

∥∥
1

≤ ch2| log h|2 + max

{
1
β

∥∥f
(
un

1
)

– f
(
un

1h
)∥∥

1,
∣∣un

2 – un
2h

∣∣
1

}

≤ ch2| log h|2 + max
{
θ
∥∥un

1 – un
1h

∥∥
1,

∣∣un
2 – un

2h
∣∣
1

}
.

If

max
{
θ
∥∥un

1 – un
1h

∥∥
1,

∣∣un
2 – un

2h
∣∣
1

}
= θ

∥∥un
1 – un

1h
∥∥

1,

then
∥∥un+1

1 – un+1
1h

∥∥
1 ≤ ch2| log h|2 + θ

∥∥un
1 – un

1h
∥∥

1

≤ ch2| log h|2 +
∥∥un

1 – un
1h

∥∥
1

≤ ch2| log h|2 + cnh2| log h|2

≤ c(n + 1)h2| log h|2,

and if

max
{
θ
∥∥un

1 – un
1h

∥∥
1,

∣∣un
2 – un

2h
∣∣
1

}
=

∣∣un
2 – un

2h
∣∣
1,

therefore
∥∥un+1

1 – un+1
1h

∥∥
1 ≤ ch2| log h|2 +

∣∣un
2 – un

2h
∣∣
1

≤ ch2| log h|2 +
∥∥un

2 – un
2h

∥∥
2

≤ ch2| log h|2 + cnh2| log h|2

≤ c(n + 1)h2| log h|2.

Similarly, we prove the estimate in domain �2. �
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3.2 L∞-error estimate
Theorem 3 (Main result) Let (un+1

i ), (un+1
ih ), i = 1, 2, be the respective solutions of (2.19),

(2.20), (2.21), and (2.22). Then, for n large enough, there exists a constant c independent of
h and n such that

∥∥ui – un+1
ih

∥∥
i ≤ ch2| log h|3,

∥∥ui – un+1
ih

∥∥
W 1,∞(�i)

≤ ch| log h|3.

Proof Let us give the proof for i = 1. The case i = 2 is similar.
Indeed, let k = max(k1, k2). It follows from Theorem 2 and Lemma 2 that

∥∥u1 – un+1
1h

∥∥
1 ≤ ∥∥u1 – un+1

1
∥∥

1 +
∥∥un+1

1 – un+1
1h

∥∥
1

≤ kn
1 kn

2
∣∣u – u0∣∣

1 + c(n + 1)h2| log h|2

≤ ∣∣u – u0∣∣
1 + c(n + 1)h2| log h|2

≤ ch2| log h|2 + c(n + 1)h2| log h|2.

We choose n such that

kn ≥ h,

then

∥∥u1 – un+1
1h

∥∥
1 ≤ ch2| log h|3,

and by inverse inequality, we get

∥∥u1 – un+1
1h

∥∥
W 1,∞(�1) ≤ ch| log h|3,

which is the desired error estimate. �

4 Conclusion
In this work, we have established a new approach of an overlapping Schwarz algorithm
on non-matching grids for a class of elliptic quasi-variational inequalities with nonlinear
source terms. We have obtained a new error estimate in uniform norm which is optimal for
these problems. The error estimate obtained contains a logarithmic factor with an extra
power of | log h| than expected. We will see that this result plays an important role in the
study of an error estimate for evolutionary problems with nonlinear source terms.
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