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Abstract
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1 Introduction
In this paper we consider weak solutions to an obstacle problem for the following nonlin-
ear subelliptic system in a bounded domain � of Euclidean space R

n:

X∗
α

(
aαβ

ij (x)Xβuj) = Bi(x, u, Xu) + X∗
αgα

i (x, u, Xu), i = 1, 2, . . . , N , (1.1)

where X = (X1, . . . , Xm) (m ≤ n) is a system of smooth real vector fields satisfying the Hör-
mander’s rank condition, X∗

α is the formal adjoint of Xα .
If we set A(x) = {aαβ

ij (x)}, B = (Bi), g = (gα
i ), then (1.1) reads

–X∗(A(x)Xu
)

= B(x, u, Xu) – X∗g(x, u, Xu).

Given two vector-valued functions ψ = (ψ1, . . . ,ψN ) and θ = (θ1, . . . , θN ) with θ (x) ≥ ψ(x)
a.e. on ∂� (i.e. θ i(x) ≥ ψ i(x) a.e. on ∂�, i = 1, 2, . . . , N ), we define the set

K
θ
ψ =

{
v ∈ S1,2

X
(
�,RN)

: v ≥ ψ a.e. in �, v – θ ∈ S1,2
X,0

(
�,RN)}

.

Here the functions ψ and θ are called obstacle and boundary datum, respectively. The
function u ∈ Kθ

ψ is called a weak solution to the obstacle problem related to (1.1) if

∫

�

A(x)Xu · Xϕ dx ≥
∫

�

B(x, u, Xu)ϕ dx +
∫

�

g(x, u, Xu) · Xϕ dx (1.2)

holds for all ϕ ∈ C∞
0 (�,RN ) with ϕ + u ≥ ψ a.e. x ∈ �.
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As we know, the uniform ellipticity requirement on coefficients is not sufficient to get the
local boundedness of solutions even for one single equation in the Euclidean metric (see
[1]). Therefore some additional assumptions on the coefficients is needed to ensure the
regularity results. In [2–4], Campanato obtained the L2,λ-regularity and Hölder continuity
for the weak solutions of elliptic systems with continuous coefficients. See also [5–8] for
related results.

Since the functions of vanishing mean oscillation (VMO) can have some kind of dis-
continuities, regularity results under a VMO assumption have been established by many
authors; see, for example, [9–12] for elliptic systems, and [13–17] for subelliptic systems
constructed by Hörmander’s vector fields. Huang in [9] established the gradient estimates
in the generalized Morrey spaces of weak solutions to the linear elliptic systems with VMO
coefficients. Similar results for the nonlinear elliptic systems were obtained by Daněček
and Viszus in [10] and [11]. In [15] and [16] Di Fazio and Fanciullo proved that the local
gradient estimates in [9] still hold true for the subelliptic systems structured on Höman-
der’s vector fields. Dong and Niu [14] established the Morrey and Campanato regularity
for weak solutions to the nondiagonal subelliptic systems. The direct methods were mainly
used to prove the desired results in the papers mentioned above. An important step of
this kind of methods is to establish the higher integrability of gradients of weak solutions.
These arguments were also used to prove the Morrey regularity and Hölder continuity
for weak solutions to the obstacle problems associated with a single elliptic equation with
constant coefficients or continuous coefficients; see [18–22].

Recently, another method called A-harmonic approximation has been widely applied to
prove the optimal partial regularity for nonlinear elliptic systems or subelliptic systems in
the Heisenberg group and Carnot groups; see [23–29]. This method is based on Simon’s
technique of harmonic approximation ([30]) and generalized by Duzaar and Grotowski in
[31] in order to deal with partial regularity for nonlinear elliptic systems. The key point
is to show that a function which is “approximately harmonic”, i.e. a function closes suf-
ficiently to some harmonic function in L2. Making use of this method, one can simplify
the proof avoiding the proof of a suitable reverse Hölder inequality for the gradient of a
weak solution. We also mention that Daněček-John-Stará [32] proved the Morrey space
regularity for weak solutions of Stokes systems with VMO coefficients by using a mod-
ified A-harmonic approximation lemma. Inspired by this work, Yu and Zheng [33] ob-
tained optimal partial regularity for quasilinear elliptic systems with VMO coefficients by
a modification of A-harmonic approximation argument.

In the present paper we study the interior regularity of weak solutions to the obstacle
problem related to the system (1.1) by the technique of A-harmonic approximation, which
implies that these solutions have the same kind of regularity as the weak solutions of (1.1).
Throughout this article, we make the following assumptions.

(H1) The coefficients aαβ

ij are bounded measurable and such that, for some suitable
λ > 0 and 
 > 0,

λ|ξ |2 ≤ aαβ

ij (x)ξ i
αξ

j
β ≤ 
|ξ |2, x ∈R

n, ξ ∈ R
mN ;

(H2) The functions Bi, gα
i : Rn ×R

N ×R
mN →R are both Carathéodory functions and

for almost x ∈ � and all (u, ξ ) ∈R
N ×R

mN , there exists L > 0 such that

∣∣Bi(x, u, ξ )
∣∣ ≤ fi(x) + L|ξ |γ0 ,
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∣∣gα
i (x, u, ξ )

∣∣ ≤ f α
i (x) + L|ξ |γ ,

where 1 ≤ γ0 < Q+2
Q , 0 ≤ γ < 1, and

f ∈ L2Q/(Q+2),λQ/(Q+2)
X

(
�,RN)

, f̃ ∈ L2,λ
X

(
�,RmN)

, Q – n < λ < Q.

Here Q is the homogeneous dimension relative to � and f = (fi), f̃ = (f α
i ).

We are now in the position to state our main result.

Theorem 1.1 Suppose that (H1)–(H2) hold and that aαβ

ij ∈ VMO(�) for i, j = 1, 2, . . . , N ,
α,β = 1, 2, . . . , m. Let u ∈ Kθ

ψ be a weak solution to the obstacle problem for system (1.1)
with Xψ ∈ L2,λ

X (�,RmN ), then Xu ∈ L2,λ
X,loc(�,RmN ). Moreover, if Q – n < λ < 2 then u ∈

C0,(2–λ)/2
X (�,RN ).

The paper is organized as follows. In the next section we recall some concepts and facts
associated to Carnot–Carathéodory spaces and give the proof of the modified A-harmonic
approximation lemma for vector fields. In Sect. 3, we consider the following linear subel-
liptic system with VMO coefficients:

X∗(A(x)Xu
)

= X∗(A(x)Xψ
)
,

and we prove a comparison principle and a Morrey type estimate for weak solutions of
the above system by a modification of A-harmonic approximation argument. Section 4 is
devoted to the proofs of Theorem 1.1. On the basis of the Morrey type estimate established
for linear subelliptic system, we can first prove the L2,λ

X,loc-regularity for weak solutions of
the obstacle problems and then interior Hölder continuity is obtained by virtue of the
equivalence between the Campanato space and the Hölder continuity function space (see
[34, 35]).

In what follows, we use c to denote a positive constant that may vary from line to line.

2 Some notations and preliminaries
Let

Xα =
n∑

k=1

bαk
∂

∂xk
, bαk ∈ C∞,α = 1, 2, . . . , m

be a family of vector fields in R
n satisfying Hörmander’s condition ([36]):

rank
(
Lie{X1, . . . , Xm}) = n.

We consider Xα as a first order differential operator acting on u ∈ Lip(Rn) defined as

Xαu(x) =
〈
Xα(x),∇u(x)

〉
, α = 1, 2, . . . , m.

We denote by Xu = (X1u, . . . , Xmu) the gradient of u and hence |Xu(x)| = (
∑m

α=1 |Xαu(x)|2) 1
2 .

An absolutely continuous curve γ : [a, b] → R
n is said to be admissible if

γ ′(t) =
m∑

α=1

cα(t)Xα

(
γ (t)

)
, a.e. t ∈ [a, b],
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for some functions cα(t) satisfying
∑m

α=1 cα(t)2 ≤ 1. The Carnot–Carathéodory distance
d(x, y) generated by X is defined by

d(x, y) = inf
{

T > 0 : there is an admissible curveγ ,γ (0) = x,γ (T) = y
}

.

For x ∈R
n and R > 0 we let

BR(x) = B(x, R) =
{

y ∈R
n : d(y, x) < R

}
.

In what follows, if σ > 0 and B = B(x, R) we write σB to indicate B(x,σR). Furthermore, if
E ⊂ R

n is a Lebesgue measurable set with Lebesgue measure |E|, we set uE = –
∫

E u dx the
integral average of u on E.

In [37], it was proved that for every connected K ⊂ � there exist constants C1, C2 > 0
and 0 < λ < 1 such that

C1|x – y| ≤ d(x, y) ≤ C2|x – y|λ, x, y ∈ K .

Moreover, there are Rd > 0 and Cd ≥ 1 such that, for any x ∈ K and R ≤ Rd ,

∣∣B(x, 2R)
∣∣ ≤ Cd

∣∣B(x, R)
∣∣. (2.1)

Property (2.1) is the so-called “doubling condition” which is assumed to hold on the spaces
of homogeneous type. The best constant Cd in (2.1) is called the doubling constant. We
call that Q = log2 Cd is the homogeneous dimension relative to �. As a consequence of
(2.1), we have

|BtR| ≥ C–2
d tQ|BR|, ∀R ≤ Rd, t ∈ (0, 1). (2.2)

We now introduce the relevant Sobolev spaces. Given 1 ≤ p < ∞, the Sobolev space
S1,p

X (�,RN ) is the Banach space

S1,p
X

(
�,RN)

=
{

u ∈ Lp(�,RN)
: Xαu ∈ Lp(�,RN)

,α = 1, 2, . . . , m
}

endowed with the norm

‖u‖S1,p
X (�,RN ) = ‖u‖Lp(�,RN ) +

m∑

α=1

‖Xαu‖Lp(�,RN ).

Here, Xαu is the distributional derivative of u ∈ L1
loc(�,RN ) defined by

∫

�

Xαu · φ dx =
∫

�

u · X∗
αφ dx, ∀φ ∈ C∞

0
(
�,RN)

,

where

X∗
α = –

n∑

k=1

∂

∂xk
(bαk·)
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is the formal adjoint of Xα , not necessarily a vector field in general. The space S1,p
X,0(�,RN )

is defined as the completion of C∞
0 (�,RN ) under the norm ‖ · ‖S1,p

X (�,RN ).
In addition, we also need the following Sobolev inequalities for vector fields.

Theorem 2.1 ([38, 39]) For every compact set K ⊂ �, there exist constants C > 0 and R̄ > 0
such that, for any metric ball B = B(x0, R) with x0 ∈ K and 0 < R ≤ R̄, for any f ∈ S1,p

X (BR),

(
–
∫

BR

|f – fR|κp dx
) 1

κp
≤ CR

(
–
∫

BR

|Xf |p dx
) 1

p
,

where 1 ≤ κ ≤ Q/(Q – p), if 1 ≤ p < Q; 1 ≤ κ < ∞, if p ≥ Q. Moreover,

(
–
∫

BR

|f |κp dx
) 1

κp
≤ CR

(
–
∫

BR

|Xf |p dx
) 1

p
,

whenever f ∈ S1,p
X,0(BR).

Now we define the Morrey spaces, the Campanato spaces, VMO and the Hölder spaces
with respect to the Carnot–Carathéodory metric. To simplify our description, we intro-
duce the following notation:

�(x, R) = � ∩ B(x, R), fx,R =
1

|�(x, R)|
∫

�(x,R)
f (y) dy,

and

d0 = min{diam�, Rd}.

Definition 2.2 For 1 < p < ∞ and λ ≤ Q, we say that f ∈ Lp
loc(�,RN ) belongs to the Morrey

space Lp,λ
X (�,RN ) if

‖f ‖Lp,λ
X (�,RN ) = sup

x∈�,0<ρ<d0

(
ρλ

|�(x,ρ)|
∫

�(x,ρ)

∣∣f (y)
∣∣p dy

) 1
p

< ∞;

f ∈ Lp
loc(�,RN ) belongs to the Campanato space Lp,λ

X (�,RN ) if

‖f ‖Lp,λ
X (�,RN ) = sup

x∈�,0<ρ<d0

(
ρλ

|�(x,ρ)|
∫

�(x,ρ)

∣∣f (y) – fx,ρ
∣∣p dy

) 1
p

< ∞.

Definition 2.3 For α ∈ (0, 1), the Hölder space C0,α
X (�̄,RN ) is the collection of functions

f : �̄ →R
N satisfying

‖f ‖C0,α
X (�̄,RN ) = sup

�

|f | + sup
�̄

|f (x) – f (y)|
d(x, y)α

< ∞.

We say that f is locally Hölder continuous, i.e. f ∈ C0,α
X (�,RN ), if f ∈ C0,α

X (K ,RN ) for every
compact set K ⊂ �.
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Definition 2.4 We say that f ∈ L1
loc(�,RN ) belongs to BMO(�,RN ) if

‖f ‖∗ = sup
x∈�,0<ρ<d0

1
|�(x,ρ)|

∫

�(x,ρ)

∣
∣f (y) – fx,ρ

∣
∣dy < ∞;

f belongs to VMO(�,RN ) if f ∈ BMO(�,RN ) and

ηr(f ) = sup
x∈�,0<ρ<r

1
|�(x,ρ)|

∫

�(x,ρ)

∣∣f (y) – fx,ρ
∣∣dy → 0, r → 0.

The integral characterization for a Hölder continuous function was shown in [35] and
[34].

Lemma 2.5 If –p < λ < 0, then Lp,λ
X (�,RN ) � C0,α

X (�,RN ), α = – λ
p .

3 Morrey type estimate for a subelliptic system
In this section we will prove by the modified A-harmonic approximation technique a Mor-
rey type estimate for the subelliptic system

X∗(A(x)Xu
)

= X∗(A(x)Xψ
)
. (3.1)

Let us first recall that a function h ∈ S1,2
X (�,RN ) is called A-harmonic for A ∈ Bil(RmN ) if

h satisfies
∫

�

A(Xh, Xϕ) dx = 0, ∀ϕ ∈ C1
0
(
�,RN)

.

We cite the A-harmonic approximation lemma for vector fields as follows ([24, 31]).

Lemma 3.1 Consider fixed positive λ and 
, and m, N ∈ N with m ≥ 2. Then for any
given ε > 0 there exists δ = δ(m, N ,λ,
, ε) with the following property: for any A ∈ Bil(RmN )
satisfying

A(ξ , ξ ) ≥ λ|ξ |2, for all ξ ∈R
mN , (3.2)

and

A(ξ , ξ̃ ) ≤ 
|ξ ||ξ̃ |, for all ξ , ξ̃ ∈R
mN , (3.3)

for any g ∈ S1,2
X (Bρ(x0),RN ) (for some ρ > 0, x0 ∈ R

n) satisfying

–
∫

Bρ (x0)
|Xg|2 dx ≤ 1 (3.4)

and
∣∣
∣∣–
∫

Bρ (x0)
A(Xg, Xϕ) dx

∣∣
∣∣ ≤ δ sup

Bρ (x0)
|Xϕ|, ∀ϕ ∈ C∞

0
(
Bρ(x0),RN)

, (3.5)
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there exists an A-harmonic function h ∈ S1,2
X (Bρ(x0),RN ) such that

–
∫

Bρ (x0)
|Xh|2 dx ≤ 1 and

1
ρ2

–
∫

Bρ (x0)
|g – h|2 dx ≤ ε.

Similarly to [32] and [33], we can prove the following modification of the A-harmonic
approximation lemma.

Lemma 3.2 Let 0 < λ < 
 and m ∈ N with m ≥ 2 be fixed. Then, for any ε > 0, there exists
a constant k = k(m, N ,λ,
, ε) such that the following holds: for any A ∈ Bil(RmN ) satisfying
conditions (3.2), (3.3) and for any u ∈ S1,2

X (Bρ(x0),RN ), there exists an A-harmonic function
h ∈ S1,2

X (Bρ(x0),RN ) such that

∫

Bρ (x0)
|Xh|2 dx ≤

∫

Bρ (x0)
|Xu|2 dx (3.6)

and, moreover, there exists ϕ ∈ C∞
0 (Bρ(x0),RN ) such that

‖Xϕ‖L∞(Bρ (x0),RN ) ≤ 1
ρ

(3.7)

and
∫

Bρ (x0)
|u – h|2 dx

≤ ερ2
∫

Bρ (x0)
|Xu|2 dx + k(ε)

[
ρ4

|Bρ(x0)|
(∫

Bρ (x0)
A(Xu, Xϕ) dx

)2]
. (3.8)

Proof For any given ε > 0 and u ∈ S1,2
X (Bρ(x0),RN ), we take δ(ε) as in the above Lemma 3.1

and set

g =
(

–
∫

Bρ (x0)
|Xu|2 dx

)– 1
2

u.

Then (3.4) holds. Assume that for g the inequality (3.5) is true. From Lemma 3.1, there is
an A-harmonic function w satisfying

–
∫

Bρ (x0)
|Xw|2 dx ≤ 1,

1
ρ2

–
∫

Bρ (x0)
|w – g|2 dx ≤ ε

and thus the function h = (–
∫

Bρ (x0) |Xu|2 dx) 1
2 w satisfies (3.6). Moreover, we have

|u – h|2 = –
∫

Bρ (x0)
|Xu|2 dx · |g – w|2,

which implies

∫

Bρ (x0)
|u – h|2 dx ≤

∫

Bρ (x0)
|Xu|2 dx · –

∫

Bρ (x0)
|g – w|2 dx ≤ ερ2

∫

Bρ (x0)
|Xu|2 dx. (3.9)
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If, vice versa, there is a nonconstant function ϕ̃ ∈ C∞
0 (Bρ(x0),RN ) such that

∣∣
∣∣–
∫

Bρ (x0)
A(Xg, Xϕ̃) dx

∣∣
∣∣ > δ(ε) sup

Bρ (x0)
|Xϕ̃|.

Setting ϕ = ϕ̃

ρ supBρ (x0) |Xϕ̃| , it follows that

ρ

δ(ε)

∣
∣∣
∣–
∫

Bρ (x0)
A(Xg, Xϕ) dx

∣
∣∣
∣ > 1.

We now take h = uρ . Using the Poincaré inequality and the fact that Xg =
(–
∫

Bρ (x0) |Xu|2 dx)– 1
2 Xu we deduce

∫

Bρ (x0)
|u – h|2 dx =

∫

Bρ (x0)
|u – uρ |2 dx

≤ cρ2
∫

Bρ (x0)
|Xu|2 dx

≤ cρ4

δ2(ε)

∣∣
∣∣–
∫

Bρ (x0)
A(Xg, Xϕ) dx

∣∣
∣∣

2 ∫

Bρ (x0)
|Xu|2 dx

≤ cρ4|Bρ(x0)|
δ2(ε)

∣∣
∣∣–
∫

Bρ (x0)
A(Xu, Xϕ) dx

∣∣
∣∣

2

≤ cρ4

δ2(ε)|Bρ(x0)|
∣∣
∣∣

∫

Bρ (x0)
A(Xu, Xϕ) dx

∣∣
∣∣

2

. (3.10)

Combining (3.9) and (3.10) and taking k(ε) = c
δ2(ε) complete the proof. �

Now we are in a position to establish the Morrey type estimate for gradient of weak
solution to (3.1) based on Lemma 3.2.

Lemma 3.3 Suppose that A(x) satisfies (H1) and u ∈ S1,2
X,loc(�,RN ) is a weak solution to the

system (3.1), i.e.,

∫

�

A(x)Xu · Xϕ dx =
∫

�

A(x)Xψ · Xϕ dx, ∀ϕ ∈ C∞
0

(
�,RN)

.

Then for any x0 ∈ � there exists a constant c > 0 such that, for all Bρ(x0) ⊂ BR(x0) ⊂ �,
R < Rd ,

∫

Bρ (x0)
|Xu|2 dx ≤ c

[(
ρ

R

)Q

+ ε + ηR(A)
]∫

BR(x0)
|Xu|2 dx + c

∫

BR(x0)
|Xψ |2 dx. (3.11)

Proof For fixed x0 ∈ � and 0 < R < Rd , denote BR := BR(x0). Let η be a cut-off function on
BR relative to Bρ , i.e. η ∈ C∞

0 (BR,RN ) and satisfies

0 ≤ η(x) ≤ 1, η(x) = 1 in Bρ ,
∣∣Xη(x)

∣∣ ≤ c
R – ρ

.
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Taking the function ϕ = η2(u – uR) as a test function, it follows that

∫

BR

η2A(x)Xu · Xu dx

= –2
∫

BR

A(x)η(u – uR)Xu · Xη dx +
∫

BR

η2A(x)Xψ · Xu dx

+ 2
∫

BR

A(x)η(u – uR)Xψ · Xη dx.

From (H1) and Young’s inequality

λ

∫

BR

η2|Xu|2 dx ≤ 2


∫

BR

|ηXu||u – uR||Xη|dx

+ 


∫

BR

|ηXψ ||ηXu|dx + 2


∫

BR

|ηXψ ||u – uR||Xη|dx

≤ ε

∫

BR

η2|Xu|2 dx +
cε

(R – ρ)2

∫

BR

|u – uR|2 dx + cε

∫

BR

|Xψ |2 dx.

Choosing ε < λ, it follows that

∫

Bρ

|Xu|2 dx ≤ c
(R – ρ)2

∫

BR

|u – uR|2 dx + c
∫

BR

|Xψ |2 dx. (3.12)

Next we define AR = –
∫

BR
A(x) dx. By Lemma 3.2, there exists an AR-harmonic function

h ∈ S1,2
X (BR,RN ) such that (3.6)–(3.8) hold. Moreover, by standard results of the subelliptic

system with constant coefficients (see for example [34]), we have

∫

Bρ

|Xh|2 dx ≤ c
(

ρ

R

)Q ∫

BR

|Xh|2 dx, ∀0 < ρ ≤ R.

Therefore, from (3.12) and (3.6) it follows that for any 0 < ρ < R/2

∫

Bρ

|Xu|2 dx

≤ c
ρ2

∫

B2ρ

|u – u2ρ |2 dx + c
∫

B2ρ

|Xψ |2 dx

≤ c
ρ2

(∫

B2ρ

∣
∣u – u2ρ – (h – h2ρ)

∣
∣2 dx +

∫

B2ρ

|h – h2ρ |2 dx
)

+ c
∫

B2ρ

|Xψ |2 dx

≤ c
ρ2

∫

B2ρ

|u – h|2 dx + c
∫

B2ρ

|Xh|2 dx + c
∫

B2ρ

|Xψ |2 dx

≤ c
ρ2

∫

B2ρ

|u – h|2 dx + c
(

ρ

R

)Q ∫

BR

|Xh|2 dx + c
∫

BR

|Xψ |2 dx

≤ c
ρ2

∫

B2ρ

|u – h|2 dx + c
(

ρ

R

)Q ∫

BR

|Xu|2 dx + c
∫

BR

|Xψ |2 dx. (3.13)
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For the first term in the right-hand side, we have from Lemma 3.2

c
ρ2

∫

B2ρ

|u – h|2 dx ≤ cε
∫

B2ρ

|Xu|2 dx + ck(ε)
ρ2

|B2ρ |
(∫

B2ρ

ARXu · Xϕ dx
)2

≤ cε
∫

BR

|Xu|2 dx + cε

ρ2

|BR|
(∫

BR

ARXu · Xϕ dx
)2

, (3.14)

where ϕ ∈ C∞
0 (B2ρ ,RN ) satisfies ‖Xϕ‖L∞(B2ρ ,RN ) ≤ 1

R < 1
2ρ

. Since u is a weak solution to
(3.1), it follows that

(∫

BR

ARXu · Xϕ dx
)2

=
(∫

BR

(AR – A)Xu · Xϕ dx +
∫

BR

AXu · Xϕ dx
)2

≤ 2
(∫

BR

(AR – A)Xu · Xϕ dx
)2

+ 2
(∫

BR

AXu · Xϕ dx
)2

:= I1 + I2.

From Hölder’s inequality, using (H1), we have

I1 ≤ 1
2ρ2

∫

BR

|Xu|2 dx ·
∫

BR

|AR – A|2 dx

≤ 
|BR|
ρ2

1
|BR|

∫

BR

|AR – A|dx ·
∫

BR

|Xu|2 dx

≤ 
|BR|
ρ2 ηR(A)

∫

BR

|Xu|2 dx

and

I2 ≤ 
2

2ρ2

(∫

BR

|Xψ |dx
)2

≤ 
2|BR|
2ρ2

∫

BR

|Xψ |2 dx.

Hence

(∫

BR

ARXu · Xϕ dx
)2

≤ c|BR|
ρ2

[
ηR(A)

∫

BR

|Xu|2 dx +
∫

BR

|Xψ |2 dx
]

. (3.15)

Combining (3.15), (3.14) and (3.13), we have, for any 0 < ρ < R/2,

∫

Bρ

|Xu|2 dx ≤ c
[(

ρ

R

)Q

+ ε + ηR(A)
]∫

BR

|Xu|2 dx + c
∫

BR

|Xψ |2 dx.

For R/2 ≤ ρ ≤ R, obviously

∫

Bρ

|Xu|2 dx ≤
∫

BR

|Xu|2 dx ≤ 2Q
(

ρ

R

)Q ∫

BR

|Xu|2 dx.

A combination of these two cases leads to (3.11) for 0 < ρ ≤ R. �

We end this section with a comparison principle for system (3.1).
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Lemma 3.4 Suppose that u,ψ ∈ S1,2
X (BR,RN ) satisfy

X∗(A(x)Xu
)

= X∗(A(x)Xψ
)

where A(x) satisfies (H1). If ψ ≤ u on ∂BR, then ψ ≤ u a.e. in BR.

Proof For any ϕ ∈ C∞
0 (BR,RN ) we have

∫

BR

A(x)Xu · Xϕ dx =
∫

BR

A(x)Xψ · Xϕ dx. (3.16)

Set u+ = max{u, 0}. Since ψ ≤ u on ∂BR, we conclude that (see [40, Lemma 6]) (ψ – u)+ ∈
S1,2

X,0(BR,RN ) and

X(ψ – u)+ =

⎧
⎨

⎩
X(ψ – u), ψ > u,

0, ψ ≤ u.

Choosing ϕ = (ψ – u)+ in (3.16) gives

∫

BR

A(x)X(ψ – u) · X(ψ – u)+ dx = 0,

which implies

∫

BR∩{ψ>u}
A(x)X(ψ – u) · X(ψ – u) dx = 0.

From (H1) we have

∫

BR

∣∣X(ψ – u)+
∣∣2 dx =

∫

BR∩{ψ>u}

∣∣X(ψ – u)
∣∣2 dx

≤ 1
λ

∫

BR∩{ψ>u}
A(x)X(ψ – u) · X(ψ – u) dx = 0.

Thus from Poincaré inequality, we obtain

∫

BR

∣∣(ψ – u)+
∣∣2 dx ≤ cR2

∫

BR

∣∣X(ψ – u)+
∣∣2 dx = 0,

which implies (ψ – u)+ = 0, or ψ ≤ u a.e. in BR. The proof is complete. �

4 Proof of main result
In this section we are going to prove our main result. To this end, we need a generalized
iteration lemma, which can be found in [9, Proposition 2.1].

Lemma 4.1 Let H be a nonnegative almost increasing function on the interval [0, T] and
F a positive function on (0, T]. Suppose that
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(1) for any 0 < ρ ≤ R ≤ T , there exist A, B, ε and a > 0 such that

H(ρ) ≤
(

A
(

ρ

R

)a

+ ε

)
H(R) + BF(R);

(2) there exists τ ∈ (0, a) such that ρτ

F(ρ) is almost increasing in (0, T]. Then there exist
positive constants ε0 and C such that, for any 0 ≤ ε ≤ ε0,

H(ρ) ≤ C
F(ρ)
F(R)

H(R) + CB · F(ρ), 0 < ρ ≤ R ≤ T ,

where ε0 depends only on A, a and τ .

Proof of Theorem 1.1 Let BR = B(x0, R) ⊂⊂ � be an arbitrary ball around x0 of radius R
and let u ∈ Kθ

ψ be a weak solution to the obstacle problem related to (1.1). In BR we split u
as u = w + (u – w), where w ∈ S1,2

X (BR,RN ) is the weak solution to the following system:

⎧
⎨

⎩
X∗(A(x)Xw) = X∗(A(x)Xψ) in BR,

w = u on ∂BR.
(4.1)

Since w = u ≥ ψ a.e. on ∂BR, it follows from Lemma 3.4 that w ≥ ψ a.e. in BR.
By the definition of weak solutions, we have

∫

BR

A(x)Xw · X(w – u) dx =
∫

BR

A(x)Xψ · X(w – u) dx.

From (H1) and Young’s inequality one gets

λ

∫

BR

|Xw|2 dx ≤
∫

BR

A(x)Xw · Xw dx

≤ 


∫

BR

|Xw||Xu|dx + 


∫

BR

|Xψ ||Xw – Xu|dx

≤ ε

∫

BR

|Xw|2 dx + cε

∫

BR

|Xu|2 dx + cε

∫

BR

|Xψ |2 dx.

Choosing ε < λ leads to

∫

BR

|Xw|2 dx ≤ c
∫

BR

|Xu|2 dx + c
∫

BR

|Xψ |2 dx. (4.2)

On the basis of (4.2), it follows from Lemma 3.3 that for any 0 < ρ ≤ R

∫

Bρ

|Xu|2 dx

≤ 2
∫

Bρ

|Xw|2 dx + 2
∫

Bρ

∣∣X(u – w)
∣∣2 dx

≤ c
[(

ρ

R

)Q

+ ε + ηR(A)
]∫

BR

|Xw|2 dx + c
∫

BR

|Xψ |2 dx + 2
∫

Bρ

∣∣X(u – w)
∣∣2 dx
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≤ c
[(

ρ

R

)Q

+ ε + ηR(A)
]∫

BR

|Xu|2 dx

+ c
∫

BR

|Xψ |2 dx + 2
∫

BR

∣∣X(u – w)
∣∣2 dx. (4.3)

Note that w – u is admissible as a test function in the definition of weak solutions to the
obstacle problem due to w – u ∈ S1,2

X,0(BR,RN ) and w ≥ ψ a.e. in BR. Applying w – u to (1.2)
leads to

∫

�

A(x)Xu · X(u – w) dx ≤
∫

�

B(x, u, Xu)(u – w) dx +
∫

�

g(x, u, Xu) · X(u – w) dx.

From (H1)–(H2) and Hölder’s inequality, we have

λ

∫

BR

|Xu – Xw|2 dx

≤
∫

BR

A(x)X(u – w) · X(u – w) dx

≤ –
∫

BR

A(x)Xw · X(u – w) dx +
∫

BR

∣∣B(x, u, Xu)
∣∣|u – w|dx

+
∫

BR

∣
∣g(x, u, Xu)

∣
∣|Xu – Xw|dx

≤ –
∫

BR

A(x)Xψ · X(u – w) dx +
∫

BR

(|f | + L|Xu|γ0
)|u – w|dx

+
∫

BR

(|f̃ | + L|Xu|γ )|Xu – Xw|dx

≤ c
(∫

BR

|Xu – Xw|2 dx
) 1

2
[(∫

BR

|Xψ |2 dx
) 1

2
+

(∫

BR

(|f | + |Xu|γ0
)2Q/(Q+2) dx

) Q+2
2Q

]

+ c
(∫

BR

|Xu – Xw|2 dx
) 1

2
(∫

BR

(|f̃ | + |Xu|γ )2 dx
) 1

2
,

which means
∫

BR

|Xu – Xw|2 dx ≤ c
∫

BR

|Xψ |2 dx + c
∫

BR

(|f̃ | + |Xu|γ )2 dx

+ c
(∫

BR

(|f | + |Xu|γ0
)2Q/(Q+2) dx

) Q+2
Q

. (4.4)

In view of 1 ≤ γ0 < Q+2
Q , 0 ≤ γ < 1, it follows by Hölder’s inequality that

(∫

BR

|Xu|2γ0Q/(Q+2) dx
) Q+2

Q
=

[(∫

BR

|Xu|2γ0Q/(Q+2) dx
) Q+2

2γ0Q
]2γ0

≤
[
|BR| Q+2

2γ0Q – 1
2

(∫

BR

|Xu|2 dx
) 1

2
]2γ0

= |BR| Q+2
Q –γ0

(∫

BR

|Xu|2 dx
)γ0

(4.5)
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and

∫

BR

|Xu|2γ dx ≤
[
|BR| 1

2γ – 1
2

(∫

BR

|Xu|2 dx
) 1

2
]2γ

≤ |BR|1–γ

(∫

BR

|Xu|2 dx
)γ

≤ ε

∫

BR

|Xu|2 dx + cε|BR|. (4.6)

Combine (4.4)–(4.6) to deduce

∫

BR

|Xu – Xw|2 dx ≤ c
(
ω(R) + ε

) ∫

BR

|Xu|2 dx + c
∫

BR

|Xψ |2 dx

+ c
(∫

BR

|f |2Q/(Q+2) dx
) Q+2

Q
+ c

∫

BR

|f̃ |2 dx + cε|BR|, (4.7)

where ω(R) = |BR| Q+2
Q –γ0 (

∫
BR

|Xu|2 dx)γ0–1.
From (4.7) and (4.3), we find, for any 0 < ρ ≤ R (we may suppose R < 1),

∫

Bρ

|Xu|2 dx ≤ c
[(

ρ

R

)Q

+ ε + ηR(A) + ω(R)
]∫

BR

|Xu|2 dx + c
∫

BR

|Xψ |2 dx

+ c
(∫

BR

|f |2Q/(Q+2) dx
)(Q+2)/Q

+ c
∫

BR

|f̃ |2 dx + c|BR|

≤ c
[(

ρ

R

)Q

+ ϑ(R)
]∫

BR

|Xu|2 dx + c̃
|BR|
Rλ

,

where ϑ(R) = ε +ηR(A) +ω(R), c̃ = c̃(‖f ‖2
L2Q/(Q+2),λQ/(Q+2) +‖f̃ ‖2

L2,λ +‖Xψ‖2
Lp,λ ). By the absolute

continuity of Lebesgue integral, we know that ω(R) → 0 as R → 0. Finally, we can take R <
R0 such that ηR(A) is small enough due to the VMO property of A(x). If we take F(ρ) = |Bρ |

ρλ ,

0 < Q – λ < τ < Q, we claim that ρτ

F(ρ) = ρτ+λ

|Bρ | is almost increasing. In fact, it follows from
(2.2) that, for any t ∈ (0, 1),

(tρ)τ

F(tρ)
/

ρτ

F(ρ)
=

(tρ)τ+λ

|Btρ | /
ρτ+λ

|Bρ | =
tτ+λ|Bρ |

|Btρ | ≤ C2
dtτ+λ–Q ≤ C2

d.

By Lemma 4.1, we obtain, for 0 < ρ ≤ R,

∫

Bρ

|Xu|2 dx ≤ c
|Bρ |
ρλ

, (4.8)

which shows that Xu ∈ L2,λ
X,loc(�,RmN ).

On the other hand, from Poincaré inequality and (4.8) we see that

∫

Bρ

|u – uρ |2 dx ≤ cρ2
∫

Bρ

|Xu|2 dx ≤ c
|Bρ |
ρλ–2 ,
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which implies u ∈L2,λ–2
X,loc (�,RN ) and so u ∈ C0,(2–λ)/2

X (�,RN ) according to Lemma 2.5. The
proof is finished. �
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