
Yang and Tian Journal of Inequalities and Applications  (2018) 2018:56 
https://doi.org/10.1186/s13660-018-1646-6

R E S E A R C H Open Access

An accurate approximation formula for
gamma function
Zhen-Hang Yang1,2 and Jing-Feng Tian1*

*Correspondence:
tianjf@ncepu.edu.cn
1College of Science and
Technology, North China Electric
Power University, Baoding, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we present a very accurate approximation for the gamma function:

�(x + 1)∼
√
2πx

(x
e

)x(
x sinh

1
x

)x/2
exp

( 7
324

1
x3(35x2 + 33)

)
=W2(x)

as x → ∞, and we prove that the function x �→ ln�(x + 1) – lnW2(x) is strictly
decreasing and convex from (1,∞) onto (0,β), where

β =
22,025
22,032

– ln
√
2π sinh1≈ 0.00002407.
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1 Introduction
The Stirling formula states that

n! ∼
√

2πnnne–n (1.1)

for n ∈ N. The gamma function �(x) =
∫ ∞

0 tx–1e–t dt for x > 0 is a generalization of the
factorial function n! and has important applications in various branches of mathematics;
see, for example, [1–6] and the references cited therein.

There are many refinements for the Stirling formula; see, for example, Burnside’s [7],
Gosper [8], Batir [9], Mortici [10]. Many authors pay attention to find various better ap-
proximations for the gamma function, for instance, Ramanujan [11, P. 339], Smith [12,
Eq. (42)], [13], Mortici [14], Nemes [15, Corollary 4.1], Yang and Chu [16, Propositions 4
and 5], Chen [17].

More results involving the approximation formulas for the factorial or gamma function
can be found in [16, 18–27] and the references cited therein. Several nice inequalities be-
tween gamma function and the truncations of its asymptotic series can be found in [28,
29].
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Now let us focus on the Windschitl approximation formula (see [12, Eq. (42)], [13]) de-
fined by

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2

:= W0(x) as x → ∞. (1.2)

As shown in [17], the rate of Windschitl’s approximation W0(x) converging to �(x + 1) is
like x–5 as x → ∞, and it is faster on replacing W0(x) by

W1(x) =
√

2πx
(

x
e

)x(
x sinh

1
x

+
1

810x6

)x/2

(1.3)

(see [13]). These results show that W0(x) and W1(x) are excellent approximations for the
gamma function.

In 2009, Alzer [30] proved that, for all x > 0,

√
2πx

(
x
e

)x(
x sinh

1
x

)x/2(
1 +

α

x5

)

< �(x + 1) =
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2(
1 +

β

x5

)
(1.4)

with the best possible constants α = 0 and β = 1/1620. Lu, Song and Ma [31] extended
Windschitl’s formula to

�(n + 1) ∼
√

2πn
(

n
e

)n[
n sinh

(
1
n

+
a7

n7 +
a9

n9 +
a11

n11 + · · ·
)]n/2

with a7 = 1/810, a9 = –67/42,525, a11 = 19/8505, . . . . An explicit formula for determining
the coefficients of n–k (n ∈N) was given in [32, Theorem 1] by Chen. Another asymptotic
expansion

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2+
∑∞

j=0 rjx–j

, x → ∞ (1.5)

was presented in the same reference [32, Theorem 2].
Motivated by the above comments, the aim of this paper is to provide a more accurate

Windschitl type approximation:

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2

exp

(
7

324
1

x3(35x2 + 33)

)
= W2(x) (1.6)

as x → ∞. Our main result is the following theorem.

Theorem 1 The function

f0(x) = ln�(x + 1) – ln
√

2π –
(

x +
1
2

)
ln x + x –

x
2

ln

(
x sinh

1
x

)
–

7
324

1
x3(35x2 + 33)
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is strictly decreasing and convex from (1,∞) onto (0, f0(1)), where

f0(1) =
22,025
22,032

– ln
√

2π sinh 1 ≈ 0.00002407.

2 Lemmas
An important research subject in analyzing inequality is to convert an univariate into the
monotonicity of functions [33–35]. Since the function f0(x) contains gamma and hyper-
bolic functions, it is very hard to deal with its monotonicity and convexity by usual ap-
proaches. For this purpose, we need the following lemmas, which provide a new way to
prove our result.

Lemma 1 The inequality

ψ ′
(

x +
1
2

)
> x

x4 + 227
66 x2 + 4237

2640

x6 + 155
44 x4 + 329

176 x2 + 375
4928

holds for x > 0.

Proof Let

g1(x) = ψ ′
(

x +
1
2

)
– x

x4 + 227
66 x2 + 4237

2640

x6 + 155
44 x4 + 329

176 x2 + 375
4928

.

Then by the recurrence formula [36, p. 260, (6.4.6)]

ψ ′(x + 1) – ψ ′(x) = –
1
x2

we have

g1(x + 1) – g1(x)

= ψ ′
(

x +
3
2

)
–

(x + 1)((x + 1)4 + 227
66 (x + 1)2 + 4237

2640 )
(x + 1)6 + 155

44 (x + 1)4 + 329
176 (x + 1)2 + 375

4928

– ψ ′
(

x +
1
2

)
+

x(x4 + 227
66 x2 + 4237

2640 )
x6 + 155

44 x4 + 329
176 x2 + 375

4928

= –58,982,400(2x + 1)–2(4928x6 + 17,360x4 + 9212x2 + 375
)–1

× (
4928x6 + 29,568x5 + 91,280x4 + 168,000x3 + 187,292x2

+ 117,432x + 31,875
)–1

< 0.

It then follows that

g1(x) > g1(x + 1) > · · · > lim
n→∞ g1(x + n) = 0,

which proves the desired inequality, and the proof is done. �
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Lemma 2 The inequalities

t
sinh t

> 1 –
1
6

t2 +
7

360
t4 –

31
15,120

t6 +
127

604,800
t8 –

73
3,421,440

t10 > 0 (2.1)

hold for t ∈ (0, 1].

Proof It was proved in [29, Theorem 1] that, for integer n ≥ 0, the double inequality

–
2n+1∑
i=0

2(22i–1 – 1)B2i

(2i)!
t2i–1 <

1
sinh t

< –
2n∑
i=0

2(22i–1 – 1)B2i

(2i)!
t2i–1 (2.2)

holds for x > 0. Taking n = 2 yields

1
sinh t

>
1
t

–
1
6

t +
7

360
t3 –

31
15,120

t5 +
127

604,800
t7 –

73
3,421,440

t9 :=
h(t)

t
,

which is equivalent to the first inequality of (2.1) for all t > 0.
Since x ∈ (0, 1], making a change of variable t2 = 1 – x ∈ (0, 1] we obtain

h(t) =
73

3,421,440
x5 +

12,371
119,750,400

x4 +
85,243

59,875,200
x3

+
858,623

59,875,200
x2 +

15,950,191
119,750,400

x +
14,556,793
17,107,200

> 0,

which proves the second one, and the proof is complete. �

The following lemma offers a simple criterion to determine the sign of a class of special
polynomial on given interval contained in (0,∞) without using Descartes’ rule of signs,
which play an important role in studying certain special functions; see for example [37,
38]. A series version can be found in [39].

Lemma 3 ([37, Lemma 7]) Let n ∈ N and m ∈ N ∪ {0} with n > m and let Pn(t) be a poly-
nomial of degree n defined by

Pn(t) =
n∑

i=m+1

aiti –
m∑

i=0

aiti, (2.3)

where an, am > 0, ai ≥ 0 for 0 ≤ i ≤ n – 1 with i �= m. Then there is a unique number tm+1 ∈
(0,∞) satisfying Pn(t) = 0 such that Pn(t) < 0 for t ∈ (0, tm+1) and Pn(t) > 0 for t ∈ (tm+1,∞).

Consequently, for given t0 > 0, if Pn(t0) > 0 then Pn(t) > 0 for t ∈ (t0,∞) and if Pn(t0) < 0
then Pn(t) < 0 for t ∈ (0, t0).

3 Proof of Theorem 1
With the aid of the lemmas in Sect. 2, we can prove Theorem 1.

Proof of Theorem 1 Differentiation yields

f ′
0(x) = ψ(x + 1) –

1
2

ln

(
x sinh

1
x

)
+

1
2x

coth
1
x
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– ln x –
1

2x
–

1
2

+
7

324
175x2 + 99

x4(35x2 + 33)2 ,

f ′′
0 (x) = ψ ′(x + 1) +

1
2x3

1
sinh2(1/x)

–
3

2x
+

1
2x2 –

7
54

6125x4 + 6545x2 + 2178
x5(35x2 + 33)3 .

Since limx→∞ f0(x) = limx→∞ f ′
0(x) = 0, it suffices to prove f ′′

0 (x) > 0 for x ≥ 1. Replacing
x by (x + 1/2) in Lemma 1 leads to

ψ ′(x + 1) >
7

30
(2x + 1)(165x4 + 330x3 + 815x2 + 650x + 417)

77x6 + 231x5 + 560x4 + 735x3 + 623x2 + 294x + 60
,

which indicates that

f ′′
0 (x) >

7
30

(2x + 1)(165x4 + 330x3 + 815x2 + 650x + 417)
77x6 + 231x5 + 560x4 + 735x3 + 623x2 + 294x + 60

+
1

2x3
1

sinh2(1/x)

–
3

2x
+

1
2x2 –

7
54

6125x4 + 6545x2 + 2178
x5(35x2 + 33)3 := f01

(
1
x

)
.

Arranging gives

f01(t) =
t
2

(
t

sinh t

)2

+
7

30
t(t + 2)(417t4 + 650t3 + 815t2 + 330t + 165)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77

–
3
2

t +
1
2

t2 –
7

54
t7 2178t4 + 6545t2 + 6125

(33t2 + 35)3 ,

where t = 1/x ∈ (0, 1). Applying the first inequality of (2.1) we have

f01(t) >
t
2

(
1 –

1
6

t2 +
7

360
t4 –

31
15,120

t6 +
127

604,800
t8 –

73
3,421,440

t10
)2

+
7

30
t(t + 2)(417t4 + 650t3 + 815t2 + 330t + 165)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77

–
3
2

t +
1
2

t2 –
7

54
t7 2178t4 + 6545t2 + 6125

(33t2 + 35)3

=
t11 × p22(t)

(33t2 + 35)3(60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77)
,

where p22(t) =
∑22

k=0 aktk with a0 = 2,341,955
27 , a1 = 2,341,955

9 , a2 = 4,592,761,525,177
41,057,280 ,

a3 = 3,740,791,861,177
13,685,760 , a4 = – 21,774,907,040,747

615,859,200 , a5 = 1,776,198,096,757
51,321,600 , a6 = – 2,348,474,362,865,491

59,122,483,200 , a7 =
– 444,392,576,792,851

19,707,494,400 , a8 = 722,576,509,559,549
344,881,152,000 , a9 = 734,284,235,570,623

229,920,768,000 , a10 = – 27,685,269,148,007,477
74,494,328,832,000 , a11 =

– 13,202,571,814,150,457
24,831,442,944,000 , a12 = 1,859,898,503,651,431

585,312,583,680,000 , a13 = 40,990,762,057,313,921
682,864,680,960,000 , a14 = 1,227,464,630,525,327

573,606,332,006,400 ,
a15 = – 107,829,513,340,517

19,510,419,456,000 , a16 = – 1,469,516,232,022,339
4,780,052,766,720,000 , a17 = 224,320,158,179

492,687,360,000 , a18 = 214,165,238,137
6,437,781,504,000 ,

a19 = – 402,182,039
11,943,936,000 , a20 = – 150,639,953

50,164,531,200 , a21 = 2,872,331
1,194,393,600 , a22 = 58,619

119,439,360 .
It remains to prove p22(t) =

∑22
k=0 aktk > 0 for t ∈ (0, 1]. Since ak > 0 for k = 0, 1, 2, 3, 8, 9,

12, 13, 14, 17, 18, 21, 22 and ak < 0 for k = 4, 6, 7, 10, 11, 15, 16, 19, 20, we have

p22(t) =
22∑

k=0

aktk =
∑
ak >0

aktk +
∑
ak <0

aktk >
∑

k=4,6,7,10,11,15,16,19,20

aktk +
3∑

k=0

aktk := p20(t).
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Clearly, the coefficients of the polynomial –p20(t) satisfy the conditions in Lemma 3, and

–p20(1) =
∑

k=4,6,7,10,11,15,16,19,20

(–ak) –
3∑

k=0

ak = –
1,135,768,202,621,781,774,901

1,792,519,787,520,000
< 0.

It then follows that p20(t) > 0 for t ∈ (0, 1], and so is p22(t), which implies f01(t) > 0 for
t ∈ (0, 1]. Consequently, f ′′

0 (x) > 0 for all x ≥ 1. This completes the proof. �

As a direct consequence of Theorem 1, we immediately get the following.

Corollary 1 For n ∈N, the double inequality

exp
7

324n3(35n2 + 33)
<

n!√
2πn(n/e)n(n sinh n–1)n/2

< λ exp
7

324n3(35n2 + 33)

holds with the best constant

λ = exp f0(1) =
1√

2π sinh 1
exp

22,025
22,032

≈ 1.000024067.

Set

D0(y) = y – ln(1 + y), y =
7

324x3(35x2 + 33)
.

Then it is easy to check that, for x > 1,

dD0(y)
dx

= –
49

324
175x2 + 99

x4(35x2 + 33)2(11,340x5 + 10,692x3 + 7)
< 0,

d2D0(y)
dx2 =

343
54

(18,191,250x9 + 37,110,150x7 + 24,992,550x5 + 6125x4 + 5,821,794x3 + 6545x2 + 2178)
x5(35x2 + 33)3(11,340x5 + 10,692x3 + 7)2

> 0.

That is to say, x �→ D0(y) is decreasing and convex on (1,∞), and so is the function f ∗
0 (x) :=

f0(x) + D0(y) by Theorem 1.

Corollary 2 The function

f ∗
0 (x) = ln�(x + 1) – ln

√
2π –

(
x +

1
2

)
ln x + x –

x
2

ln

(
x sinh

1
x

)

– ln

(
1 +

7
324x3(35x2 + 33)

)

is strictly decreasing and convex from (1,∞) onto (0, f ∗
0 (1)), where

f ∗
0 (1) = 1 – ln

22,039
22,032

– ln
√

2π sinh 1 ≈ 0.00002412.

Remark 1 Corollary 2 offers another approximation formula

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2(
1 +

7
324

1
x3(35x2 + 33)

)
= W ∗

2 (x). (3.1)
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Also, for n ∈N,

1 +
7

324n3(35n2 + 33)
<

n!√
2πn(n/e)n(n sinh n–1)n/2

< λ∗
(

1 +
7

324n3(35n2 + 33)

)

with the best constant

λ∗ = exp f ∗
0 (1) =

22,032
22,039

e√
2π sinh 1

≈ 1.000024117.

4 Numerical comparisons
It is well known that an excellent approximation for the gamma function is fairly accurate
but relatively simple. In this section, we list some known approximation formulas for the
gamma function and compare them with W1(x) given by (1.3) and our new one W2(x)
defined by (1.6).

It has been shown in [17] that, as x → ∞, Ramanujan’s [11, P. 339] approximation for-
mula holds,

�(x + 1) ∼
√

π

(
x
e

)x(
8x3 + 4x2 + x +

1
30

)1/6(
1 + O

(
1
x4

))
:= R(x),

and Smith’s one [12, Eq. (42)],

�

(
x +

1
2

)
∼

√
2π

(
x
e

)x(
2x tanh

1
2x

)x/2(
1 + O

(
1
x5

))
:= S(x),

Nemes’ one [15, Corollary 4.1],

�(x + 1) ∼
√

2πx
(

x
e

)x(
1 +

1
12x2 – 1/10

)x(
1 + O

(
1
x5

))
=: N1(x),

and Chen’s one [17],

�(x + 1) ∼
√

2πx
(

x
e

)x(
1 +

1
12x3 + 24x/7 – 1/2

)x2+53/210(
1 + O

(
1
x7

))

:= C(x). (4.1)

Moreover, it is easy to check that Nemes’ result [13] is another one,

�(x + 1) ∼
√

2πx
(

x
e

)x

exp

(
210x2 + 53

360x(7x2 + 2)

)(
1 + O

(
1
x7

))
:= N2(x), (4.2)

and so are Yang and Chu’s [16, Propositions 4 and 5] ones,

�

(
x +

1
2

)
=

√
2π

(
x
e

)x

exp

(
–

1
24

x
x2 + 7/120

)(
1 + O

(
1
x5

))
:= Y1(x),

�

(
x +

1
2

)
=

√
2π

(
x
e

)x

exp

(
–

1
24x

+
7

2880x
1

x2 + 31/98

)(
1 + O

(
1
x7

))
:= Y2(x),
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Table 1 Comparison among N2 (4.2), C (4.1),W1 (1.3) andW2 (1.6)

x | N2(x)–�(x+1)
�(x+1) | | C(x)–�(x+1)

�(x+1) | |W1(x)–�(x+1)
�(x+1) | |W2(x)–�(x+1)

�(x+1) |
1 1.114× 10–4 1.398× 10–4 1.832× 10–4 2.407× 10–5

2 1.900× 10–6 2.222× 10–6 2.668× 10–6 2.308× 10–7

5 4.353× 10–9 4.956× 10–9 5.743× 10–9 1.249× 10–10

10 3.609× 10–11 4.088× 10–11 4.710× 10–11 2.785× 10–13

20 2.864× 10–13 3.240× 10–13 3.727× 10–13 5.634× 10–16

50 4.713× 10–16 5.330× 10–16 6.129× 10–16 1.492× 10–19

100 3.684× 10–18 4.166× 10–18 4.791× 10–18 2.918× 10–22

and we have Windschitl one [13],

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

+
1

810x6

)x/2(
1 + O

(
1
x7

))
= W1(x).

For our new ones W2(x) given in (1.6) and its counterpart W ∗
2 (x) given in (3.1), we easily

check that

lim
x→∞

ln�(x + 1) – ln W2(x)
x–9 = lim

x→∞
ln�(x + 1) – ln W ∗

2 (x)
x–9 =

869
2,976,750

,

which show that the rates of W2(x) and W ∗
2 (x) converging to �(x + 1) are both as x–9.

From these, we see that our new Windschitl type approximation formulas W2(x) and
W ∗

2 (x) are best among those listed above, which can also be seen from Table 1.

Acknowledgements
The authors would like to express their sincere thanks to the editors and reviewers for their great efforts to improve this
paper. This work was supported by the Fundamental Research Funds for the Central Universities (No. 2015ZD29) and the
Higher School Science Research Funds of Hebei Province of China (No. Z2015137).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1College of Science and Technology, North China Electric Power University, Baoding, P.R. China. 2Department of Science
and Technology, State Grid Zhejiang Electric Power Company Research Institute, Hangzhou, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 December 2017 Accepted: 23 February 2018

References
1. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps.

Wiley, New York (1997)
2. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Topics in special functions II. Conform. Geom. Dyn. 11, 250–270

(2007)
3. Wang, M.K., Chu, Y.M., Song, Y.Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions.

Appl. Math. Comput. 276, 44–60 (2016)
4. Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation

function. Ramanujan J. (2017). https://doi.org/10.1007/s11139-0176-9888-3
5. Wang, M.K., Chu, Y.M., Jiang, Y.P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric

functions. Rocky Mt. J. Math. 46(2), 679–691 (2016)
6. Wang, M.K., Chu, Y.M.: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta

Math. Sci. Ser. B Engl. Ed. 37(3), 607–622 (2017)
7. Burnside, W.: A rapidly convergent series for logN!. Messenger Math. 46, 157–159 (1917)

https://doi.org/10.1007/s11139-0176-9888-3


Yang and Tian Journal of Inequalities and Applications  (2018) 2018:56 Page 9 of 9

8. Gosper, R.W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75, 40–42
(1978)

9. Batir, N.: Sharp inequalities for factorial n. Proyecciones 27(1), 97–102 (2008)
10. Mortici, C.: On the generalized Stirling formula. Creative Math. Inform. 19(1), 53–56 (2010)
11. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988)
12. Smith, W.D.: The gamma function revisited (2006). http://schule.bayernport.com/gamma/gamma05.pdf
13. http://www.rskey.org/CMS/the-library/11
14. Mortici, C.: A new fast asymptotic series for the gamma function. Ramanujan J. 38(3), 549–559 (2015)
15. Nemes, G.: New asymptotic expansion for the gamma function. Arch. Math. (Basel) 95, 161–169 (2010)
16. Yang, Z.-H., Chu, Y.-M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270,

665–680 (2015)
17. Chen, C.-P.: A more accurate approximation for the gamma function. J. Number Theory 164, 417–428 (2016)
18. Batir, N.: Inequalities for the gamma function. Arch. Math. 91, 554–563 (2008)
19. Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. 93(1),

37–45 (2009)
20. Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc

Math. Notes 11(1), 79–86 (2010)
21. Mortici, C.: Improved asymptotic formulas for the gamma function. Comput. Math. Appl. 61, 3364–3369 (2011)
22. Zhao, J.-L., Guo, B.-N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. (Debr.) 80(3–4),

333–342 (2012)
23. Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput.

Model. 57, 1360–1363 (2013)
24. Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the

gamma function. J. Comput. Appl. Math. 268, 155–167 (2014)
25. Lu, D.: A new sharp approximation for the gamma function related to Burnside’s formula. Ramanujan J. 35(1),

121–129 (2014)
26. Lu, D., Song, L., Ma, C.: Some new asymptotic approximations of the gamma function based on Nemes’ formula,

Ramanujan’s formula and Burnside’s formula. Appl. Math. Comput. 253, 1–7 (2015)
27. Yang, Z.-H., Tian, J.F.: Monotonicity and inequalities for the gamma function. J. Inequal. Appl. 2017, 317 (2017).

https://doi.org/10.1186/s13660-017-1591-9
28. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373–389 (1997)
29. Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely

monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016)
30. Alzer, H.: Sharp upper and lower bounds for the gamma function. Proc. R. Soc. Edinb. 139A, 709–718 (2009)
31. Lu, D., Song, L., Ma, C.: A generated approximation of the gamma function related to Windschitl’s formula. J. Number

Theory 140, 215–225 (2014)
32. Chen, C.-P.: Asymptotic expansions of the gamma function related to Windschitl’s formula. Appl. Math. Comput. 245,

174–180 (2014)
33. Qi, F., Cerone, P., Dragomir, S.S., Srivastava, H.M.: Alternative proofs for monotonic and logarithmically convex

properties of one-parameter mean values. Appl. Math. Comput. 208(1), 129–133 (2009)
34. Tian, J.F., Ha, M.H.: Properties of generalized sharp Hölder’s inequalities. J. Math. Inequal. 11(2), 511–525 (2017)
35. Tian, J.F., Ha, M.H.: Properties and refinements of Aczél-type inequalities. J. Math. Inequal. 12(1), 175–189 (2018)
36. Abramowttz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables.

Dover, New York (1972)
37. Yang, Z.-H., Chu, Y.-M., Tao, X.-J.: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal.

2014, Article ID 702718 (2014)
38. Yang, Z.-H., Tian, J.: Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 12(1), 1–22

(2018)
39. Yang, Z.-H., Tian, J.: Convexity and monotonicity for the elliptic integrals of the first kind and applications.

arXiv:1705.05703 [math.CA]

http://schule.bayernport.com/gamma/gamma05.pdf
http://www.rskey.org/CMS/the-library/11
https://doi.org/10.1186/s13660-017-1591-9
http://arxiv.org/abs/arXiv:1705.05703

	An accurate approximation formula for gamma function
	Abstract
	MSC
	Keywords

	Introduction
	Lemmas
	Proof of Theorem 1
	Numerical comparisons
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


