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Abstract
Let X be an observable random variable with unknown distribution function
F(x) = P(X ≤ x), –∞ < x <∞, and let

θ = sup
{
r ≥ 0 : E|X|r < ∞}

.

We call θ the power of moments of the random variable X . Let X1,X2, . . . ,Xn be a
random sample of size n drawn from F(·). In this paper we propose the following
simple point estimator of θ and investigate its asymptotic properties:

θ̂n =
logn

logmax1≤k≤n |Xk| ,

where log x = ln(e∨ x), –∞ < x <∞. In particular, we show that

θ̂n →P θ if and only if lim
x→∞ xrP(|X| > x) =∞ ∀r > θ .

This means that, under very reasonable conditions on F(·), θ̂n is actually a consistent
estimator of θ .
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1 Motivation
The motivation of the current work arises from the following problem concerning pa-
rameter estimation. Let X be an observable random variable with unknown distribution
function F(x) = P(X ≤ x), –∞ < x < ∞, and let

θ = sup
{

r ≥ 0 : E|X|r < ∞}
.

We call θ the power of moments of the random variable X. Clearly θ is a parameter of the
distribution of the random variable X. Now let X1, X2, . . . , Xn be a random sample of size n
drawn from the random variable X; i.e., X1, X2, . . . , Xn are independent and identically dis-
tributed (i.i.d.) random variables whose common distribution function is F(·). It is natural
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to pose the following question: Can we estimate the parameter θ based on the random
sample X1, . . . , Xn?

This is a serious and important problem. For example, if θ > 2 and if the distribution of
X is nondegenerate, then it is clear that 0 < Var X < ∞ and so by the classical Lévy central
limit theorem, the distribution of

Sn – nμ√
n

is approximately normal (for all sufficiently large n) with mean 0 and variance σ 2 = Var X =
E(X –μ)2 where μ = EX. Thus the problem that we are facing is how can we conclude with
a high degree of confidence that θ > 2.

In this paper we propose the following point estimator of θ and will investigate its
asymptotic properties:

θ̂n =
log n

log max1≤k≤n |Xk| .

Here and below log x = ln(e ∨ x), –∞ < x < ∞.
Our main results will be stated in Sect. 2 and they all pertain to a sequence of i.i.d.

random variables {Xn; n ≥ 1} drawn from the distribution function F(·) of the random
variable X. The proofs of our main results will be provided in Sect. 3.

2 Statement of the main results
Throughout, X is a random variable with unknown distribution F(x) = P(X ≤ x), –∞ <
x < ∞ and write

ρ1 = sup
{

r ≥ 0 : lim
x→∞ xr

P(X > x) = 0
}

and ρ2 = sup
{

r ≥ 0 : lim inf
x→∞ xr

P(X > x) = 0
}

.

Clearly, just as θ as defined in Sect. 1 is a parameter of the distribution F(·) of the random
variable X, so are ρ1 and ρ2. These parameters satisfy

0 ≤ ρ1 ≤ ρ2 ≤ ∞.

The main results of this paper are Theorems 2.1–2.5.

Theorem 2.1 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the dis-
tribution function F(·) of the random variable X. Then

lim sup
n→∞

log max1≤k≤n Xk

log n
=

1
ρ1

a.s. (2.1)

and there exists an increasing positive integer sequence {ln; n ≥ 1} (which depends on the
probability distribution of X when ρ1 < ∞) such that

lim
n→∞

log max1≤k≤ln Xk

log ln
=

1
ρ1

a.s. (2.2)
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Theorem 2.2 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the dis-
tribution function F(·) of the random variable X. Then

lim inf
n→∞

log max1≤k≤n Xk

log n
=

1
ρ2

a.s. (2.3)

and there exists an increasing positive integer sequence {mn; n ≥ 1} (which depends on the
probability distribution of X when ρ2 > 0) such that

lim
n→∞

log max1≤k≤mn Xk

log mn
=

1
ρ2

a.s. (2.4)

Remark 2.1 We must point out that (2.2) and (2.4) are two interesting conclusions. To see
this, let {Un; n ≥ 1} be a sequence of independent random variables with

P(Un = 1) = P(Un = 3) =
1

2n
and P(Un = 2) = 1 –

1
n

, n ≥ 1.

Since

∞∑

n=1

P(Un = 3) =
∞∑

n=1

P(Un = 1) =
∞∑

n=1

1
2n

= ∞,

it follows from the Borel–Cantelli lemma that

lim sup
n→∞

Un = 3 a.s. and lim inf
n→∞ Un = 1 a.s.

However, for any sequences {ln; n ≥ 1} and {mn; n ≥ 1} of increasing positive integers,

neither lim
n→∞ Uln = 3 a.s. nor lim

n→∞ Umn = 1 a.s. holds.

Remark 2.2 For an observable random variable X, it is often the case that ρ1 = ρ2. How-
ever, for any given constants ρ1 and ρ2 with 0 ≤ ρ1 < ρ2 ≤ ∞, one can construct a random
variable X such that

sup
{

r ≥ 0 : lim
x→∞ xr

P(X > x) = 0
}

= ρ1 and sup
{

r ≥ 0 : lim inf
x→∞ xr

P(X > x) = 0
}

= ρ2.

For example, if 0 < ρ1 < ρ2 < ∞, a random variable X can be constructed having probability
distribution given by

P(X = dn) =
c

dρ1
n

, n ≥ 1,

where dn = 2(ρ2/ρ1)n , n ≥ 1 and

c =

( ∞∑

n=1

1
dρ1

n

)–1

> 0.

Combining Theorems 2.1 and 2.2, we establish a law of large numbers for
log max1≤k≤n Xk , n ≥ 1 as follows.
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Theorem 2.3 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the dis-
tribution function F(·) of the random variable X and let ρ ∈ [0,∞]. Then the following four
statements are equivalent:

log max1≤k≤n Xk

log n
a.s.−→ 1

ρ
, (2.5)

log max1≤k≤n Xk

log n
P−→ 1

ρ
, (2.6)

ρ1 = ρ2 = ρ, (2.7)

lim
x→∞ xr

P(X > x) =

⎧
⎨

⎩
0 ∀r < ρ if ρ > 0,

∞ ∀r > ρ if ρ < ∞.
(2.8)

If 0 ≤ ρ < ∞, then anyone of (2.5)–(2.8) holds if and only if there exists a function L(·) :
(0,∞) → (0,∞) such that

P(X > x) ∼ L(x)
xρ

as x → ∞ and lim
x→∞

ln L(x)
ln x

= 0. (2.9)

The following result concerns convergence in distribution for log max1≤k≤n Xk , n ≥ 1.

Theorem 2.4 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the
distribution function F(·) of the random variable X. Suppose that there exist constants
0 < ρ < ∞ and –∞ < τ < ∞ and a monotone function h(·) : [0,∞) → (0,∞) with
limx→∞ h(x2)/h(x) = 1 such that

P(X > x) ∼ (log x)τ h(x)
xρ

as x → ∞. (2.10)

Then

lim
n→∞P

(
log max

1≤k≤n
Xk ≤ ln n + τ ln ln n + ln h(n) – τ lnρ + x

ρ

)

= exp
(
–e–x) ∀ – ∞ < x < ∞. (2.11)

Also, by Theorems 2.1–2.3, we have the following result for the point estimator θ̂n.

Theorem 2.5 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the dis-
tribution function F(·) of the random variable X. Let

θ̂n =
log n

log max1≤k≤n |Xk| , n ≥ 1.

Then we have

lim inf
n→∞ θ̂n = θ = sup

{
r ≥ 0 : E|X|r < ∞}

a.s.,

lim sup
n→∞

θ̂n = sup
{

r ≥ 0 : lim inf
x→∞ xr

P
(|X| > x

)
= 0

}
a.s.,
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and the following three statements are equivalent:

θ̂n
a.s.−→ θ , (2.12)

θ̂n
P−→ θ , (2.13)

lim
x→∞ xr

P
(|X| > x

)
= ∞ ∀r > θ if θ < ∞. (2.14)

If 0 ≤ θ < ∞, then anyone of (2.12)–(2.14) holds if and only if there exists a function L(·) :
(0,∞) → (0,∞) such that

P
(|X| > x

) ∼ L(x)
xθ

as x → ∞ and lim
x→∞

ln L(x)
ln x

= 0. (2.15)

Remark 2.3 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the
distribution function F(·) of some nonnegative random variable X. For each n ≥ 1, let
Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n denote the order statistics based on X1, X2, . . . , Xn. To estimate the
tail index of F(·), the well-known Hill estimator, proposed by Hill [1], is defined by

α̂n =

(
1
kn

kn∑

i=1

ln
Xn,n–i+1

Xn,n–kn

)–1

,

where {kn; n ≥ 1} is a sequence of positive integers satisfying

1 ≤ kn < n and kn → ∞ and kn/n → 0 as n → ∞. (2.16)

Mason [2, Theorem 2] showed that, for some constant θ ∈ (0,∞),

α̂n
P−→ θ for every sequence {kn; n ≥ 1} satisfying (2.16)

if and only if

P(X > x) ∼ L(x)
xθ

as x → ∞ where L(·) : (0,∞) → (0,∞) is a slowly varying function. (2.17)

Since L(·) defined in (2.17) is a slowly varying function,

lim
t→∞

log L(t)
log t

= 0

is always true and hence (2.15) follows from (2.17). However, the following example shows
that (2.15) does not imply (2.17). Thus condtion (2.15) is weaker than (2.17).

Example 2.1 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables drawn from the dis-
tribution function F(·) of some nonnegative random variable X given by

F(x) = 1 – exp
(
–θ

[
ln(x ∨ 1)

])
, x ≥ 0,
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where θ ∈ (0,∞) is the tail index of the distribution and [t] denotes the integer part of t.
Then (2.15) holds but (2.17) is not satisfied. To see this, let

L(x) = exp
(
θ
(
ln x – [ln x]

))
, x ≥ e.

Then

P(X > x) = 1 – F(x) = x–θ L(x), x ≥ e.

Since, for x ≥ e, 0 ≤ ln x – [ln x] ≤ 1, we have

1 ≤ L(x) ≤ exp(θ ), x ≥ 1

and hence (2.15) holds. However, for 1 < a < e and xn = en, n ≥ 1, we have

ln(axn) –
[
ln(axn)

]
= (n + ln a) – [n + ln a] = ln a and ln(xn) –

[
ln(xn)

]
= n – [n] = 0.

Thus, for θ ∈ (0,∞),

L(axn)
L(xn)

=
exp(θ (ln a))
exp(θ × 0)

= aθ > 1, n ≥ 1

and hence

lim
x→∞

L(ax)
L(x)

= 1 does not hold;

i.e., L(·) is not a slowly varying function. Thus (2.17) is not satisfied and hence, for this
example, the well-known Hill estimator cannot be used to estimate the tail index θ .

3 Proofs of the main results
Let {An; n ≥ 1} be a sequence of events. As usual the abbreviation {An i.o.} stands for the
case that the events An occur infinitely often. That is,

{An i.o.} = {events An occur infinitely often} =
∞⋂

n=1

∞⋃

j=n

Aj.

For events A and B, we say A = B a.s. if P(A � B) = 0 where A � B = (A \ B) ∪ (B \ A).
To prove Theorem 2.1, we use the following preliminary result, which can be found in
Chandra [3, Example 1.6.25(a), p. 48].

Lemma 3.1 Let {bn; n ≥ 1} be a nondecreasing sequence of positive real numbers such that

lim
n→∞ bn = ∞

and let {Vn; n ≥ 1} be a sequence of random variables. Then

{
max

1≤k≤n
Vk ≥ bn i.o.

}
= {Vn ≥ bn i.o.} a.s.
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Proof of Theorem 2.1 Case I: 0 < ρ1 < ∞. For given ε > 0, let r(ε) = ( 1
ρ1

+ ε)–1. Then

0 < r(ε) < ρ1 = sup
{

r ≥ 0 : lim
x→∞ xr

P(X > x) = 0
}

and hence

∞∑

n=1

P
(
X > n1/r(ε)) < ∞. (3.1)

By the Borel–Cantelli lemma, (3.1) implies that

P
(
Xn > n1/r(ε) i.o.

)
= 0.

By Lemma 3.1, we have

{
log max1≤k≤n Xk

log n
>

1
ρ1

+ ε i.o.
}

=
{

max
1≤k≤n

Xk > n1/r(ε) i.o.
}

=
{

Xn > n1/r(ε) i.o.
}

a.s.

and hence

P

(
log max1≤k≤n Xk

log n
>

1
ρ1

+ ε i.o.
)

= 0.

Thus

lim sup
n→∞

log max1≤k≤n Xk

log n
≤ 1

ρ1
+ ε a.s.

Letting ε ↘ 0, we get

lim sup
n→∞

log max1≤k≤n Xk

log n
≤ 1

ρ1
a.s. (3.2)

By the definition of ρ1, we have

lim sup
x→∞

xr
P(X > x) = ∞ ∀r > ρ1,

which is equivalent to

lim sup
x→∞

xP
(
X > x(1/ρ1)–ε

)
= ∞ ∀ε > 0.

Then, inductively, we can choose positive integers ln, n ≥ 1 such that

1 = l1 < l2 < · · · < ln < · · · and lnP
(
X > l(1/ρ1)–(1/n)

n
) ≥ 2 ln n, n ≥ 1.
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Note that, for any 0 ≤ z ≤ 1, 1 – z ≤ e–z . Thus, for all sufficiently large n, we have

P

(
log max1≤k≤ln Xk

log ln
≤ 1

ρ1
–

1
n

)
= P

(
max

1≤k≤ln
Xk ≤ l(1/ρ1)–(1/n)

n

)

=
(
1 – P

(
X > l(1/ρ1)–(1/n)

n
))ln

≤ exp
(
–lnP

(
X > l(1/ρ1)–(1/n)

n
))

≤ exp(–2 ln n)

= n–2.

Since
∑∞

n=1 n–2 < ∞, by the Borel–Cantelli lemma, we get

P

(
log max1≤k≤ln Xk

log ln
≤ 1

ρ1
–

1
n

i.o.
)

= 0

which ensures that

lim inf
n→∞

log max1≤k≤ln Xk

log ln
≥ 1

ρ1
a.s. (3.3)

Clearly, (2.1) and (2.2) follow from (3.2) and (3.3).
Case II: ρ1 = ∞. Using the same argument used in the first half of the proof for Case I,

we get

lim sup
n→∞

log max1≤k≤n Xk

log n
≤ ε a.s. ∀ε > 0

and hence

lim sup
n→∞

log max1≤k≤n Xk

log n
≤ 0 a.s. (3.4)

Note that

0 ≤ log max1≤k≤n Xk

log n
∀n ≥ 1.

We thus have

lim inf
n→∞

log max1≤k≤n Xk

log n
≥ 0 a.s. (3.5)

It thus follows from (3.4) and (3.5) that

lim
n→∞

log max1≤k≤n Xk

log n
= 0 a.s.

proving (2.1) and (2.2) (with ln = n, n ≥ 1).
Case III: ρ1 = 0. By the definition of ρ1, we have

lim sup
x→∞

xr
P(X > x) = ∞ ∀r > 0,
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which is equivalent to

lim sup
x→∞

xP
(
X > xr) = ∞ ∀r > 0.

Then, inductively, we can choose positive integers ln, n ≥ 1 such that

1 = l1 < l2 < · · · < ln < · · · and lnP
(
X > ln

n
) ≥ 2 ln n, n ≥ 1.

Thus, for all sufficiently large n, we have by the same argument as in Case I

P

(
log max1≤k≤ln Xk

log ln
≤ n

)
≤ n–2

and hence by the Borel–Cantelli lemma

P

(
log max1≤k≤ln Xk

log ln
≤ n i.o.

)
= 0

which ensures that

lim
n→∞

log max1≤k≤ln Xk

log ln
= ∞ a.s.

Thus (2.1) and (2.2) hold. This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2 Case I: 0 < ρ2 < ∞. For given ρ2 < r < ∞, let r1 = (r + ρ2)/2 and
τ = 1 – (r1/r). Then ρ2 < r1 < r < ∞ and τ > 0. By the definition of ρ2, we have

lim
x→∞ xr1P(X > x) = ∞

and hence, for all sufficiently large x,

P(X > x) ≥ x–r1 .

Thus, for all sufficiently large n,

nP
(
X > n1/r) ≥ n

(
n1/r)–r1 = n1–(r1/r) = nτ

and hence

P

(
max

1≤k≤n
Xk ≤ n1/r

)
=

(
1 – P

(
X > n1/r))n ≤ e–nP(X>n1/r) ≤ e–nτ

.

Since

∞∑

n=1

e–nτ
< ∞,

by the Borel–Cantelli lemma, we have

P

(
max

1≤k≤n
Xk ≤ n1/r i.o.

)
= 0,
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which implies that

lim inf
n→∞

log max1≤k≤n Xk

log n
≥ 1/r a.s.

Letting r ↘ ρ2, we get

lim inf
n→∞

log max1≤k≤n Xk

log n
≥ 1

ρ2
a.s. (3.6)

Again, by the definition of ρ2, we have

lim inf
x→∞ xr

P(X > x) = 0 ∀r < ρ2,

which is equivalent to

lim inf
x→∞ xP

(
X > x(1/ρ2)+ε

)
= 0 ∀ε > 0.

Then, inductively, we can choose positive integers mn, n ≥ 1 such that

1 = m1 < m2 < · · · < mn < · · · and mnP
(
X > m(1/ρ2)+(1/n)

n
) ≤ n–2, n ≥ 1.

Then we have

∞∑

n=1

P

(
max

1≤k≤mn
Xk > m(1/ρ2)+(1/n)

n

)
≤

∞∑

n=1

mnP
(
X > m(1/ρ2)+(1/n)

n
) ≤

∞∑

n=1

n–2 < ∞.

Thus, by the Borel–Cantelli lemma, we get

P

(
log max1≤k≤mn Xk

log mn
>

1
ρ2

+
1
n

i.o.
)

= 0

which ensures that

lim sup
n→∞

log max1≤k≤mn Xk

log mn
≤ 1

ρ2
a.s. (3.7)

Clearly, (2.3) and (2.4) follow from (3.6) and (3.7).
Case II: ρ2 = ∞. By the definition of ρ2, we have

lim inf
x→∞ xr

P(X > x) = 0 ∀r > 0,

which is equivalent to

lim inf
x→∞ xP

(
X > xr) = 0 ∀r > 0.

Then, inductively, we can choose positive integers mn, n ≥ 1 such that

1 = m1 < m2 < · · · < mn < · · · and mnP
(
X > m1/n

n
) ≤ n–2, n ≥ 1.
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Thus

∞∑

n=1

P

(
max

1≤k≤mn
Xk > m1/n

n

)
≤

∞∑

n=1

mnP
(
X > m1/n

n
) ≤

∞∑

n=1

n–2 < ∞

and hence by the Borel–Cantelli lemma

P

(
max

1≤k≤mn
Xk > m1/n

n i.o.
)

= 0,

which ensures that

lim sup
n→∞

log max1≤k≤mn Xk

log mn
≤ 0 a.s. (3.8)

It is clear that

lim inf
n→∞

log max1≤k≤n Xk

log n
≥ 0 a.s. (3.9)

It thus follows from (3.8) and (3.9) that

lim inf
n→∞

log max1≤k≤n Xk

log n
= 0 a.s. and lim

n→∞
log max1≤k≤mn Xk

log mn
= 0 a.s.;

i.e., (2.3) and (2.4) hold.
Case III: ρ2 = 0. Using the same argument used in the first half of the proof for Case I,

we get

lim inf
n→∞

log max1≤k≤n Xk

log n
≥ 1

r
a.s. ∀r > 0.

Letting r ↘ 0, we get

lim inf
n→∞

log max1≤k≤n Xk

log n
= ∞ a.s.

Thus

lim
n→∞

log max1≤k≤n Xk

log n
= ∞ a.s.

and hence (2.3) and (2.4) hold with mn = n, n ≥ 1. �

Proof of Theorem 2.3 It follows from Theorems 2.1 and 2.2 that

(2.5) ⇐⇒ (2.7) ⇐⇒ (2.8).

Since (2.6) follows from (2.5), we only need to show that (2.6) implies (2.8). It follows from
(2.6) that

lim
n→∞P

(
log max1≤k≤n Xk

log n
≤ 1

r

)
=

⎧
⎨

⎩
1 ∀r < ρ if ρ > 0,

0 ∀r > ρ if ρ < ∞.
(3.10)
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Since, for n ≥ 3,

P

(
log max1≤k≤n Xk

log n
≤ 1

r

)
= P

(
max

1≤k≤n
Xk ≤ n1/r

)
=

(
1 – P

(
X > n1/r))n = en ln(1–P(X>n1/r))

and

n ln
(
1 – P

(
X > n1/r)) ∼ –nP

(
X > n1/r) as n → ∞,

it follows from (3.10) that

lim
n→∞ nP

(
X > n1/r) =

⎧
⎨

⎩
0 ∀r < ρ if ρ > 0,

∞ ∀r > ρ if ρ < ∞,

which is equivalent to (2.8).
For 0 ≤ ρ < ∞, note that

P(X > x) = x–ρ
(
xρ
P(X > x)

)
= e–ρ ln x+ln(xρ

P(X>x)) ∀x > 0.

We thus see that, if 0 ≤ ρ < ∞, then (2.8) is equivalent to

lim
x→∞

ln(xρ
P(X > x))
log x

= 0.

(We leave it to the reader to work out the details of the proof.) We thus see that (2.8)
implies (2.9) with L(x) = xρ

P(X > x), x > 0. It is easy to verify that (2.8) follows from (2.9).
This completes the proof of Theorem 2.3. �

Proof of Theorem 2.4 For fixed x ∈ (–∞,∞), write

an(x) =
ln n + τ ln ln n + ln h(n) – τ lnρ + x

ρ
and bn(x) = ean(x), n ≥ 2.

Then

bn(x) = n1/ρ(ln n)τ /ρ(h(n)
)1/ρ

ρ–τ /ρex/ρ , n ≥ 2.

Since h(·) : [0,∞) → (0,∞) is a monotone function with limx→∞ h(x2)/h(x) = 1, h(·) is a
slowly varying function such that limx→∞ h(xr)/h(x) = 1 ∀r > 0 and hence

h
(
bn(x)

) ∼ h(n) as n → ∞.

Clearly,

(
ln bn(x)

)τ ∼ ρ–τ (ln n)τ as n → ∞.
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It thus follows from (2.10) that, as n → ∞,

n ln
(
1 – P

(
X > bn(x)

)) ∼ –nP
(
X > bn(x)

)

∼ –n × (ln(bn(x)))τ h(bn(x))
(bn(x))ρ

∼ –n × ρ–τ (ln n)τ h(n)
n(ln n)τ h(n)ρ–τ ex

= –e–x

so that

lim
n→∞P

(
log max

1≤k≤n
Xk ≤ an(x)

)
= lim

n→∞P

(
max

1≤k≤n
Xk ≤ bn(x)

)

= lim
n→∞

(
1 – P

(
X > bn(x)

))n

= lim
n→∞ en ln(1–P(X>bn(x)))

= exp
(
–e–x);

i.e., (2.11) holds. �

Proof of Theorem 2.5 Since θ̂n = log n
log max1≤k≤n |Xk | , n ≥ 1, Theorem 2.5 follows immediately

from Theorems 2.1–2.3. �

4 Conclusions
In this paper we propose the following simple point estimator of θ , the power of moments
of the random variable X, and investigate its asymptotic properties:

θ̂n =
log n

log max1≤k≤n |Xk| .

In particular, we show that

θ̂n →P θ if and only if lim
x→∞ xr

P
(|X| > x

)
= ∞ ∀r > θ .

This means that, under very reasonable conditions on F(·), θ̂n is actually a consistent es-
timator of θ . From Remark 2.3 and Example 2.1, we see that, for a nonnegative random
variable X, θ̂n is a consistent estimator of θ whenever the well-known Hill estimator α̂n is
a consistent estimator of θ . However, the converse is not true.

Acknowledgements
The authors are grateful to the referee for carefully reading the manuscript and for offering helpful suggestions and
constructive criticism which enabled them to improve the paper. The research of Shuhua Chang was partially supported
by the National Natural Science Foundation of China (Grant #: 91430108 and 11771322) and the research of Deli Li was
partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada (Grant #:
RGPIN-2014-05428).

Competing interests
The authors declare that they have no competing interests.



Chang et al. Journal of Inequalities and Applications  (2018) 2018:54 Page 14 of 14

Authors’ contributions
All authors contributed equally and significantly in writing this article. All the authors read and approved the final
manuscript.

Author details
1Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and
Economics, Tianjin, China. 2Department of Mathematical Sciences, Lakehead University, Thunder Bay, Canada.
3Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, USA. 4Department of Statistics,
University of Florida, Gainesville, USA.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 October 2017 Accepted: 22 February 2018

References
1. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)
2. Mason, D.M.: Laws of large numbers for sums of extreme values. Ann. Probab. 10, 754–764 (1982)
3. Chandra, T.K.: The Borel–Cantelli Lemma. Springer, Heidelberg (2012)


	A method for estimating the power of moments
	Abstract
	MSC
	Keywords

	Motivation
	Statement of the main results
	Proofs of the main results
	Conclusions
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


