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1 Introduction
It is well known from basic calculus that

arcsin x =
∫ x

0

1
(1 – t2)1/2 dt (1.1)

for 0 ≤ x ≤ 1 and

π

2
= arcsin 1 =

∫ 1

0

1
(1 – t2)1/2 dt. (1.2)

For 1 < p < ∞ and 0 ≤ x ≤ 1, the arc sine may be generalized as

arcsinp x =
∫ x

0

1
(1 – tp)1/p dt (1.3)

and

πp

2
= arcsinp 1 =

∫ 1

0

1
(1 – tp)1/p dt. (1.4)

The inverse of arcsinp on [0, πp
2 ] is called the generalized sine function, denoted by sinp,

and may be extended to (–∞,∞). In the same way, we can define the generalized cosine
function, the generalized tangent function, and their inverses, and also the corresponding
hyperbolic functions. For their definitions and formulas, one may see recent references
[1–3].
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In [2], some classical inequalities for generalized trigonometric and hyperbolic func-
tions, such as Mitrinović–Adamović inequality, Huygens’ inequality, and Wilker’s inequal-
ity, were generalized. In [3], some new second Wilker type inequalities for generalized
trigonometric and hyperbolic functions were established. In [4], some Turán type inequal-
ities for generalized trigonometric and hyperbolic functions were presented. Very recently,
a conjecture posed in [5] was verified in [1]. For more about the Wilker type inequality and
Huygens type inequalities, the reader may see [6–13].

In this paper, we establish some new Wilker and Cusa type inequalities for the gener-
alized trigonometric and hyperbolic functions. Some known inequalities in [3] are the
special cases of our results.

2 Lemmas
Lemma 2.1 ([3, Lemma 2.7]) For p ∈ (1,∞), we have

cosα
p x <

sinp x
x

< 1, x ∈
(

0,
πp

2

)
(2.1)

and

coshα
p x <

sinhp x
x

< coshβ
p x, x > 0, (2.2)

where the constants α = 1
p+1 and β = 1 are the best possible.

Lemma 2.2 ([3, Theorem 3.5]) For p ∈ (1, 2], then

(
x

sinp x

)p

+
x

tanp x
> 2, x ∈

(
0,

πp

2

)
. (2.3)

Lemma 2.3 ([14]) Let a > 0, b > 0 and r ≥ 1, then

(a + b)r ≤ 2r–1(ar + br). (2.4)

Lemma 2.4 ([15]) Let ak > 0, k = 1, 2, . . . , n, then

a1 + a2 + · · · + an

n
≥ n

√
(1 + a1)(1 + a2) · · · (1 + an) – 1 ≥ n√a1a2 · · ·an. (2.5)

Lemma 2.5 ([2, Theorem 3.4]) For p ∈ [2,∞) and x ∈ (0, πp
2 ), then

sinp x
x

<
x

sinhp x
. (2.6)

Lemma 2.6 For p ∈ [2,∞) and x ∈ (0, πp
2 ), we have

(
sinp x

x

)p

<
x

sinhp x
. (2.7)
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Proof Using Lemma 2.5 and sinp x
x < 1, we have

x
sinhp x

>
sinp x

x
>

(
sinp x

x

)p

. (2.8)

This implies inequality (2.7). �

Lemma 2.7 ([2, Corollary 3.10]) For p ∈ [2,∞) and x ∈ (0, πp
2 ), then

(
x

sinhp x

)p+1

<
sinp x

x
. (2.9)

Lemma 2.8 ([2, Theorem 3.22]) For p ∈ (1, 2], the double inequality

sinp x
x

<
cosp x + p

1 + p
≤ cosp x + 2

3
(2.10)

holds for all x ∈ (0, πp
2 ].

3 Main results
Theorem 3.1 For x ∈ (0, πp

2 ), p ∈ (1,∞), and α – pβ ≤ 0, β > 0, we have

(
sinp x

x

)α

+
(

tanp x
x

)β

> 2. (3.1)

Proof From the arithmetic geometric means inequality and Lemma 2.1, it follows that

(
sinp x

x

)α

+
(

tanp x
x

)β

≥ 2
(

sinp x
x

) α
2
(

tanp x
x

) β
2

= 2
(

sinp x
x

) α+β
2

(
1

cosp x

) β
2

> 2
(

sinp x
x

) α+β
2

(
sinp x

x

)– (p+1)β
2

= 2
(

sinp x
x

) α–pβ
2

≥ 2. �

Remark 3.1 If p = α = 2,β = 1, inequality (3.1) turns into

(
sin x

x

)2

+
tan x

x
> 2. (3.2)

Inequality (3.2) is called the first Wilker inequality in [16].

Remark 3.2 If α = 2p,β = p, and p ≥ 2, then α – pβ = 2p – p2 ≤ 0. So, inequality (3.1)
reduces to

(
sinp x

x

)2p

+
(

tanp x
x

)p

> 2. (3.3)
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Theorem 3.2 For p ∈ (1, 2], x ∈ (0, πp
2 ), and α – pβ ≤ 0,β ≤ –1, we have

(
sinp x

x

)α

+
(

tanp x
x

)β

> 2. (3.4)

Proof Using x
sinp x ≥ 1 and α – pβ ≤ 0, we have

(
sinp x

x

)α

+
(

tanp x
x

)β

=
(

x
sinp x

)–α

+
(

x
tanp x

)–β

=
(

x
sinp x

)–pβ(
x

sinp x

)pβ–α

+
(

x
tanp x

)–β

≥
[(

x
sinp x

)p]–β

+
(

x
tanp x

)–β

.

Applying Lemmas 2.2 and 2.3, we obtain

(
sinp x

x

)α

+
(

tanp x
x

)β

≥ 21+β

[(
x

sinp x

)p

+
x

tanp x

]–β

> 2.

This completes the proof. �

Using the same method as that in Theorem 3.1, we can easily obtain the following The-
orem 3.3 by Lemma 2.1 and the arithmetic and geometric means inequality. We omit the
proof for the sake of simplicity.

Theorem 3.3 For p ∈ (1,∞), x ∈ (0,∞), and α – pβ ≤ 0,β > 0, then

(
sinhp x

x

)α

+
(

tanhp x
x

)β

> 2. (3.5)

Remark 3.3 Taking α = 2,β = 1 and p = 2 in inequality (3.5), we have

(
sinh x

x

)2

+
tanh x

x
> 2, (3.6)

which is the (4) in Theorem 1 of [7]. Inequality (3.6) is called the first hyperbolic Wilker
inequality.

Remark 3.4 Taking α = 2p,β = p, and p ∈ [2,∞), we have

(
sinhp x

x

)2p

+
(

tanhp x
x

)p

> 2. (3.7)

Theorem 3.4 For all x ∈ (0, πp
2 ) and α – pβ ≤ 0,β > 0, we have

[
1 +

(
sinp x

x

)α][
1 +

(
tanp x

x

)β]
> 4 (3.8)
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and

(
sinp x

x

)α

+
(

tanp x
x

)β

> 2

√[
1 +

(
sinp x

x

)α][
1 +

(
tanp x

x

)β]
– 2 > 2. (3.9)

Proof Setting n = 2, a1 = ( sinp x
x )α and a2 = ( tanp x

x )β in Lemma 2.4, we have

[
1 +

(
sinp x

x

)α][
1 +

(
tanp x

x

)β]

≥
[(

sinp x
x

) α
2
(

tanp x
x

) β
2

+ 1
]2

>
[(

sinp x
x

) α–pβ
2

+ 1
]2

> 4.

Then it follows from Lemma 2.1 that

(
sinp x

x

)α

+
(

tanp x
x

)β

> 2

√[
1 +

(
sinp x

x

)α][
1 +

(
tanp x

x

)β]
– 2 > 2. �

Remark 3.5 If n = 3 and a1 = a2 = ( sinp x
x )α , a3 = ( tanp x

x )β in Lemma 2.4, it can be easily ob-
tained that

[
1 +

(
sinp x

x

)α]2[
1 +

(
tanp x

x

)β]
> 8 (3.10)

and

2
(

sinp x
x

)α

+
(

tanp x
x

)β

> 3 3

√[
1 +

(
sinp x

x

)α]2[
1 +

(
tanp x

x

)β]
– 3 > 3, (3.11)

by a similar method to that in Theorem 3.4 when changing the condition α – pβ ≤ 0 to
2α – pβ ≤ 0.

Theorem 3.5 For p ∈ [2,∞), t > 0, and x ∈ (0, πp
2 ], then

(
x

sinp x

)pt

+
(

x
sinhp x

)t

> 2. (3.12)

Proof Applying the AGM inequality a + b ≥ 2
√

ab and Lemma 2.6 for a = ( x
sinp x )pt and

b = ( x
sinhp x )t , we obtain

a + b ≥ 2

√(
x

sinp x

)pt( x
sinhp x

)t

> 2.

The proof is completed. �
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Theorem 3.6 For p ∈ [2,∞), t > 0 and x ∈ (0, πp
2 ], then

(p + 1)
(

x
sinp x

)t

+
(

x
sinhp x

)t

> p + 1. (3.13)

Proof From the AGM inequality (n + 1)a + b ≥ (n + 1) n+1√anb and Lemma 2.6, for a =
( x

sinp x )t and b = ( x
sinhp x )t , inequality (3.13) follows readily. �

Applying AGM inequality and Lemma 2.7, Theorems 3.7 and 3.8 can be easily obtained
by the similar method as before.

Theorem 3.7 For p ∈ [2,∞), t > 0, and x ∈ (0, πp
2 ], then

(
sinhp x

x

)(p+1)t

+
(

sinp x
x

)t

> 2. (3.14)

Theorem 3.8 For p ∈ [2,∞), t > 0, and x ∈ (0, πp
2 ], then

(p + 2)
(

sinhp x
x

)t

+
(

sinp x
x

)t

> p + 2. (3.15)

Finally, we give a Cusa type inequality.

Theorem 3.9 For p ∈ (1, 2] and x ∈ (0, πp
2 ], the function f (x) = ln

sinp x
x

ln
p+cosp x

p+1
is strictly increas-

ing. Consequently, we have the following inequality:

(
p + cosp x

p + 1

)α

<
sinp x

x
<

(
p + cosp x

p + 1

)β

(3.16)

with the best constants α =
ln

2 sinp
πp
2

πp

ln
p+cosp

πp
2

p+1

and β = 1.

Proof A simple computation yields

f ′(x) ln2 p + cosp x
p + 1

=
x cosp x – sinp x

x sinp x
ln

p + cosp x
p + 1

+
cosp x tanp–1

p x
p + cosp x

ln
sinp x

x

>
x cosp x – sinp x

x sinp x
+

cosp x tanp–1
p x

p + cosp x
ln

sinp x
x

=
(x cosp x – sinp x)(p + cosp x) + x sinp x cosp x tanp–1

p x
x sinp x(p + cosp x)

ln
sinp x

x

=
ln sinp x

x
x sinp x(p + cosp x)

g(x),

where

g(x) = x cos2
p x secp

p x + px cosp x – p sinp x – sinp x cosp x.
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Since

g ′(x) = cosp x tanp–1
p xh(x),

where

h(x) = 2 sinp x – px – (2 – p)x secp–1
p x,

with

h′(x) = 2 cosp x – p – (2 – p) secp–1
p x – (2 – p)(p – 1)x secp–1

p x tanp–1
p x

and

h′′(x) = –2 cosp x tanp–1
p x – 2(2 – p)(p – 1) secp–1

p x tanp–1
p x

– (2 – p)(p – 1)2x secp–1
p x tanp–1

p x
(
tanp–1

p x + cscp x secp–1
p x

)
< 0.

Hence h′(x) is decreasing on (0, πp
2 ). It then follows that h′(x) < h′(0) = 0, which also implies

that h(x) < h(0) = 0. Hence, g ′(x) < 0, which shows that the function g(x) is also decreas-
ing on (0, πp

2 ). The inequality g(x) < g(0) = 0 indicates that f ′(x) > 0. Hence, f (x) is strictly
increasing for x ∈ (0, πp

2 ). As a result, we have f (0) < f (x) ≤ f ( πp
2 ).

Using L’Hôspital’s rule, we obtain that

f
(
0+)

= lim
x→0+

ln sinp x
x

ln p+cosp x
p+1

= lim
x→0+

–
x cosp x – sinp x

x sinp x
p + cosp x

cosp x tanp–1
p x

= –(p + 1) lim
x→0+

x cosp x – sinp x
xp+1

= 1

and

f
(

πp

2

)
=

ln
2 sinp

πp
2

πp

ln
p+cosp

πp
2

p+1

.

The proof is completed. �

4 A conjecture

Conjecture 4.1 For all x ∈ (0, πp
2 ] and p ∈ (1, 2], is the function

ln x
sinp x

ln coshp x strictly increasing?
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