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Abstract
This paper is devoted to the adaptive Morley element algorithms for a biharmonic
eigenvalue problem inR

n (n≥ 2). We combine the Morley element method with the
shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration
with fixed shift to propose multigrid discretization schemes in an adaptive fashion.
We establish an inequality on Rayleigh quotient and use it to prove the efficiency of
the adaptive algorithms. Numerical experiments show that these algorithms are
efficient and can get the optimal convergence rate.
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1 Introduction
Biharmonic equation/eigenvalue problem plays an important role in elastic mechanics. In
1968, Morley designed a famous non-conforming element called the Morley element [1]
to solve biharmonic equation (plate bending problem). The Morley element was extended
to arbitrarily dimensions by Wang and Xu [2] in 2006. For biharmonic equation, the a pri-
ori/a posteriori error estimate was studied in [3–6] and the convergence and optimality of
the adaptive Morley element method was proved in [7, 8]. The Morley element has been
employed to solve the biharmonic eigenvalue problem, including the vibration of a plate;
and [9] studied its a priori error estimate. [10, 11] studied a posteriori error estimate and
the adaptive method, [12] adopted a new method dispensing with any additional regular-
ity assumption to study the error estimates and adaptive algorithms. This paper further
studies the adaptive Morley element method and has the following features:

1. The adaptive finite element methods, which were first proposed by Babuska and
Rheinboldt [13], have gained an extensive attention in academia. More and more
researchers entered this field and obtained many good results, most of which have
been systemically summarized in [5, 14–16]. And [10, 12] have employed the
adaptive Morley element algorithms for the biharmonic eigenvalue problem based
on solving directly the original eigenvalue problem a(u, v) = λb(u, v) in each
iteration. In this paper, we establish the adaptive Morley element algorithms based
on the shifted-inverse iteration including Rayleigh quotient iteration and the inverse
iteration with fixed shift to solve the biharmonic eigenvalue problem. The
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shifted-inverse iteration method based on the multigrid discretizations has been
studied in-depth (see [17] and the references therein), but they did not involve the
Morley element. With our method, the solution of an original eigenvalue problem is
reduced to the solution of an eigenvalue problem on a much coarser grid and the
solution of a series of linear algebraic equations on finer and finer grids. Therefore,
our method is more efficient than the method in [10, 12].

2. For fourth order equations in R
3, it is difficult to employ a conforming element. For

instance, Zenicek constructed a conforming tetrahedral finite element with 9
degree of polynomials and 220 nodal parameters [5], while the Morley tetrahedral
element [2] has only 10 nodal parameters. Based on [4], we comply with the
adaptive Morley element computation for the biharmonic eigenvalue problem in
R

3. Numerical results indicate that the adaptive algorithms are very efficient.
3. A family of good adaptive meshes should satisfy h = O(hα

min), where h is the mesh
size, hmin is the diameter of the smallest element, and α is the regularity index of the
biharmonic equation over the domain with reentrant corner (see [18]). However,
we find through the numerical computation that h

hα
min

will become bigger and bigger
when the iteration increases for the standard adaptive algorithm. Thus, referring to
[19], we combine the standard local refined adaptive algorithm with uniformly
refined algorithm to give new algorithms.

2 Preliminary
Consider the following biharmonic eigenvalue problem:

�2u = λu, in �,

∂u
∂γ

= 0, u = 0, on ∂�,
(2.1)

where � ∈R
n is a polyhedral domain with boundary ∂�, ∂u

∂γ
is the outward normal deriva-

tive on ∂�.
Let Hs(�) denote a usual Sobolev space with norm ‖ · ‖s,� (‖ · ‖s), H2

0 (�) = {v ∈ H2(�) :
v|∂� = ∂v

∂γ
|∂� = 0} with norm ‖ · ‖2 and semi-norm | · |2.

The weak form of (2.1) is to seek (λ, u) ∈R× H2
0 (�) with u �= 0 such that

a(u, v) = λb(u, v), ∀v ∈ H2
0 (�), (2.2)

where

a(u, v) =
∫

�

∑
1≤i,j≤n

∂2u
∂xi∂xj

∂2v
∂xi∂xj

dx, b(u, v) =
∫

�

uv dx, ‖u‖b =
√

b(u, u).

In the case of n = 2, (2.2) is the weak form of clamped plate vibration.
It is easy to verify that a(u, v) is a symmetric, continuous, and H2

0 (�)-elliptic bilinear
form. Let ‖u‖a =

√
a(u, u), then the norms ‖u‖a, ‖u‖2, and |u|2 are equivalent.

We assume that πh = {κ} is a regular simplex partition of � and satisfies � =
⋃

κ (see
[20]). Let hκ be the diameter of κ , and h = max{hκ : κ ∈ πh} be the mesh size of πh (h < 1),
hmin = min{hκ : κ ∈ πh}. Let εh = {F} denote the set of faces ((n – 1)-simplexes) of πh, and
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let ε′
h = {l} denote the set of faces (n – 2)-simplexes of πh. When n = 2, l = z is a vertex of κ ,

and 1
meas(l)

∫
l v = v(z). Let πh(κ) denote the set of all elements sharing a common face with

the element κ . Let κ+ and κ– be any two n-simplexes with a face F in common such that
the unit outward normal to κ– at F corresponds to γF . We denote the jump of v across the
face F by

[v] = (v|κ+ – v|κ– )|F .

And the jump on boundary faces is simply given by the trace of the function on each face.
In the papers [2, 5], the Morley element space is defined by

Sh =
{

v ∈ L2(�) : v |κ∈ P2(κ),∀κ ∈ πh,
∫

F
[∇v · γF ] = 0 ∀F ∈ εh,

1
meas(l)

∫
l
[v] = 0 ∀l ∈ ε′

h

}
,

where P2(κ) denotes the space of polynomials of degree less than or equal to 2 on κ .
Define the interpolation operator Ih : H2

0 (�) → Sh, which satisfies

∫
F

∂Ihv
∂γ

=
∫

F

∂v
∂γ

∀F ∈ εh,
1
l

∫
l
Ihv =

1
l

∫
l
v ∀l ∈ ε′

h.

The Morley element space Sh ⊂ L2(�), Sh �⊂ H1(�). Let

‖v‖2
m,h =

∑
κ∈πh

‖v‖2
m,κ , |v|2m,h =

∑
κ∈πh

|v|2m,κ , m = 0, 1, 2.

From Lemma 8 in [2], we know that | · |2,h is equivalent to ‖ · ‖2,h, ‖ · ‖2,h is a norm in Sh,
and ah(·, ·) is a uniformly Sh-elliptic bilinear form, and ‖ · ‖h = ah(·, ·) 1

2 is a norm in Sh. And
the following equality holds for any w ∈ H2

0 (�):

lim
h→0

inf
v∈Sh

‖w – v‖h = 0.

The discrete form of (2.2) reads: Find (λh, uh) ∈R× Sh with uh �= 0 such that

ah(uh, v) = λhb(uh, v), ∀v ∈ Sh, (2.3)

where

ah(uh, v) =
∑
κ∈πh

∫
κ

n∑
i,j=1

∂2uh

∂xi∂xj

∂2v
∂xi∂xj

dx.

The corresponding boundary value problem of (2.1) is

�2w = f , in �,

∂w
∂γ

= 0, w = 0, on ∂�. (2.4)
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From [18], we know that

‖w‖2+α � ‖f ‖0,

where α ∈ ( 1
2 , 1) for the domain with reentrant corner, and α = 1 for the convex domain

in R
2.

The weak form of (2.4) and its discrete form are to find w ∈ H2
0 (�) such that

a(w, v) = b(f , v), ∀v ∈ H2
0 (�),

and to find wh ∈ Sh such that

ah(wh, v) = b(f , v), ∀v ∈ Sh.

Define the solution operators T : L2(�) → H2
0 (�) ⊂ L2(�) and Th : L2(�) → Sh as fol-

lows:

a(Tf , v) = b(f , v), ∀v ∈ H2
0 (�),

ah(Thf , v) = b(f , v), ∀v ∈ Sh.
(2.5)

Then T , Th : L2(�) → L2(�) are self-adjoint and compact.
It is well known that the eigenvalue problem (2.1) has countably many eigenvalues,

which are real and positive diverging to +∞. Suppose that λ and λh are the kth eigen-
value of (2.2) and (2.3), respectively, the algebraic multiplicity of λ is equal to q, λ = λk =
λk+1 = · · · = λk+q–1. Let M(λ) be the space spanned by all eigenfunctions corresponding to
λ and Mh(λ) be the direct sum of eigenspaces corresponding to all eigenvalues of (2.3) that
converge to λ. Let M̂(λ) = {u : u ∈ M(λ),‖u‖h = 1}.

Now we introduce the following quantity:

δh(λ) =
∥∥(T – Th)|M(λk )

∥∥
h. (2.6)

The saturation condition was analyzed in [21–23], especially, it was analyzed in [22] for
very general cases. According to this condition, we can make the following assumption:

C1h ≤ inf
∀v∈Sh

‖u – v‖h ≤ C2δh(λk), ∀u ∈ M(λk), (2.7)

where C1 and C2 are independent of mesh parameters.
Define Sh + H2

0 (�) = {vh + v : vh ∈ Sh, v ∈ H2
0 (�)}.

Due to the generalized Poincare–Friedrichs inequality, Theorem 3 in [24] and ah(u –
Ihu, v) = 0,∀v ∈ Sh (see [5]), we deduce for any w ∈ Sh, u ∈ H2

0 (�)

‖w – u‖0 ≤ ‖w – Ihu‖0 + ‖u – Ihu‖0

≤ C3

3
(‖w – Ihu‖h + h2‖u – Ihu‖h

)

≤ C3

3
(‖w – u‖h + ‖u – Ihu‖h + h2‖u – Ihu‖h

) ≤ C3‖w – u‖h.
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Therefore,

‖v‖0 ≤ C3‖v‖h, ∀v ∈ Sh + H2
0 (�), (2.8)

where C3 is a positive constant independent of mesh parameters.
From (2.5) we have the following estimate using the Cauchy–Schwarz inequality: For

any g ∈ L2(�), Thg ∈ Sh satisfying

‖Thg‖h ≤ C3‖g‖0,

define the consistency term

Eh(w, vh) = ah(w, v) – b(f , v), ∀v ∈ Sh + H2
0 (�).

Suppose w ∈ H2+r(�), r ∈ ( 1
2 , 1], then we have the following estimate:

∣∣Eh(w, v)
∣∣ ≤ C4hr(‖w‖2+r + h2–r‖f ‖0

)‖v‖h, ∀v ∈ Sh + H2
0 (�). (2.9)

Using the trace inequality [5] proves the above estimate under the case r = 1. Using the
arguments in [5], we can obtain the above estimate under the case r = ( 1

2 , 1] (also see [11]).
We can derive the following Lemma 2.1 from Lemma 2.3 in [25].

Lemma 2.1 Let λ and λh be the kth eigenvalue of (2.2) and (2.3), respectively. Then for any
eigenfunction uh corresponding to λh with ‖uh‖h = 1, there exist u ∈ M(λ) and h0 > 0 such
that if h ≤ h0,

‖u – uh‖h ≤ C5δh(λ), (2.10)

for any u ∈ M̂(λ), there exists uh ∈ Mh(λ) such that if h ≤ h0,

‖u – uh‖h ≤ C6δh(λ), (2.11)

where constants C5 and C6 are positive and only depend on λ.

The following inequality on Rayleigh quotient plays an important role.

Theorem 2.1 Let (λ, u) be an eigenpair of (2.2), v ∈ Sh with ‖v‖h = 1 and ‖v – u‖h ≤
(4C3

√
λ)–1, then the Rayleigh quotient R(v) = ah(v,v)

‖v‖2
0

satisfies

∣∣R(v) – λ
∣∣ ≤ C7‖v – u‖1+r

h , (2.12)

where C7 = 4λ(1 + λC2
3)(4C3

√
λ)r–1 + 8C4

Cr
1
λ(‖u‖2+r + h2–rλ‖u‖0).

Proof Since u ∈ M(λ), v ∈ Sh,‖v‖h = 1 and ‖v – u‖h ≤ (4C3
√

λ)–1, by Lemma 3.1 in [26] we
have

∥∥∥∥v –
u

‖u‖h

∥∥∥∥
h
≤ 2‖v – u‖h ≤ (2C3

√
λ)–1,
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∥∥∥∥v –
u

‖u‖h

∥∥∥∥
0
≤ C3

∥∥∥∥v –
u

‖u‖h

∥∥∥∥
h
≤ 1

2
√

λ
,

which together with ‖ u
‖u‖h

‖0 = 1√
λ

yields

‖v‖0 ≥
∥∥∥∥ u
‖u‖h

∥∥∥∥
0

–
∥∥∥∥v –

u
‖u‖h

∥∥∥∥
0
≥ 1

2
√

λ
.

By Lemma 2.5 in [26], we get

ah(v, v)
‖v‖2

0
– λ =

‖v – u‖2
h

‖v‖2
0

– λ
‖v – u‖2

0
‖v‖2

0
+ 2

Eh(u, v)
‖v‖2

0
.

Hence, from inequalities (2.7)–(2.9) we deduce

∣∣R(v) – λ
∣∣ ≤ 4λ‖v – u‖2

h + 4λ2‖v – u‖2
0 + 8λEh(u, v)

≤ 4λ‖v – u‖2
h + 4C2

3λ
2‖v – u‖2

h + 8λEh(u, v – u)

≤ 4λ
(
1 + λC2

3
)‖v – u‖2

h + 8C4hrλ
(‖u‖2+r + h2–rλ‖u‖0

)‖v – u‖h

≤ 4λ
(
1 + λC2

3
)‖v – u‖2

h + 8C4λ
(‖u‖2+r + h2–rλ‖u‖0

)‖v – u‖1+r
h

≤
(

4λ
(
1 + λC2

3
)‖v – u‖1–r

h +
8C4

Cr
1

λ
(‖u‖2+r + h2–rλ‖u‖0

))‖v – u‖1+r
h

≤
(

4λ
(
1 + λC2

3
)
(4C3

√
λ)r–1 +

8C4

Cr
1

λ
(‖u‖2+r + h2–rλ‖u‖0

))‖v – u‖1+r
h

≤ C7‖v – u‖1+r
h .

We get the results that we need. �

(2.3) implies λh = R(uh), and from (2.7), (2.10), and (3.22) in [11], we deduce

∣∣R(uh) – λ
∣∣ ≤ C7‖uh – u‖2

h ≤ C2
5C7δ

2
h(λ). (2.13)

3 The shifted-inverse iteration based on multigrid discretization
Let {Shi}∞0 be a family Morley element spaces, h0 = H . Refer to the references [17], we
present the following calculation schemes.

Scheme 1 (Rayleigh quotient iteration based on multigrid discretizations) Given the it-
eration times l.

Step 1. Solve (2.3) on SH : Find (λH , uH ) ∈R× SH such that ‖uH‖H = 1 and

aH (uH , v) = λHb(uH , v), ∀v ∈ SH .

Step 2. uh0 ⇐ uH ,λh0 ⇐ λH , i ⇐ 1.
Step 3. Solve a linear system on Shi : Find u′ ∈ Shi such that

ah
(
u′, v

)
– λhi–1 b

(
u′, v

)
= b

(
uhi–1 , v

)
, ∀v ∈ Shi ,

set uhi = u′
‖u′‖h

.
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Step 4. Compute the Rayleigh quotient:

λhi =
ah(uhi , uhi )
b(uhi , uhi )

.

Step 5. If i = l, then output (λhl , uhl ), stop; else, i ⇐ i + 1, and return to Step 3.

Scheme 2 (The inverse iteration with fixed shift based on multigrid discretizations) Given
the iteration times l and i0.

Steps 1∼4. The same as Steps 1–4 in Scheme 1.
Step 5. If i > i0, then λhi0 ⇐ λhi–1 , i ⇐ i + 1, turn to Step 6; else, i ⇐ i + 1, and return to

Step 3.
Step 6. Solve a linear system on Shi : Find u′ ∈ Shi such that

ah
(
u′, v

)
– λhi0 b

(
u′, v

)
= b

(
uhi–1 , v

)
, ∀v ∈ Shi ,

set uhi = u′
‖u′‖h

.
Step 7. Compute the Rayleigh quotient

λhi =
ah(uhi , uhi )
b(uhi , uhi )

.

Step 8. If i = l, then output (λhl , uhl ), stop; else, i ⇐ i + 1, and return to Step 6.

Strictly speaking, the above ah(·, ·) and ‖ · ‖h should be written as ahi (·, ·) and ‖ · ‖hi . For
the sake of simplicity, we write ahi (·, ·) and ‖ · ‖hi as ah(·, ·) and ‖ · ‖h, in this paper.

4 The theoretical analysis
In this section, we will prove the convergence of (λhl , uhl ) derived from Scheme 1/
Scheme 2, and that the constants appearing in the error estimates are not only indepen-
dent of mesh parameter but also iterative times l.

In the following discussion, let (λk , uk) and (λk,h, uk,h) denote the kth eigenpair of (2.2)
and (2.3), respectively, and μk = 1

λk
,μk,h = 1

λk,h
, M(μk) = M(λk), Mh(μk) = Mh(λk).

Denote dist(u, S) = infv∈S ‖u – v‖h.
Our analysis is based on the following Lemma 4.1 (see Lemma 4.1 in [17]).

Lemma 4.1 Let (μ0, u0) be an approximation for (μk , uk), where μ0 is not an eigenvalue of
Th, and u0 ∈ Sh with ‖u0‖h = 1. Suppose that

(C1) dist(u0, Mh(μk)) ≤ 1
2 ;

(C2) |μ0 –μk| ≤ ρ

4 , |μj,h –μj| ≤ ρ

4 for j = k – 1, k, k + q (j �= 0), where ρ = minμj �=μk |μj –μk|
is the separation constant of the eigenvalue μk ;

(C3) u′ ∈ Sh, uh
k ∈ Sh satisfy

(μ0 – Th)u′ = u0, uh
k =

u′

‖u‖h
,

then the following inequality holds:

dist
(
uh

k , Mh(μk)
) ≤ 4

ρ
max

k≤j≤k+q–1
|μ0 – μj,h|dist

(
u0, Mh(μk)

)
. (4.1)
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Next, we will use the proof method in [17] to analyze the error of Schemes 1–2.
Let δ0 be a positive constant satisfying the following inequalities:

max{1, C5}δ0 ≤ min

{
1
2

,
1

4C3
√

λk

}
; (4.2)

4C3C7δ
2
0 + 4C2

3λkδ0 + 2λkδ0 + C6δ0 ≤ 1
2

; (4.3)

δ0

(λk – δ0)λk
≤ ρ

4
, δ0 ≤ λk

2
; (4.4)

C2
5C7δ

2
0

λj(λj – C2
5C7δ

2
0)

≤ ρ

4
, j = k – 1, k, . . . , k + q, j �= 0. (4.5)

Condition 4.1 There exists ū ∈ M(λk) such that

∥∥uhl – ū
∥∥

h ≤ δ0, |λ0 – λk| ≤ δ0, δhl (λj) ≤ δ0 (j = k – 1, k, k + 1, j �= 0),

where λ0 is an approximate eigenvalue of λk , uhl is an approximate eigenfunction obtained
by Scheme 1 or Scheme 2, and ρ is the separation constant of the eigenvalue μk = 1

λk
.

Condition 4.1 plays a key role in proving Theorem 4.1, by which we can prove Theo-
rems 4.2–4.3. In the proof of Theorems 4.2–4.3, we can deduce that Condition 4.1 holds
when the mesh size H is appropriately small. However, it is difficult to verify the condition
whether the mesh size H is appropriately small or not. And it seems to be a necessary
condition in many papers on the convergence and error estimates of the finite element
method for eigenvalue problem. But numerical experiments in Sect. 6 present a satisfying
practical performance for our algorithms, which shows that it is unnecessary for the mesh
size H to be appropriately small, even though the theory is not complete.

The following Theorems 4.1–4.3 are the generalization of Theorems 4.2–4.4 in [17].

Theorem 4.1 Let (λhl
k , uhl

k ) be an approximate eigenvalue obtained by Scheme 1 or
Scheme 2. Assume that Lemma 2.1 and Condition 4.1 hold with λ0 = λ

hl–1
k for Scheme 1

or λ0 = λ
hi0
k for Scheme 2. Then there exists uk ∈ M(λk) such that

∥∥uhl
k – uk

∥∥
h ≤ C0

2
{|λ0 – λk|

(∣∣λhl–1
k – λk

∣∣ +
∥∥uhl–1

k – ū
∥∥

h

)
+ δhl (λk)

}
. (4.6)

Proof We use Lemma 4.1 to complete the proof. Select μ0 = 1
λ0

and u0 =
λ

hl–1
k Thl uhl–1

k

‖λhl–1
k Thl uhl–1

k ‖h
.

Then, by (2.6) and (2.8), we have

∥∥λ
hl–1
k Thl u

hl–1
k – ū

∥∥
h

=
∥∥λ

hl–1
k Thl u

hl–1
k – λkThl u

hl–1
k + λkThl u

hl–1
k – λkThl ū + λkThl ū – λkTū

∥∥
h

≤ C3
∣∣λhl–1

k – λk
∣∣ + C3λk

∥∥uhl–1
k – ū

∥∥
0 + λk

∥∥(Thl – T)|M(λk )
∥∥

h‖ū‖h

≤ C3
∣∣λhl–1

k – λk
∣∣ + C2

3λk
∥∥uhl–1

k – ū
∥∥

h + λkδhl (λk)‖ū‖h.
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Noting that ‖ū‖h ≥ ‖uhl–1
k ‖h – ‖ū – uhl–1

k ‖h ≥ 1 – δ0 ≥ 1
2 , thus, by Lemma 3.1 in [26], we

have
∥∥∥∥u0 –

ū
‖ū‖h

∥∥∥∥
h
≤ 2

‖ū‖h

∥∥λ
hl–1
k Thl u

hl–1
k – ū

∥∥
h

≤ 4C3
∣∣λhl–1

k – λk
∣∣ + 4C2

3λk
∥∥uhl–1

k – ū
∥∥

h + 2λkδhl (λk). (4.7)

Using the triangle inequality, (4.7), (2.11), Condition 4.1 and (4.3), we get

dist
(
u0, Mhl (λk)

)

≤
∥∥∥∥u0 –

ū
‖ū‖h

∥∥∥∥
h

+ dist

(
ū

‖ū‖h
, Mhl (λk)

)

≤ 4C3
∣∣λhl–1

k – λk
∣∣ + 4C2

3λk
∥∥uhl–1

k – ū
∥∥

h + 2λkδhl (λk) + C6δhl (λk)

≤ 4C3C7δ
2
0 + 4C2

3λkδ0 + 2λkδ0 + C6δ0 ≤ 1
2

. (4.8)

From Condition 4.1, (4.4), we have

|μ0 – μk| =
|λ0 – λk|

λ0λk
≤ δ0

(λk – δ0)λk
≤ ρ

4
.

From (2.13), we deduce

|μj – μj,hl | =
∣∣∣∣λj – λj,hl

λjλj,hl

∣∣∣∣ ≤ C2
5C7δh(λ)2

λj(λj – C2
5C7δh(λ)2)

≤ C2
5C7δ

2
0

λj(λj – C2
5C7δ

2
0)

≤ ρ

4
.

Hence, the conditions in Lemma 4.1 are verified.
By (2.5) we see that Step 3 in Scheme 1 or Step 6 in Scheme 2 is equivalent to the fol-

lowing:

ah
(
u′, v

)
– λ0ah

(
Thl u

′, v
)

= ah
(
Thl u

hl–1
k , v

)
, ∀v ∈ Shl ,

uhl
k = u′

‖u′‖h
, i.e.,

(
λ–1

0 – Thl

)
u′ = λ–1

0 Thl u
hl–1
k , uhl

k =
u′

‖u′‖h
.

Then Step 3 in Scheme 1 or Step 6 in Scheme 2 is equivalent to

(
λ–1

0 – Thl

)
u′ = u0, uhl

k =
u′

‖u′‖h
.

From (4.4), (2.13) and (4.5), we derive that

|μ0 – μj,hl | =
∣∣∣∣ 1
λ0

–
1

λj,hl

∣∣∣∣ ≤ 4|λ0 – λj,hl |
λ2

k
≤ 4

λ2
k
|λ0 – λk| +

4
λ2

k
|λk – λj,hl |

≤ 4
λ2

k
δ0 +

4C2
5C7

λ2
k

δ2
0 , j = k, k + 1, . . . , k + q – 1. (4.9)
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Let the eigenvectors {uj,hl }k+q–1
k be an orthogonal basis of Mhl (λk) with respect to ah(·, ·).

Denote

u∗ =
k+q–1∑

j=k

ah
(
uhl

k , uj,hl

)
uj,hl ,

then

∥∥uhl
k – u∗∥∥

h = dist
(
uhl

k , Mhl (λk)
)
.

Hence, substituting (4.8) and (4.9) into (4.1), we obtain

∥∥uhl
k – u∗∥∥

h = dist
(
uhl

k , Mhl (λk)
)

≤ 4
ρ

(
4
λ2

k
|λ0 – λk| +

4C2
5C7

λ2
k

δ2
h(λ)

)

× (
4C3

∣∣λhl–1
k – λk

∣∣ + 4C2
3λk

∥∥uhl–1
k – ū

∥∥
h

+ 2λkδhl (λk) + C6δhl (λk)
)
. (4.10)

By Lemma 2.1, there exist eigenvectors {u0
j }k+q–1

k making uj,hl and u0
j satisfy (2.10). Let

uk =
k+q–1∑

j=k

ah
(
uhl

k , uj,hl

)
u0

j ,

then uk ∈ M(λk).
Using (2.10), we deduce that

∥∥uk – u∗∥∥
h =

∥∥∥∥∥
k+q–1∑

j=k

ah
(
uhl

k , uj,hl

)(
u0

j – uj,hl

)∥∥∥∥∥
h

≤
(k+q–1∑

j=k

∥∥u0
j – uj,hl

∥∥2
h

) 1
2

≤ (
C2

5δhl (λj)2) 1
2 ≤ q

1
2 C5δhl (λj).

Noting that the constants C3, C5, C6, C7 and ρ are independent of mesh parameters and
iterative times l, and ‖uhl–1

k – ū‖h ≤ δ0, |λ0 – λk| ≤ δ0 and δhl (λk) ≤ δ0, by (4.10) and (4.2),
we know that there exists a positive constant C0 that is independent of mesh parameters
and l such that (4.6) holds. And we can have C0 ≥ C5. �

We need the following two conditions (see Conditions 4.2 and 4.3 in [17]).

Condition 4.2 There exists ti ∈ (1, 2] (i = 1, 2, . . .) such that δhi (λk) = δ
ti
hi–1

(λk) and
δhi (λk) → 0 (i → ∞).

Condition 4.2 is easily satisfied; for example, for smooth eigenfunction, by using the
uniform mesh, choose h0 =

√
2

8 , h1 =
√

2
32 , h2 =

√
2

64 , and h3 =
√

2
128 ; then we have hi = hti

i–1, i.e.,
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δhi (λk) = δ
ti
hi–1(λk), where t1 ≈ 1.80, t2 ≈ 1.22, t3 ≈ 1.18. For a nonsmooth eigenfunction,

the condition could be met when the local refinement is done near the singular point.

Condition 4.3 For any given number β0 ∈ (0, 1), there exists 0 < β0 ≤ βi < 1 (i = 1, 2, . . .)
such that δhi (λk) = βiδhi–1 (λk), δhi (λk) → 0 (i → ∞).

Theorem 4.2 Let (λhl
k , uhl

k ) be an approximate eigenpair obtained by Scheme 1. Suppose
that Condition 4.2 holds, then there exist uk ∈ M(λk) and H0 > 0 such that if H < H0,
Lemma 2.1 and the following estimates hold:

∥∥uhl
k – uk

∥∥
h ≤ C0δhl (λk), (4.11)

∣∣λhl
k – λk

∣∣ ≤ C1+r
0 C7δ

1+r
hl

(λk). (4.12)

Proof The proof is completed by using induction and Theorem 4.1 with λ0 = λ
hl–1
k . Note

that δH (λk) → 0, then there is a proper small H0 > 0 such that if H ≤ H0, Lemma 2.1 and
the following inequalities hold:

C0δH (λk) ≤ δ0, C1+r
0 C7δ

1+r
H (λk) ≤ δ0, (4.13)

C2+2r
0 C2

7δ
2r
H (λk) + C2+r

0 C7δ
r
H (λk) ≤ 1. (4.14)

When l = 1, we have (λhl–1
k , uhl–1

k ) = (λk,H , uk,H ); from Lemma 2.1 and (2.12), we know that
there exists ū ∈ M(λk) such that

‖uk,H – ū‖H ≤ C5δH (λk) ≤ δ0,

|λk,H – λk| ≤ C1+r
5 C7δ

1+r
H (λk) ≤ δ0,

and δh1 (λj) ≤ δ0 (j = k – 1, k, k + q, j �= 0), i.e. Condition 4.1 holds. Thus, by Theorem 4.1
and 2 – t1 ≥ 0 and C5 ≤ C0 we get

∥∥uh1
k – uk

∥∥
h ≤ C0

2
{

C2+2r
5 C2

7δ
2+2r
H (λk) + C2+r

5 C7δ
2+r
H (λk) + δh1 (λk)

}

≤ C0

2
{

C2+2r
0 C2

7δ
2+2r–t1
H (λk) + C2+r

0 C7δ
2+r–t1
H (λk) + 1

}
δh1 (λk)

≤ C0

2
{

C2+2r
0 C2

7δ
2r
H (λk) + C2+r

0 C7δ
r
H (λk) + 1

}
δh1 (λk)

≤ C0δh1 (λk).

Combining (2.12) and the above inequality yields

∣∣λh1
k – λk

∣∣ ≤ C7
∥∥uh1

k – uk
∥∥1+r

h ≤ C1+r
0 C7δ

1+r
h1 (λk).

Suppose that Theorem 4.2 is valid for l – 1, i.e. there exists ū ∈ M(λk) such that

∥∥uhl–1
k – ū

∥∥
h ≤ C0δhl–1 (λk),

∣∣λhl–1
k – λk

∣∣ ≤ C1+r
0 C7δ

1+r
hl–1

(λk),



Li and Yang Journal of Inequalities and Applications  (2018) 2018:55 Page 12 of 21

then, owing to (4.13)–(4.14), we have ‖uhl–1
k – ū‖h ≤ δ0 and |λhl–1

k – λk| ≤ δ0 (j = k – 1, k, k +
q, j �= 0), i.e. the conditions of Theorem 4.1 hold. Therefore, for l, by (4.6) and (4.14) we
deduce

∥∥uhl
k – uk

∥∥
h ≤ C0

2
{

C2+2r
0 C2

7δ
2+2r
hl–1

(λk) + C2+r
0 C7δ

2+r
hl–1

(λk) + δhl (λk)
}

≤ C0

2
{

C2+2r
0 C2

7δ
2+2r–tl
hl–1

(λk) + C2+r
0 C7δ

2+r–tl
hl–1

(λk) + 1
}
δhl (λk)

≤ C0

2
{

C2+2r
0 C2

7δ
2+2r–tl
H (λk) + C2+r

0 C7δ
2+r–tl
H (λk) + 1

}
δhl (λk)

≤ C0

2
{

C2+2r
0 C2

7δ
2r
H (λk) + C2+r

0 C7δ
r
H (λk) + 1

}
δhl (λk)

≤ C0δhl (λk).

By (2.12) and the above inequality we deduce

∣∣λhl
k – λk

∣∣ ≤ C7
∥∥uhl

k – uk
∥∥1+r

h ≤ C1+r
0 C7δ

1+r
hl

(λk),

i.e. (4.11)–(4.12) are valid. �

Theorem 4.3 Let (λhl
k , uhl

k ) be an approximate eigenpair obtained by Scheme 2. Suppose
that Condition 4.2 holds for i ≤ i0 and Condition 4.3 holds for i > i0. Then there exist uk ∈
M(λk) and H0 > 0 such that if H ≤ H0 it holds that

∥∥uhl
k – uk

∥∥
h ≤ C0δhl (λk), (4.15)

∣∣λhl
k – λk

∣∣ ≤ C1+r
0 C7δ

1+r
hl

(λk), l > i0. (4.16)

Proof The proof is completed by using induction and Theorem 4.1 with λ0 = λ
hi0
k . Note

that δH (λk) → 0 (H → 0), then there is a proper small H0 > 0 such that if H ≤ H0,
Lemma 2.1 and the following inequalities hold:

C0δH (λk) ≤ δ0, C1+r
0 C7δ

1+r
H (λk) ≤ δ0, (4.17)

C2+2r
0 C2

7δ
1+r
hl0+1

(λk)δr
hl–1

(λk)
1
β0

+ C2+r
0 C7δ

1+r
hl0+1

(λk)
1
β0

≤ 1. (4.18)

When l = i0 + 1, by Theorem 4.2 we know that there exists uk ∈ M(λk) such that

∥∥u
hi0+1
k – uk

∥∥
h ≤ C0δhi0+1 (λk),

∣∣λhi0+1
k – λk

∣∣ ≤ C1+r
0 C7δ

1+r
hi0+1

(λk).

Suppose that Theorem 4.3 holds for l – 1, i.e. there exists ū ∈ M(λk) such that

∥∥uhl–1
k – ū

∥∥
h ≤ C0δhl–1 (λk),

∣∣λhl–1
k – λk

∣∣ ≤ C1+r
0 C7δ

1+r
hl–1

(λk).
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Then we infer from (4.17) that the conditions of Theorem 4.1 hold; therefore, for l, we can
get

∥∥uhl
k – uk

∥∥
h

≤ C0

2
{

C2+2r
0 C2

7δ
1+r
hl0+1

(λk)δ1+r
hl–1

(λk) + C2+r
0 C7δ

1+r
hl0+1

(λk)δhl–1 (λk) + δhl (λk)
}

≤ C0

2

{
C2+2r

0 C2
7δ

1+r
hl0+1

(λk)δr
hl–1

(λk)
1
β0

+ C2+r
0 C7δ

1+r
hl0+1

(λk)
1
β0

+ 1
}
δhl (λk),

which together with (4.18), we get (4.15). Substituting (4.15) into the inequality (2.12), we
get (4.16). �

Remark For some adaptive local refined grids used usually, (2.9) can be expressed as
|Eh(u, v)| ≤ C4h‖v‖h, ∀v ∈ Sh + H2

0 (�), therefore r in the theorems of this paper can take 1.

5 Adaptive algorithms
In this section, referring to [10, 17, 27], we present six algorithms. We denote Algorithm 1
in [10] as Algorithm 1 in this paper, and Algorithms 2–3 are established based on Schemes
1–2, respectively. Then we combine Algorithms 1–3 with a uniformly refined algorithm to
get Algorithms 1M–3M, respectively. And the a posterior error estimator in the following
algorithms comes from [4], that is

ηh(f , wh,κ)2 = h4
κ‖f ‖2

0,κ

+
∑

F∈εh∩∂κ

hF

∥∥∥∥1
2
[(∇(∇wh) + ∇(∇wh)T)

τF
]∥∥∥∥

2

0,F
in R

2,

ηh(f , wh,κ)2 = h4
κ‖f ‖2

0,κ

+
∑

F∈εh∩∂κ

hF

∥∥∥∥1
2
[(∇(∇wh) + ∇(∇wh)T) × γF

]∥∥∥∥
2

0,F
in R

3,

ηh(f , wh,πh)2 =
∑
κ∈πh

ηh(f , wh,κ)2, (5.1)

where wh is the finite element approximate solution of (2.4), τF is the tangential vector and
γF the unit outward normal on F ∈ εh.

In the following algorithms, we have to provide an initial shape regular triangulation
πh0 and a parameter θ ∈ (0, 1). Also, from [10, 11] we know that replacing wh with uh and
replacing f with λhuh in (5.1), we can obtain the error estimator of Algorithms 1 and 1M.
By Lemma 4.1 we can deduce that replacing wh with uh and replacing f with λhuh in (5.1),
we can obtain the error estimator of Algorithms 2–3 and Algorithms 2M–3M.

Algorithm 1 Choose the parameter 0 < θ < 1.
Step 1. Pick any initial mesh πh0 .
Step 2. Solve (2.3) on πh0 for discrete solution (λh0 , uh0 ).
Step 3. l ⇐ 0.
Step 4. Compute the local indicators ηhl (λhl uhl , uhl ,κ).
Step 5. Construct π̂hl ∈ πhl by Marking strategy E and θ .
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Step 6. Refine πhl to get a new mesh πhl+1 by procedure Refine.
Step 7. Solve (2.3) on πhl+1 for discrete solution (λhl+1 , uhl+1 ).
Step 8. l ⇐ l + 1 and go to Step 4.

Algorithm 2 Choose the parameter 0 < θ < 1.
Step 1. Pick any initial mesh πh0 .
Step 2. Solve (2.3) on πh0 for discrete solution (λh0 , uh0 ).
Step 3. l ⇐ 0,λ0 ⇐ λh0 , uh0 ⇐ uh0 .
Step 4. Compute the local indicators ηhl (λ

hl uhl , uhl ,κ).
Step 5. Construct π̂hl ∈ πhl by Marking strategy E1 and θ .
Step 6. Refine πhl to get a new mesh πhl+1 by procedure Refine.
Step 7. Find u′ ∈ Vhl+1 such that

ah
(
u′, v

)
– λ0b

(
u′, v

)
= b

(
uhl , v

)
; (5.2)

denote uhl+1 = u′
‖u′‖h

and compute the Rayleigh quotient:

λhl+1 =
ah(uhl+1 , uhl+1 )
b(uhl+1 , uhl+1 )

.

Step 8. λ0 ⇐ λhl+1 , l ⇐ l + 1 and go to Step 4.

Algorithm 3 Choose the parameter 0 < θ < 1 and an integer i0.
Step 1∼Step 7. The same as Steps 1–7 of Algorithm 2.
Step 8. If l < i0,λ0 ⇐ λhl+1 , l ⇐ l + 1 and go to Step 4; else l ⇐ l + 1, and go to Step 4.

A family of good adaptive meshes should satisfy h = O(hα
min). Hence, we give a bound Cr

of h
hα

min
. When the rate h

hα
min

≥ Cr in the process of Algorithms 1M–3M is running, we refine
the mesh uniformly for one time. And thus the following three algorithms are derived.

Algorithm 1M Choose the parameter 0 < θ < 1, α, and a bound Cr of hl
hα

lmin
.

Step 1∼Step 7. The same as Steps 1–7 of Algorithm 1.
Step 8. l ⇐ l + 1.
Step 9. If hl

hα
lmin

≥ Cr , then uniformly refine the mesh πhl to get a new mesh πhl+1 and go
to Step 7, else go to Step 4.

Algorithm 2M Choose the parameter 0 < θ < 1, α, and a bound Cr of hl
hα

lmin
.

Step 1∼Step 7. The same as Steps 1–7 of Algorithm 2.
Step 8. λ0 ⇐ λhl+1 , l ⇐ l + 1.
Step 9. If hl

hα
lmin

≥ Cr , then uniformly refine the mesh πhl to get a new mesh πhl+1 and go
to Step 7, else go to Step 4.

Algorithm 3M Choose the parameter 0 < θ < 1, an integer i0, α, and a bound Cr of hl
hα

lmin
.

Step 1∼Step 7. The same as Steps 1–7 of Algorithm 2.
Step 8. If l < i0,λ0 ⇐ λhl+1 , l ⇐ l + 1; else l ⇐ l + 1.
Step 9. If hl

hα
lmin

≥ Cr , then uniformly refine the mesh πhl to get a new mesh πhl+1 and go
to Step 7, else go to Step 4.
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Marking strategy E Given parameter 0 < θ < 1:
Step 1. Construct a minimal subset π̂hl of πhl by selecting some elements in πhl such that

∑
κ∈π̂hl

η2
hl

(λhl uhl , uhl ,κ) ≥ θη2
hl

(λhl uhl , uhl ,�).

Step 2. Mark all the elements in π̂hl .

Marking strategy E1 To get Marking strategy E1 we only replace λhl and uhl in Marking
strategy E with λhl and uhl , respectively.

Algorithms 1M–3M including steps with uniform refinement seem to be opposite to the
adaptive concept. Indeed, the combination of adaptive algorithms and uniform refinement
meets the certain mesh-grading properties, thus improving the efficiency of Algorithms
1–3 (see Tables 1–3 in Sect. 6).

6 Numerical experiment
In this section, we compute the smallest eigenvalue of (2.1) on the L-shaped domain
(0, 1)2 \ [ 1

2 , 1]2 by Algorithms 1–3 and Algorithms 1M–3M and (0, 1)3 \ ([0.5, 1] × [0, 1] ×
[0.5, 1]) by Algorithms 1–2 to demonstrate the advantages of the adaptive Morley ele-
ment method based on the inverse-shift iteration for a biharmonic eigenvalue problem.
Our programs are compiled on MATLAB2012a under the package of Chen [28] using
HP-Z230 workstation with ROM 32G and CPU 3.60 GHz.

We use the command “\” to solve (5.2) and use the sparse solver eigs(A, B, 1, ′sm′) to
solve (2.3) for the smallest eigenvalues. Before showing the results, some symbols need to
be explained:

λhl the smallest eigenvalue obtained by the lth iteration using Algorithm 1.
λR

hl
the smallest eigenvalue obtained by the lth iteration using Algorithm 2.

λF
hl

the smallest eigenvalue obtained by the lth iteration using Algorithm 3.
λM

hl
the smallest eigenvalue obtained by the lth iteration using Algorithm 1M.

λRM
hl

the smallest eigenvalue obtained by the lth iteration using Algorithm 2M.
λFM

hl
the smallest eigenvalue obtained by the lth iteration using Algorithm 3M.

Ndof the number of the degree of freedom.
CPU(s) the time CPU runs from the first iteration to the current iteration.
In R

2, the initial mesh πh0 is isosceles right triangle subdivision with mesh size
√

2
32 , and

we take θ = 0.25, Cr = 1.1, α = 1
2 . We fix shift from the 25th and 13th in Algorithm 3 and

Algorithm 3M, respectively. The results are shown in Tables 1–3. We depict the error
curves of Algorithms 1–3 and Algorithms 1M–3M in Figs. 1–3.

From Tables 1–3, we can get the conclusion that in the case the accurate are almost
same, Algorithms 2–3 take about half time of Algorithm 1. In the case the accurate are
almost same, Algorithm iM takes about 2

5 time of Algorithm i, i = 1, 2, 3.
The smallest eigenvalue of (2.1) is unknown. Therefore, we replace it with an approxi-

mate eigenvalue λ1 ≈ 6703.585 inR
2 with high accuracy. It is present that the relative error

curves of the smallest eigenvalues derived from Algorithms 1–3 and Algorithms 1M–3M
on the adaptive meshes in Figs. 1–3, whose slopes are more or less –1, which shows that
all the six Morley element adaptive algorithms can get the optimal convergence rate O(h2)
in R

2.
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Table 1 The smallest eigenvalue solved by Algorithm 1 and Algorithm 1M

l Ndof hl
hl

hαlmin
λ1,hl CPU(s) Ndof hl

hl
hαlmin

λM
1,hl

CPU(s)

1 2945 0.044 0.210 6333.637 0.275 2945 0.044 0.210 6333.637 0.086
2 2957 0.044 0.250 6368.756 0.368 2957 0.044 0.250 6368.756 0.162
3 3035 0.044 0.297 6426.312 0.452 3035 0.044 0.297 6426.312 0.239
4 3135 0.044 0.354 6459.396 0.537 3135 0.044 0.354 6459.396 0.320
5 3345 0.044 0.420 6506.181 0.629 3345 0.044 0.420 6506.181 0.405
6 3609 0.044 0.500 6540.464 0.726 3609 0.044 0.500 6540.464 0.499
7 3979 0.044 0.595 6574.027 0.834 3979 0.044 0.595 6574.027 0.605
8 4459 0.044 0.707 6588.671 0.957 4459 0.044 0.707 6588.671 0.723
9 5097 0.044 0.841 6606.244 1.10 5097 0.044 0.841 6606.244 0.860
10 5787 0.044 1.00 6615.776 1.27 5787 0.044 1.00 6615.776 1.02
11 6665 0.044 1.19 6631.992 1.48 6665 0.044 1.19 6631.992 1.21
12 7791 0.044 1.41 6642.939 1.71 31,697 0.022 0.841 6688.240 2.12
13 9110 0.044 1.68 6656.854 1.97 34,833 0.022 1.00 6690.595 3.15
14 10,591 0.044 2.00 6662.468 2.27 39,191 0.022 1.19 6693.066 4.43
15 12,295 0.044 2.38 6665.980 2.65 173,919 0.011 0.841 6701.061 11.4
16 14,331 0.044 2.83 6671.824 3.10 189,989 0.011 1.00 6701.477 19.4
17 16,641 0.044 3.36 6676.967 3.62 211,977 0.011 1.19 6701.750 29.0
18 19,497 0.044 4.00 6680.844 4.21 948,969 0.006 0.841 6703.147 82.8
19 22,925 0.044 4.76 6684.502 4.92 1,025,149 0.006 1.00 6703.198 141
20 27,171 0.044 5.66 6686.546 5.77 1,131,177 0.006 1.19 6703.244 210
21 32,088 0.044 6.73 6689.797 6.76 5,114,697 0.003 0.841 6703.512 587
22 37,703 0.044 8.00 6692.349 7.95 – – – – –
23 44,289 0.044 9.51 6694.425 9.39 – – – – –
24 52,103 0.044 11.3 6695.960 11.1 – – – – –
25 60,857 0.044 13.5 6696.560 13.2 – – – – –
26 70,881 0.044 16.0 6697.400 15.7 – – – – –
27 83,091 0.031 13.5 6698.304 18.7 – – – – –
28 98,019 0.031 16.0 6699.274 22.7 – – – – –
29 116,273 0.031 19.0 6699.950 27.4 – – – – –
30 136,557 0.031 22.6 6700.589 33.1 – – – – –
31 160,465 0.022 16.0 6701.087 40.0 – – – – –
32 188,195 0.022 19.0 6701.469 48.2 – – – – –
33 221,401 0.022 22.6 6701.858 58.0 – – – – –
34 257,797 0.022 26.9 6702.060 69.7 – – – – –
35 301,063 0.022 32.0 6702.246 84.6 – – – – –
36 353,201 0.022 38.1 6702.411 102 – – – – –
37 416,609 0.022 45.3 6702.557 124 – – – – –
38 492,039 0.022 45.3 6702.767 151 – – – – –
39 577,233 0.022 53.8 6702.937 182 – – – – –
40 677,271 0.016 45.3 6703.035 220 – – – – –
41 793,765 0.016 53.8 6703.115 266 – – – – –
42 934,557 0.016 64.0 6703.190 321 – – – – –
43 1,084,193 0.016 64.0 6703.237 388 – – – – –
44 1,267,059 0.016 76.1 6703.272 465 – – – – –
45 1,487,051 0.016 90.5 6703.320 558 – – – – –
46 1,756,709 0.016 108 6703.362 672 – – – – –
47 2,065,245 0.011 90.5 6703.407 809 – – – – –
48 2,420,223 0.011 108 6703.446 973 – – – – –
49 2,834,373 0.011 128 6703.468 1171 – – – – –
50 3,319,763 0.011 128 6703.487 1415 – – – – –
51 3,894,763 0.011 152 6703.505 1706 – – – – –
52 4,522,239 0.011 181 6703.516 2060 – – – – –

In R
3, the initial mesh πh0 is tetrahedron subdivision with mesh size

√
3

16 , and we take θ =
0.25 and λ1 ≈ 8290.011 with high accuracy replacing the accurate eigenvalue. It is present
that the refined mesh and the relative error curves of the smallest eigenvalues derived
from Algorithms 1–2 in Fig. 4, from which we see that Algorithm 2 is more efficient than
Algorithm 1, but meanwhile we also see from Table 4 that the mesh size has no change.
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Table 2 The smallest eigenvalue solved by Algorithm 2 and Algorithm 2M

l Ndof hl
hl

hαlmin
λR
1,hl

CPU(s) Ndof hl
hl

hαlmin
λRM
1,hl

CPU(s)

1 2945 0.044 0.210 6333.637 0.133 2945 0.044 0.210 6333.637 0.090
2 2957 0.044 0.297 6373.503 0.228 2957 0.044 0.297 6373.503 0.140
3 3031 0.044 0.354 6538.971 0.280 3031 0.044 0.354 6538.971 0.192
4 3067 0.044 0.420 6443.737 0.371 3067 0.044 0.420 6443.737 0.250
5 3237 0.044 0.500 6489.761 0.426 3237 0.044 0.500 6489.761 0.305
6 3445 0.044 0.595 6523.466 0.487 3445 0.044 0.595 6523.466 0.365
7 3811 0.044 0.707 6566.620 0.560 3811 0.044 0.707 6566.620 0.431
8 4195 0.044 0.841 6595.431 0.636 4195 0.044 0.841 6595.431 0.504
9 4678 0.044 1.00 6597.955 0.720 4678 0.044 1.00 6597.955 0.588
10 5293 0.044 1.19 6607.441 0.814 5293 0.044 1.19 6607.441 0.709
11 6118 0.044 1.41 6623.248 0.924 25,297 0.022 0.841 6683.573 1.15
12 6997 0.044 1.68 6634.588 1.05 27,723 0.022 1.00 6686.324 1.63
13 8232 0.044 2.00 6648.804 1.20 30,933 0.022 1.19 6688.518 2.38
14 9527 0.044 2.38 6658.106 1.39 139,409 0.011 0.841 6700.069 5.87
15 11,102 0.044 2.83 6663.393 1.59 153,179 0.011 1.00 6700.762 9.71
16 12,928 0.044 3.36 6667.166 1.82 168,897 0.011 1.19 6701.161 15.4
17 15,139 0.044 4.00 6673.763 2.11 740,417 0.006 0.841 6702.983 39.1
18 17,619 0.044 4.76 6678.433 2.43 807,451 0.006 1.00 6703.097 65.4
19 20,763 0.044 5.66 6682.562 2.82 882,597 0.006 1.19 6703.149 103
20 24,365 0.044 6.73 6685.164 3.27 3,907,351 0.003 0.841 6703.486 236
21 28,967 0.044 8.00 6687.944 3.81 4,218,771 0.003 1.00 6703.504 382
22 34,068 0.044 9.51 6690.675 4.50 – – – – –
23 40,007 0.044 11.3 6692.914 5.39 – – – – –
24 47,117 0.044 13.5 6694.937 6.46 – – – – –
25 55,275 0.044 16.0 6696.294 7.64 – – – – –
26 64,407 0.044 19.0 6696.867 9.09 – – – – –
27 75,259 0.031 13.5 6697.823 10.8 – – – – –
28 88,353 0.031 16.0 6698.752 13.2 – – – – –
29 104,269 0.031 19.0 6699.457 16.1 – – – – –
30 123,285 0.031 22.6 6700.133 19.4 – – – – –
31 145,061 0.031 26.9 6700.774 23.3 – – – – –
32 170,397 0.022 22.6 6701.291 27.9 – – – – –
33 199,833 0.022 26.9 6701.638 33.5 – – – – –
34 235,261 0.022 26.9 6701.906 40.0 – – – – –
35 272,877 0.022 32.0 6702.117 48.6 – – – – –
36 319,549 0.022 38.1 6702.292 58.8 – – – – –
37 375,279 0.022 45.3 6702.462 71.1 – – – – –
38 444,149 0.022 53.8 6702.631 86.1 – – – – –
39 522,525 0.022 64.0 6702.819 104 – – – – –
40 613,375 0.022 76.1 6702.964 125 – – – – –
41 719,217 0.016 53.8 6703.062 149 – – – – –
42 844,333 0.016 64.0 6703.144 179 – – – – –
43 988,863 0.016 76.1 6703.208 214 – – – – –
44 1,150,057 0.016 90.5 6703.256 255 – – – – –
45 1,346,861 0.016 108 6703.292 304 – – – – –
46 1,584,041 0.016 128 6703.337 362 – – – – –
47 1,873,597 0.016 152 6703.378 433 – – – – –
48 2,196,067 0.011 108 6703.422 509 – – – – –
49 2,572,281 0.011 128 6703.454 598 – – – – –
50 3,010,543 0.011 152 6703.474 705 – – – – –
51 3,538,161 0.011 181 6703.497 831 – – – – –
52 4,120,833 0.011 215 6703.510 979 – – – – –
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Table 3 The smallest eigenvalue solved by Algorithm 3 and Algorithm 3M

l Ndof hl
hl

hαlmin
λF
1,hl

CPU(s) Ndof hl
hl

hαlmin
λFM
1,hl

CPU(s)

1 2945 0.044 0.210 6333.637 0.086 2945 0.044 0.210 6333.637 0.086
2 2957 0.044 0.297 6373.503 0.137 2957 0.044 0.297 6373.503 0.137
3 3031 0.044 0.354 6538.971 0.187 3031 0.044 0.354 6538.971 0.187
4 3067 0.044 0.420 6443.737 0.244 3067 0.044 0.420 6443.737 0.245
5 3237 0.044 0.500 6489.761 0.299 3237 0.044 0.500 6489.761 0.300
6 3445 0.044 0.595 6523.466 0.358 3445 0.044 0.595 6523.466 0.360
7 3811 0.044 0.707 6566.620 0.423 3811 0.044 0.707 6566.620 0.426
8 4195 0.044 0.841 6595.431 0.496 4195 0.044 0.841 6595.431 0.498
9 4678 0.044 1.00 6597.955 0.577 4678 0.044 1.00 6597.955 0.581
10 5293 0.044 1.19 6607.441 0.670 5293 0.044 1.19 6607.441 0.696
11 6118 0.044 1.41 6623.248 0.779 25,297 0.022 0.841 6683.573 1.14
12 6997 0.044 1.68 6634.588 0.903 27,723 0.022 1.00 6686.324 1.62
13 8232 0.044 2.00 6648.804 1.05 30,933 0.022 1.19 6688.518 2.37
14 9527 0.044 2.38 6658.106 1.21 139,409 0.011 0.841 6700.069 5.85
15 11,102 0.044 2.83 6663.393 1.41 153,179 0.011 1.00 6701.996 9.71
16 12,928 0.044 3.36 6667.166 1.64 164,253 0.011 1.19 6701.274 15.2
17 15,139 0.044 4.00 6673.763 1.93 715,319 0.006 0.841 6702.994 38.2
18 17,619 0.044 4.76 6678.433 2.25 780,735 0.006 1.00 6703.096 63.8
19 20,763 0.044 5.66 6682.562 2.63 853,934 0.006 1.19 6703.205 100
20 24,365 0.044 6.73 6685.164 3.08 3,774,935 0.003 0.841 6703.503 231
21 28,967 0.044 8.00 6687.944 3.60 4,083,915 0.003 1.00 6703.538 372
22 34,068 0.044 9.51 6690.675 4.21 – – – – –
23 40,007 0.044 11.3 6692.914 4.97 – – – – –
24 47,117 0.044 13.5 6694.937 5.89 – – – – –
25 55,275 0.044 16.0 6696.294 6.98 – – – – –
26 64,407 0.044 19.0 6696.867 8.28 – – – – –
27 75,259 0.031 13.5 6697.823 9.85 – – – – –
28 88,357 0.031 16.0 6698.753 12.0 – – – – –
29 104,277 0.031 19.0 6699.461 14.6 – – – – –
30 123,275 0.031 22.6 6700.132 17.7 – – – – –
31 145,073 0.031 26.9 6700.784 21.4 – – – – –
32 170,409 0.022 22.6 6701.303 25.9 – – – – –
33 199,844 0.022 26.9 6701.644 31.2 – – – – –
34 235,273 0.022 26.9 6701.901 37.6 – – – – –
35 272,825 0.022 32.0 6702.117 45.7 – – – – –
36 319,389 0.022 38.1 6702.299 55.5 – – – – –
37 375,188 0.022 45.3 6702.459 67.4 – – – – –
38 443,902 0.022 53.8 6702.642 81.7 – – – – –
39 522,189 0.022 64.0 6702.815 98.8 – – – – –
40 612,931 0.022 76.1 6702.966 119 – – – – –
41 718,761 0.016 53.8 6703.061 143 – – – – –
42 844,127 0.016 64.0 6703.150 171 – – – – –
43 988,405 0.016 76.1 6703.208 205 – – – – –
44 1,149,526 0.016 90.5 6703.256 244 – – – – –
45 1,346,037 0.016 108 6703.295 291 – – – – –
46 1,583,069 0.016 128 6703.340 347 – – – – –
47 1,872,353 0.016 152 6703.381 412 – – – – –
48 2,194,659 0.011 108 6703.425 490 – – – – –
49 2,570,539 0.011 128 6703.458 580 – – – – –
50 3,008,669 0.011 152 6703.478 687 – – – – –
51 3,535,715 0.011 181 6703.498 813 – – – – –
52 4,118,331 0.011 215 6703.512 962 – – – – –
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Figure 1 The convergence rates of the smallest eigenvalue from Algorithm 1(a) and Algorithm 1M(b)

Figure 2 The convergence rates of the smallest eigenvalue from Algorithm 2(a) and Algorithm 2M(b)

Figure 3 The convergence rates of the smallest eigenvalue from Algorithm 3(a) and Algorithm 3M(b)
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Figure 4 The refined mesh for the L-shaped domain (a) and the convergence rates of the smallest eigenvalue
from Algorithm 1 and Algorithm 2(b) in R

3

Table 4 The smallest eigenvalue solved by Algorithm 1 and Algorithm 2

l Ndof hl λ1,hl CPU(s) Ndof hl λR
1,hl

CPU(s)

1 54,896 0.108 7547.686 8.25 54,896 0.108 7547.686 9.71
2 57,176 0.108 7612.980 16.5 57,176 0.108 7613.142 13.0
3 60,822 0.108 7678.863 25.6 60,822 0.108 7678.902 16.7
4 67,192 0.108 7736.644 35.1 67,192 0.108 7736.699 20.9
5 76,278 0.108 7802.128 46.5 76,316 0.108 7802.062 25.8
6 86,838 0.108 7871.038 58.6 86,905 0.108 7872.137 31.2
7 101,261 0.108 7949.987 73.8 101,368 0.108 7950.349 38.4
8 121,408 0.108 8001.974 92.4 121,563 0.108 8002.931 47.3
9 146,456 0.108 8041.421 118 146,215 0.108 8040.738 58.1
10 180,528 0.108 8082.211 155 180,203 0.108 8082.247 72.3
11 224,755 0.108 8108.734 211 224,288 0.108 8108.530 92.1
12 282,583 0.108 8141.177 295 281,953 0.108 8141.009 119
13 355,133 0.108 8174.424 414 354,598 0.108 8174.437 156
14 451,162 0.108 8199.573 583 450,739 0.108 8199.502 205
15 561,904 0.108 8220.566 847 561,090 0.108 8220.433 269
16 693,222 0.108 8240.310 2368 691,963 0.108 8240.129 354
17 863,420 0.108 8258.156 9957 861,795 0.108 8258.042 469
18 – – – – 1,084,848 0.108 8272.888 624
19 – – – – 1,357,830 0.108 8281.060 851
20 – – – – 1,730,050 0.108 8290.011 1206

Because Ndof in R
3 increases very fast after uniform refinement, which leads to surpassing

computer’s memory, we cannot employ Algorithms 1M–3M to solve (2.1).
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