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Abstract
In this paper, we present an extended alternating proximal penalization algorithm for
the modified multiple-sets feasibility problem. For this method, we first show that the
sequences generated by the algorithm are summable, which guarantees that the
distance between two adjacent iterates converges to zero, and then we establish the
global convergence of the algorithm provided that the penalty parameter tends to
zero.
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1 Introduction
The multiple-sets split feasibility problem, abbreviated as MSFP, is to find a point closest
to the intersection of a family of some closed and convex sets in one space, such that its
image under a linear operator is closest to the intersection of another family of some closed
and convex sets in the image space. More specifically, the MSFP consists in finding a point
x∗ such that

x∗ ∈
s⋂

i=1

Ci and Ax∗ ∈
t⋂

j=1

Qj, (1.1)

where Ci ⊂ Rm (i = 1, 2, . . . , s) and Qj ⊂ Rn (j = 1, 2, . . . , t) are nonempty, closed, and convex
sets in a Euclidean space, A ∈ Rn×m is a given matrix.

The problem finds applications in such fields as image reconstruction and signal pro-
cessing [1], and it was intensively considered by researchers [2–11]. For this problem, nu-
merous efficient iterative methods were proposed, see [12–23] and the references therein.

To solve the problem, based on the multidistance idea, Censor and Elfving [1] estab-
lished an iterative algorithm which involves the inverse of the underlying matrix at each
iteration and hence is much more time-consuming. To overcome this drawback, Byrne
[24] presented a projection-type algorithm, called CQ method, for solving the split fea-
sibility problem. The algorithm is efficient when the orthogonal projections can be easily
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calculated. To make the projection method more efficient when the projection is difficult
to compute, Yang [25] established a relaxed CQ algorithm by modifying the projection
region. For this method, to make the objection function have sufficient decrease at each
iteration, Qu and Xiu [26] presented a revised CQ method by introducing an Armijo-
like stepsize rule into the iterative frame. In order to accelerate the speed of the algo-
rithm, Zhang and Wang [27] made a further modification to the method by adopting a
new searching direction for the split feasibility problem.

Inspired by the work in [1] and the alternating proximal penalization algorithm in [28],
we present a two-block alternating proximal penalization algorithm for this problem in
this paper. Under mild conditions, we first show that the sequences generated by our al-
gorithm are summable, which guarantees that the distance between two adjacent iterates
converges to zero, and then we establish the global convergence of the algorithm provided
that the penalty parameter tends to zero.

The remainder of this paper is organized as follows. In Sect. 2, we give some basic defi-
nitions and lemmas which will be used in the subsequent sections. In Sect. 3, we present a
new method for solving the split problem and establish its convergence. Some conclusions
are drawn in the last section.

2 Preliminaries
In this section, we first present some definitions and then recall some existing conclusions
which will be used in the subsequent analysis.

First, we give some definitions on the continuous function f : Rn → R.

Definition 2.1 ([29]) Let f : �(⊂ Rn) → � be a continuous function. Then
(1) f is called monotone on � if

(u – v)T(
f (u) – f (v)

) ≥ 0, ∀u, v ∈ �;

(2) f is called ν-inverse strongly monotone on � if there exists a constant ν > 0 such that

(u – v)T(
f (u) – f (v)

) ≥ ν
∥∥f (u) – f (v)

∥∥2, ∀u, v ∈ �;

(3) f is called Lipschitz continuous on � if there exists a constant L > 0 such that

∥∥f (u) – f (v)
∥∥ ≤ L‖u – v‖, ∀u, v ∈ �;

(4) The subgradient set of f at x is given by

∂f (x) :=
{
ξ ∈ Rn : f (y) ≥ f (x) + ξT (y – x),∀y ∈ Rn}.

Lemma 2.1 ([30]) For functions f (x) = 1
2
∑s

i=1 ai‖x – PCi (x)‖2 and g(y) = 1
2
∑t

j=1 bj‖y –
PQj (y)‖2, it holds that ∇f (x) and ∇g(y) are both inverse strongly monotone and Lipschitz
continuous on X and Y, where PCi (x) denotes the projection of x onto Ci, i.e., PCi (x) =
arg min{‖y – x‖ | y ∈ Ci}.

To proceed, we give some conclusions which play the heart role in the next section.
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Lemma 2.2 [28] Let {an} and {εn} be two real sequences such that {an} is minorized, {εn} ∈
l1, and an+1 ≤ an + εn for any n ∈ N . Then sequence {an} converges.

Lemma 2.3 (Opial lemma [31]) Let {λk} be a nonsummable sequence of positive real num-
bers, and {xk} be any sequence in a Hilbert space H , with the weighted averages {zk}. Assume
that there exists a nonempty closed convex subset F of H such that

(1) weak subsequential limits of {zk} lie in F ,
(2) limk→∞ ‖xk – f ‖ exists for all f ∈ F .

Then {zk} converges weakly to an element of F .

To end this section, we define the following operators which will be used in the following
sections.

Let V := {(x, y) : x ∈ X, y ∈ Y , Ax = y}. Define monotone operators F̂ and Ĝ as follows:

F̂(x, y) =
(
f (x), g(y)

)
,

Ĝ(x, y) = ∂F̂(x, y) + NV (x, y) =

⎧
⎨

⎩
∂F̂(x, y) + V ⊥, if (x, y) ∈ V ,

∅, if (x, y) /∈ V .

Further, we define bounded linear operators ϒ and 	 as follows:

ϒ :
X × Y �→ Z,

(x, y) �→ Ax – y,
and 	 :

X × Y �→ R,

(x, y) �→ 1
2
‖Ax – y‖2.

Let � be a nonempty closed convex subset of Rn. Then the normal cone operator of �

at x is defined as

N�(x) :=
{

x∗ :
(
x∗)T (y – x) ≤ 0,∀y ∈ �

}
.

For the function 	 : X × Y �→ R, the Fenchel conjugate 	∗ of the map 	 at p ∈ X × Y is
given by

	∗(p) := sup
{

pT q – 	(q) : q ∈ X × Y
}

.

3 Algorithm and the convergence analysis
In [30], Zhang et al. proposed an alternating direction method to solve problem (1.1) based
on the Lagrange function. Different from it, in this paper, we propose the following al-
ternating proximal penalization algorithm: Given the current iterate (xk , yk) and positive
parameters α and β , the new point (xk+1, yk+1) is generated by

xk+1 = argmin

{
γk+1f (x) +

1
2
∥∥Ax – yk∥∥2 +

α

2
∥∥x – xk∥∥2 : x ∈ X

}
,

yk+1 = argmin

{
γk+1g(y) +

1
2
∥∥Axk+1 – y

∥∥2 +
β

2
∥∥y – yk∥∥2 : y ∈ Y

}
.

(3.1)

Note that the penalty parameter sequence satisfies {γk} ∈ l2/l1.
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In order to investigate the convergence of the algorithm, we define the following esti-
mation function:

hk(x, y) = α
∥∥xk – x

∥∥2 + (β + 1)
∥∥yk – y

∥∥2

for (x, y) ∈ X × Y .

Lemma 3.1 Let (x, y) ∈ X × Y and (ξ ,η) ∈ Ĝ(x, y). Then there exists (p, q) ∈ (X × Y )⊥ such
that

hk+1(x, y) – hk(x, y) + 2γk+1
[
ξT(

xk+1 – x
)

+ ηT(
yk+1 – y

)]

+ α
∥∥xk+1 – xk∥∥2 + β

∥∥yk+1 – yk∥∥2 +
∥∥Axk+1 – yk∥∥2 ≤ 2γ 2

k+1	
∗(p, q). (3.2)

Proof From (3.1), one has

α

γk+1

(
xk+1 – xk) +

1
γk+1

AT(
Axk+1 – yk) = –∇f

(
xk+1). (3.3)

On the other hand, since (ξ ,η) ∈ Ĝ(x, y), there exists (p, q) ∈ (X × Y )⊥ such that

ξ = ∇f (x) + p and η = ∇g(y) + q,

which implies that p – ξ = –∇f (x). Combining this with (3.3) and using the monotonicity
of ∇f (x), one as

α

γk+1

(
xk+1 – xk)T(

xk+1 – x
)

+
1

γk+1

(
AT(

Axk+1 – yk))T(
xk+1 – x

) ≤ (p – ξ )T(
xk+1 – x

)
.

Rearranging the item of the inequality yields

α
∥∥xk+1 – x

∥∥2 + α
∥∥xk+1 – xk∥∥2 ≤ α

∥∥xk – x
∥∥2 – 2

(
Axk+1 – yk)T(

Axk+1 – Ax
)

+ 2γk+1pT(
xk+1 – x

)
– 2γk+1ξ

T(
xk+1 – x

)
. (3.4)

Similarly, one has

β
∥∥yk+1 – y

∥∥2 + β
∥∥yk+1 – yk∥∥2 ≤ β

∥∥yk – y
∥∥2 – 2

(
yk+1 – Axk+1)T(

yk+1 – y
)

+ 2γk+1qT(
yk+1 – y

)
– 2γk+1η

T(
yk+1 – y

)
. (3.5)

Note that Ax = y implies

2
(
Axk+1 – yk)T(

Axk+1 – Ax
)

+ 2
(
yk+1 – Axk+1)T(

yk+1 – y
)

=
∥∥yk+1 – y

∥∥2 +
∥∥Axk+1 – yk∥∥2 +

∥∥Axk+1 – yk+1∥∥2 –
∥∥yk – y

∥∥2.

Then (3.4) and (3.5) yield

hk+1(x, y) – hk(x, y) + 2γk+1
[
ξT(

xk+1 – x
)

+ ηT(
yk+1 – y

)]
+ α

∥∥xk+1 – xk∥∥2

+ β
∥∥yk+1 – yk∥∥2 +

∥∥Axk+1 – yk∥∥2
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≤ 2γk+1(p, q)T(
xk+1, yk+1) –

∥∥Axk+1 – yk+1∥∥2

= 2
[
γk+1(p, q)T(

xk+1, yk+1) – 	
(
xk+1, yk+1)]

≤ 2 sup
{
γk+1(p, q)T(

xk+1, yk+1) – 	
(
xk+1, yk+1)}, (3.6)

where we use the fact that

pT(
xk+1 – x

)
+ qT(

yk+1 – y
)

= pT(
xk+1) + qT(

yk+1) = (p, q)T(
xk+1, yk+1)

for (x, y) ∈ X × Y and (p, q) ∈ (X × Y )⊥.
By the definition of 	∗, one has

sup
{
γk+1(p, q)T(

xk+1, yk+1) – 	
(
xk+1, yk+1)} = 	∗(γk+1(p, q)

)
= γ 2

k+1	
∗(p, q).

Substituting it into (3.6), we obtain inequality (3.2) and this completes the proof. �

Since the closeness of R(ϒ) is equivalent to the closeness of R(ϒ∗), one has (X × Y )⊥ =
Ker(ϒ)⊥ = R(ϒ∗), which means that (X × Y )⊥ ⊂ dom	∗ = R(ϒ∗). Thus, 	∗(p, q) < +∞,
∀(p, q) ∈ (X × Y )⊥.

Lemma 3.2 For the function ϒ defined at the end of Sect. 2 and (x∗, y∗) ∈ �, then
(1) limk→+∞ hk(x∗, y∗) exists, and the sequence {(xk , yk)} is bounded;
(2) sequences {‖xk+1 – xk‖2}, {‖yk+1 – yk‖2}, and {‖Axk – yk‖2} are summable.

In particular,

lim
k→+∞

∥∥xk+1 – xk∥∥ = lim
k→+∞

∥∥yk+1 – yk∥∥ = lim
k→+∞

∥∥Axk – yk∥∥ = 0,

and each cluster point of the sequence {(xk , yk)} lies in X × Y .

Proof (1) Setting (ξ ,η) = (0, 0) in (3.2) and taking hk = hk(x∗, y∗), one has

hk+1 – hk + α
∥∥xk+1 – xk∥∥2 + β

∥∥yk+1 – yk∥∥2 +
∥∥Axk+1 – yk∥∥2 ≤ 2γ 2

k+1	
∗(p, q). (3.7)

Hence, hk+1 – hk ≤ 2γ 2
k+1	

∗(p, q). The closedness of R(ϒ) and Lemma 2.2 imply that the
sequence {hk} converges, which means that limk→+∞ hk(x∗, y∗) exists and the sequence
{(xk , yk)} is bounded.

(2) Summing inequality (3.7) for k = 1, 2, . . . , n, one has

hn+1 – h1 + α

n∑

k=1

∥∥xk+1 – xk∥∥2 + β

n∑

k=1

∥∥yk+1 – yk∥∥2 +
n∑

k=1

∥∥Axk+1 – yk∥∥2

≤ 2
n∑

k=1

γ 2
k+1	

∗(p, q). (3.8)

Since R(ϒ) is closed, passing onto the limit on both sides of (3.8), one has that sequences

{∥∥xk+1 – xk∥∥2},
{∥∥yk+1 – yk∥∥2}, and

{∥∥Axk+1 – yk∥∥2}

are all summable.
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Since ‖Axk – yk‖2 ≤ 2‖Axk+1 – yk‖2 + 2‖Axk+1 – Axk‖2, {‖Axk – yk‖2} is summable. Fur-
ther, since the function 	 is weak lower-semicontinuous, limk→+∞ ‖Axk – yk‖ = 0 implies
that every cluster point of the sequence {(xk , yk)} lies in X × Y . �

In order to prove the convergence of the algorithm, we need the following notations.
Setting τk =

∑k
n=1 γn, define the averages of the sequences {xk} and {yk} as

x̂k =
1
τk

k∑

n=1

γnxn and ŷk =
1
τk

k∑

n=1

γnyn.

Now we are in a position to prove the convergence of the algorithm.

Theorem 3.1 Let the space R(ϒ) be closed and � be nonempty. Then the sequence {(x̂k , ŷk)}
defined above converges to a point in �.

Proof We break up the proof into two parts.
First, we prove that every cluster point of the sequence {(x̂k , ŷk)} lies in �.
In fact, for any (ξ ,η) ∈ Ĝ(x, y), summing inequality (3.2) in Lemma 3.1 for k = 0, 1, . . . ,

n – 1, one has

ξT(
x̂k – x

)
+ ηT(

ŷk – y
) ≤ 1

2τk

[
h0(x, y) + 2	∗(p, q)

k∑

n=1

γ 2
n

]
. (3.9)

Let (x̂∗, ŷ∗) be a cluster point of {(x̂k , ŷk)}. Since R(ϒ) is closed, passing onto the limit on
both sides of (3.9), one has

ξT(
x̂∗ – x

)
+ ηT(

ŷ∗ – y
) ≤ 0,

where we use the fact that limk→+∞
∑k

n=1 γ 2
n exists, and τk =

∑k
n=1 γn → +∞ as n → +∞.

From the arbitrariness of (ξ ,η), one obtains that (x̂∗, ŷ∗) ∈ �.
Second, we prove that the sequence {(x̂k , ŷk)} has at most one cluster point.
Let (x̂∗

1, ŷ∗
1) �= (x̂∗

2, ŷ∗
2) be the two cluster points of the sequence {(x̂k , ŷk)}. Define the func-

tion

H(u, v) = α‖u‖2 + β‖v‖2, ∀(u, v) ∈ X × Y .

From (1) in Lemma 3.2, one has that limk→∞ H(x̂k – x∗
1, ŷk – y∗

1) and limk→∞ H(x̂k – x∗
2, ŷk –

y∗
2) exist.
On the other hand, since

H
(
x̂k – x∗

1, ŷk – y∗
1
)

= H
(
x̂k – x∗

2, ŷk – y∗
2
)

+ H
(
x∗

1 – x∗
2, y∗

1 – y∗
2
)

+ 2α
〈
x̂k – x∗

2, x∗
2 – x∗

1
〉
+ 2β

〈
ŷk – y∗

2, y∗
2 – y∗

1
〉
,

the definition of (x̂∗
2, ŷ∗

2) yields

lim
k→∞

H
(
x̂k – x∗

1, ŷk – y∗
1
)

= lim
k→∞

H
(
x̂k – x∗

2, ŷk – y∗
2
)

+ H
(
x∗

1 – x∗
2, y∗

1 – y∗
2
)
. (3.10)
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For the same reason, one has

lim
k→∞

H
(
x̂k – x∗

2, ŷk – y∗
2
)

= lim
k→∞

H
(
x̂k – x∗

1, ŷk – y∗
1
)

+ H
(
x∗

1 – x∗
2, y∗

1 – y∗
2
)
. (3.11)

Then (3.10) and (3.11) imply that H(x∗
1 –x∗

2, y∗
1 –y∗

2) = 0, which means that (x̂∗
1, ŷ∗

1) = (x̂∗
2, ŷ∗

2).
This contradicts (x̂∗

1, ŷ∗
1) �= (x̂∗

2, ŷ∗
2), and thus the sequence {(x̂k , ŷk)} has at most one cluster

point and the proof is completed. �

4 Conclusion
In this paper, we presented an extended alternating proximal penalization algorithm for
the modified multiple-sets feasibility problem. For the method, we first showed that the
sequences generated by the algorithm are summable, which guarantees that the distance
between two adjacent iterates converges to zero, and then we established the global con-
vergence of the algorithm provided that the penalty parameter tends to zero.

Acknowledgements
The author is indebted to the anonymous referees for their valuable suggestions and helpful comments which helped
improve the paper significantly. This research was done during XW’s postdoctoral period in Qufu Normal University. This
work is supported by the Natural Science Foundation of China (11671228).

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
XYW organized and wrote this paper. Further, he examined all the steps of the proofs in this research. The author read
and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 September 2017 Accepted: 12 February 2018

References
1. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a produce space. Numer. Algorithms

8, 221–239 (1994)
2. Chen, H.B., Wang, Y.J.: A family of higher-order convergent iterative methods for computing the Moore–Penrose

inverse. Appl. Math. Comput. 218, 4012–4016 (2011)
3. Chen, H.B., Wang, Y.J., Wang, G.: Strong convergence of extra-gradient method for generalized variational inequalities

in Hilbert space. J. Inequal. Appl. 2014, 223 (2014)
4. Lv, X.X., Zhang, W.P.: A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous

to Kloosterman sums. Lith. Math. J. 57(3), 359–366 (2017)
5. Ma, F.M., Wang, Y.J., Zhao, H.G.: A potential reduction method for the generalized linear complementarity problem

over a polyhedral cone. J. Ind. Manag. Optim. 6, 259–267 (2010)
6. Sun, H.C., Wang, Y.J.: Further discussion on the error bound for generalized LCP over a polyhedral cone. J. Optim.

Theory Appl. 159, 93–107 (2013)
7. Wang, G.: Well-posedness for vector optimization problems with generalized equilibrium constraints. Pac. J. Optim.

8(3), 565–576 (2012)
8. Wang, G., Huang, X.X., Zhang, J.: Levitin–Polyak well-posedness in generalized equilibrium problems with functional

constraints. Pac. J. Optim. 6, 441–453 (2010)
9. Wang, G., Huang, X.X.: Levitin–Polyak well-posedness for optimization problems with generalized equilibrium

constraints. J. Optim. Theory Appl. 153, 27–41 (2012)
10. Wang, G., Yang, X.Q., Cheng, T.C.E.: Generalized Levitin–Polyak well-posedness for generalized semi-infinite programs.

Numer. Funct. Anal. Optim. 34(6), 695–711 (2013)
11. Zhao, J.L., Yang, Q.Z.: A simple projection method for the multiple-set split feasibility problem. Inverse Probl. Sci. Eng.

21, 537–546 (2013)
12. Chen, H.B., Wang, Y.J., Zhao, H.G.: Finite convergence of a projected proximal point algorithm for generalized

variational inequalities. Oper. Res. Lett. 40, 303–305 (2012)
13. Feng, D.X., Sun, M., Wang, X.Y.: A family of conjugate gradient method for large-scale nonlinear equations. J. Inequal.

Appl. 2017, 236 (2017)
14. Sun, M., Wang, Y.J., Liu, J.: Generalized Peaceman–Rachford splitting method for multi-block separable convex

programming with applications to robust PCA. Calcolo 54, 77–94 (2017)



Wang Journal of Inequalities and Applications  (2018) 2018:48 Page 8 of 8

15. Sun, H.C., Wang, Y.J., Qi, L.Q.: Global error bound for the generalized linear complementarity problem over a
polyhedral cone. J. Optim. Theory Appl. 142, 417–429 (2009)

16. Wang, X.Y., Chen, H.B., Wang, Y.J.: Solution structures of tensor complementarity problem. Front. Math. China (2017).
https://doi.org/10.1007/s11464-017-0686-5

17. Wang, C.W., Wang, Y.J.: A superlinearly convergent projection method for constrained systems of nonlinear
equations. J. Glob. Optim. 40, 283–296 (2009)

18. Zhang, X.Z., Jiang, H.F., Wang, Y.J.: A smoothing Newton method for generalized nonlinear complementarity problem
over a polyhedral cone. J. Comput. Appl. Math. 212, 75–85 (2008)

19. Zhang, W.P., Duan, R.: On the mean square value of L-functions with the weight of quadratic Gauss sums. J. Number
Theory 179, 77–87 (2017)

20. Qi, L.Q., Wang, F., Wang, Y.J.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program.
118, 301–316 (2009)

21. Wang, Y.J., Caccetta, L., Zhou, G.L.: Convergence analysis of a block improvement method for polynomial
optimization over unit spheres. Numer. Linear Algebra Appl. 22, 1059–1076 (2015)

22. Wang, Y.J., Liu, W.Q., Caccetta, L., Zhou, G.: Parameter selection for nonnegative l1 matrix/tensor sparse
decomposition. Oper. Res. Lett. 43, 423–426 (2015)

23. Wang, Y.J., Qi, L.Q., Luo, S.L., Xu, Y.: An alternative steepest direction method for optimization in evaluating geometric
discord. Pac. J. Optim. 10, 137–149 (2014)

24. Byrne, C.L.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453
(2002)

25. Yang, Q.Z.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)
26. Qu, B., Xiu, N.H.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1665 (2005)
27. Zhang, H.Y., Wang, Y.J.: A new CQ method for solving split feasibility problem. Front. Math. China 5, 37–46 (2010)
28. Attouch, H., Cabot, A., Frankel, P., Peypouquet, J.: Alternating proximal algorithms for linearly constrained variational

inequalities: application to domain decomposition for PDE’s. Nonlinear Anal. 74, 7455–7473 (2011)
29. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Spriger, Berlin (2006)
30. Zhang, W.X., Han, D.R., Yuan, X.M.: An efficient simultaneous method for the constrained multiple-sets split feasibility

problem. Comput. Optim. Appl. 52, 825–843 (2012)
31. Passty, G.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72,

383–390 (1979)

https://doi.org/10.1007/s11464-017-0686-5

	Alternating proximal penalization algorithm for the modiﬁed multiple-sets split feasibility problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Algorithm and the convergence analysis
	Conclusion
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


