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Abstract
We are concerned with the following quasilinear Choquard equation:

–�pu + V(x)|u|p–2u = λ(Iα ∗ F(u))f (u) in R
N , F(t) =

∫ t

0
f (s)ds,

where 1 < p <∞, �pu =∇ · (|∇u|p–2∇u) is the p-Laplacian operator, the potential
function V :RN → (0,∞) is continuous and F ∈ C1(R,R). Here, Iα :RN →R is the Riesz
potential of order α ∈ (0,p). We study the existence of weak solutions for the problem
above via the mountain pass theorem and the fountain theorem. Furthermore, we
address the behavior of weak solutions to the problem near the origin under suitable
assumptions for the nonlinear term f .
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1 Introduction
We are concerned with the following quasilinear Choquard equation:

–�pu + V (x)|u|p–2u = λ
(
Iα ∗ F(u)

)
f (u) in R

N , (P)

where 1 < p < N , �pu = ∇ · (|∇u|p–2∇u) is the p-Laplacian operator, the potential function
V : RN → (0,∞) is continuous and F ∈ C1(R,R) with F(t) =

∫ t
0 f (s) ds. Here, Iα : RN → R

is the Riesz potential of order α ∈ (0, p) on the Euclidean space R
N of dimension N ≥ 1,

defined for each x ∈ R
N \ {0} by

Iα(x) =
�( N–α

2 )

�( α
2 )π N

2 2α|x|N–α
,

where �(·) stands for a standard Gamma function. The Choquard equation was also in-
troduced by Choquard in 1976 in the modeling of a one-component plasma [1]. It seems
to originate from the Frohlich and Pekarí’s model of the polaron, which is a quasiparticle
used in condensed matter physics to understand the interactions between electrons and
atoms in a solid material [2, 3]. This equation is also known as the Schrödinger–Newton
equation in models coupling the Schrödinger equation of quantum physics together with
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relativistic or nonrelativistic Newtonian gravity [4, 5]. Thus, they have become very sig-
nificant in physics (see [6] for a review paper).

For this reason, many researchers have extensively studied the Choquard type equation
in various ways; see [7–18] and the references therein.

Recently, the authors [19] dealt with the existence of positive solutions to the problem
(P) on the whole space R

N , based on the assumption that the nonlinearity f satisfies the
following Ambrosetti–Rabinowitz superlinear condition [20], which is commonly called
the (AR)-condition:

0 < ζF(t) ≤ θ f (t)t for t > 0 and some θ ∈
(

0,
1
2

)
,

where F(t) =
∫ t

0 f (s) ds. It is well known that the (AR)-condition is quite natural and im-
portant not only to ensure that an Euler–Lagrangian functional has the mountain pass
geometry, but also to guarantee that the Palais–Smale sequences of the functional are
bounded. However, this condition is very restrictive and eliminates many nonlinearities.
Thus, many researchers have tried to drop the (AR)-condition for elliptic equations in-
volving the p-Laplacian; see e.g. [21–24].

The purpose of this paper is to study the existence of weak solutions for the problem
(P) without the (AR)-condition as observing various assumptions for the nonlinear term
f compare to result in [19]. In particular, following Remark 1.8 in [21], there are many
examples which do not fulfill the condition of f given in [22, 23, 25]. On the other hand,
in the case of the whole space R

N , the main difficulty of this problem is the lack of com-
pactness for the Sobolev theorem and we introduce the potential V to the equation. To be
precise, we prove the existence of weak solutions for the quasilinear Choquard equation
(P) under the Cerami condition, as a weak version of the Palais–Smale condition. To do
this, first, we use the uniform boundedness of the convolution part, |Iα ∗ F| < ∞ for our
analysis (see Section 3.1 for a detailed description) and thus the property of (S+) type op-
erator with this uniform estimate gives a lot of help when we choose Cerami sequences.
Second, we show the multiplicity of weak solutions to the quasilinear Choquard equation
(P) via the fountain theorem to obtain the infinitely many weak solutions. Third, we estab-
lish the existence of a sequence of weak solutions for the problem (P) converging to zero to
obtain the L∞-bound of weak solutions to the problem (P) based on an iteration method.
To the best of our knowledge, there were no such existence results for our problem in this
situation.

2 Preliminaries
Let 1 < p < N and p∗ := Np/(N – p) denote the Sobolev conjugate of p. Suppose that

(V) V ∈ C(RN ,R), infx∈RN V (x) := V0 > 0, meas{x ∈R
N : V (x) ≤ M} < +∞ for all M ∈R.

Define the linear subspace

X :=
{

u ∈ W 1,p(
R

N)
:
∫
RN

|∇u|p dx +
∫
RN

V (x)|u|p dx < ∞
}

.

Then X is a reflexive separable Banach space with the norm

‖u‖X =
(∫

RN
|∇u|p dx +

∫
RN

V (x)|u|p dx
) 1

p
,



Lee et al. Journal of Inequalities and Applications  (2018) 2018:42 Page 3 of 20

which is equivalent to the norm ‖ · ‖W 1,p(RN ) given by

‖u‖W 1,p(RN ) =
(∫

RN
|∇u|p dx +

∫
RN

|u|p dx
) 1

p
.

We recall the well-known embedding results in [21, Lemma 2.1]; see also [26].

Lemma 2.1 The following statements hold:
(i) There is a continuous embedding W 1,p(RN ) ↪→ Ls(RN ) for any s ∈ [p, p∗].

(ii) If V satisfies the assumption (V), then there is a compact embedding X ↪→ Ls(RN ) for
any s ∈ [p, p∗).

Throughout this paper, let X be the completion of C∞
0 (RN ,R), and X∗ be a dual space

of X. Furthermore, 〈·, ·〉 denotes the pairing of X and its dual X∗. All generic constants will
be denoted by C, which may vary from line to line.

Definition 2.2 We say that u ∈ X is a weak solution of the problem (P) if

∫
RN

|∇u|p–2∇u · ∇v dx +
∫
RN

V (x)|u|p–2uv dx = λ

∫
RN

(
Iα ∗ F(u)

)
f (u)v dx (2.1)

for all v ∈ X.

Let us define the functional 
 : X →R by


(u) =
1
p

∫
RN

|∇u|p dx +
1
p

∫
RN

V (x)|u|p dx.

Under the assumption (V), it is obvious that the functional 
 is well defined on X, 
 ∈
C1(X,R) and its Fréchet derivative is given by

〈

′(u), v

〉
=

∫
RN

|∇u|p–2∇u · ∇v dx +
∫
RN

V (x)|u|p–2uv dx.

We suppose that the following assumptions hold:
(F1) F ∈ C1(R,R).
(F2) There exist a constant σ > 0 and 1 < p < q1 ≤ q2 < αp

N–p such that for all t ∈R,

∣∣f (t)
∣∣ ≤ σ

(|t|q1–1 + |t|q2–1).

(F3) There exists δ > 0 such that

F(t) ≤ 0 and |t| < δ.

(F4) lim|t|→∞ F(t)
|t|p = ∞.

(F5) There exist c0 ≥ 0, r0 ≥ 0, and κ > N
p such that

∣∣F(t)
∣∣κ ≤ c0|t|κp

F(t)

for all t ∈R and |t| ≥ r0, where F(t) := 1
p f (t)t – 1

2 F(t) ≥ 0.
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(F6) f (–t) = –f (t) holds for all t ∈R.
To comment on the assumptions about the nonlinearity f , we would like to recall an

important inequality due to [1].
Let s, r > 1 and α < p with 1/s + (N – α)/N + 1/r = 2. Let g ∈ Ls(RN ) and h ∈ Lr(RN ). Then

there exists a sharp constant C(s, N ,α, r), independent of g and h, such that

∫
RN

∫
RN

g(x)h(y)
|x – y|N–α

dx dy ≤ C(s, N ,α, r)‖g‖Ls(RN )‖h‖Lr (RN ).

In particular, F(t) = |t|q1 for some q1 > 0. By the Hardy–Littlewood–Sobolev inequality,

∫
RN

∫
RN

F(u(x))F(u(y))
|x – y|N–α

dy dx

is well defined if F ∈ Ls(RN ) for s > 1 is defined by

2
s

+
N – α

N
= 2.

Since u ∈ W 1,p(RN ), we must require that sq1 ∈ [p, p∗]. For the subcritical case, we must
assume

p
2

(
2 –

N – α

N

)
< q1 ≤ q2 <

p∗

2

(
2 –

N – α

N

)
.

Next we define the functional � : X →R by

�(u) =
1
2

∫
RN

(
Iα ∗ F(u)

)
F(u) dx.

Then it is easy to check that � ∈ C1(X,R) and its Fréchet derivative is

〈
� ′(u), v

〉
=

∫
RN

(
Iα ∗ F(u)

)
f (u)v dx

for any u, v ∈ X. Also we define the functional Iλ : X →R by

Iλ(u) = 
(u) – λ�(u).

Then it follows that the functional Iλ ∈ C1(X,R) and its Fréchet derivative is

〈
I ′

λ(u), v
〉
=

∫
RN

|∇u|p–2∇u · ∇v dx +
∫
RN

V (x)|u|p–2uv dx – λ

∫
RN

(
Iα ∗ F(u)

)
f (u)v dx

for any u, v ∈ X.
According to similar arguments in [27, Theorem 4.1], the following lemma is easily

checked, and thus we omit the proof. That is, the operator 
′ is of type (S+); see [28].

Lemma 2.3 Assume that the assumption (V) holds. Then the functional 
 : X → R is
convex and weakly lower semicontinuous on X. Moreover, the operator 
′ is of type (S+),
i.e., if un ⇀ u in X and lim supn→∞〈
′(un)–
′(u), un –u〉 ≤ 0, then un → u in X as n → ∞.
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In our setting, we need the following lemma according to a similar argument in [29,
Lemma 3.2]. We give a detailed proof for the convenience of the reader.

Lemma 2.4 Assume that (V) and (F1)–(F2) hold. Then � and � ′ are weakly strongly con-
tinuous on X.

Proof See the Appendix. �

3 Existence of weak solutions
In this section, we shall give the proof of the existence of nontrivial weak solutions for the
problem (P), by applying the mountain pass theorem and the fountain theorem.

With the aid of Lemmas 2.3 and 2.4, we prove that the energy functional Iλ satisfies the
Cerami condition ((C)c-condition for short), i.e., for c ∈ R, any sequence {un} ⊂ X such
that

Iλ(un) → c and
∥∥I ′

λ(un)
∥∥

X∗
(
1 + ‖un‖X

) → 0 as n → ∞

has a convergent subsequence. This plays a key role in obtaining the existence of a non-
trivial weak solution for the given problem.

Before investigating a crucial lemma, we note that following [19], there exists M > 0,
such that

∣∣Iα ∗ F(v)
∣∣ ≤M for v ∈ X. (3.1)

Indeed, by the assumption (F2),

∣∣Iα ∗ F(v)
∣∣ =

∣∣∣∣
∫
RN

F(v)
|x – y|N–α

dy
∣∣∣∣

=
∣∣∣∣
∫

|x–y|≤1

F(v)
|x – y|N–α

dy
∣∣∣∣ +

∣∣∣∣
∫

|x–y|≥1

F(v)
|x – y|N–α

dy
∣∣∣∣

≤ σ

∫
|x–y|≤1

|v|q1 + |v|q2

|x – y|N–α
dy + σ

∫
|x–y|≥1

(|v|q1 + |v|q2
)

dy

≤ σ

∫
|x–y|≤1

|v|q1 + |v|q2

|x – y|N–α
dy + C,

where we use the fact that p < q1 ≤ q2 < p∗. Choosing t1 ∈ (N/α, Np/(N – p)q1) and t2 ∈
(N/α, Np/(N – p)q2), it follows from Hölder’s inequality,

∫
|x–y|≤1

|v|q1

|x – y|N–α
dy ≤

(∫
|x–y|≤1

|v|t1q1 dy
) 1

t1
(∫

|x–y|≤1

1

|x – y|
t1(N–α)

t1–1
dy

) t1–1
t1

≤ C
(∫

|r|≤1
|r|N–1– t1(N–α)

t1–1 dr
) t1–1

t1
.

Similarly, we get

∫
|x–y|≤1

|v|q2

|x – y|N–α
dy ≤ C

(∫
|r|≤1

|r|N–1– t2(N–α)
t2–1 dr

) t2–1
t2

.
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Since both N – 1 – ti(N–α)
ti–1 > –1, for i = 1, 2, there is a constant C > 0 such that

∫
|x–y|≤1

|v|q1 + |v|q2

|x – y|N–α
dy ≤ C for all x ∈R

N .

Hence this inequality implies the uniform boundedness (3.1) for the convolution part.

3.1 Existence of weak solutions: approach to the mountain pass theorem
We give the following result to show that the energy functional Iλ satisfies the geometric
conditions of the mountain pass theorem based on the idea of Lemma 3.2 in [30].

Lemma 3.1 Assume that (V) and (F1)–(F4) hold. Then the geometric conditions in the
mountain pass theorem hold, i.e.,

(1) u = 0 is a strict local minimum for Iλ(u),
(2) Iλ(u) is unbounded from below on X .

Proof In view of the assumption (F3), u = 0 is a strict local minimum for Iλ(u). Next we
show that the condition (2) holds. By the assumption (F4), we can take s0 such that F(s0) �= 0
and we have to find

∫
RN

(
Iα ∗ F(s01B1 )

)
F(s01B1 ) dx = F(s0)2

∫
B1

∫
B1

Iα(x – y) dx dy > 0,

where Br denotes the open ball centered at the origin with radius r and 1A denotes the
standard indicator function of a set A.

Due to the density theorem, there will be v0 ∈ X with

∫
RN

(
Iα ∗ F(v0)

)
F(v0) dx > 0.

Now, for t > 0, we define a function vt : RN →R for x ∈R
N by vt(x) := v0( x

t ). This function
verifies

Iλ(vt) =
tN–p

p

∫
RN

|∇v0|p dx +
tN

p

∫
RN

V (x)|v0|p dx –
λtN+α

2

∫
RN

(
Iα ∗ F(v0)

)
F(v0) dx

for sufficiently large t. Therefore, we assert that Iλ(vt) → –∞ as t → ∞. Hence we con-
clude that the functional Iλ is unbounded from below. This completes the proof. �

Lemma 3.2 Assume that (V), (F1)–(F2), and (F4)–(F5) hold. Then the functional Iλ sat-
isfies the (C)c-condition for any λ > 0.

Proof For c ∈R, let {un} be a (C)c-sequence in X, that is,

Iλ(un) → c and
∥∥I ′

λ(un)
∥∥

X∗
(
1 + ‖un‖X

) → 0 as n → ∞.

This says that

c = Iλ(un) + o(1) and
〈
I ′

λ(un), un
〉

= o(1), (3.2)
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where o(1) → 0 as n → ∞. It follows from Lemmas 2.3 and 2.4 that I ′
λ is of type (S+). Since

I ′
λ is of type (S+) and X is reflexive, it suffices to prove that the sequence {un} is bounded

in X. We argue by contradiction. Suppose that the sequence {un} is unbounded in X. Then
we may assume that ‖un‖X > 1 and ‖un‖X → ∞ as n → ∞. Define a sequence {wn} by
wn = un/‖un‖X . It is clear that {wn} ⊂ X and ‖wn‖X = 1. Hence, up to a subsequence, still
denoted by {wn}, we obtain wn ⇀ w in X as n → ∞ and note that

wn(x) → w(x) a.e. in R
N and wn → w in Ls(

R
N)

as n → ∞ (3.3)

for p ≤ s < p∗. According to (3.1), we obtain

c = Iλ(un) + o(1)

=
1
p

∫
RN

|∇un|p dx +
1
p

∫
RN

V (x)|un|p dx –
λ

2

∫
RN

(
Iα ∗ F(un)

)
F(un) dx + o(1)

=
1
p
‖un‖p

X –
λ

2

∫
RN

(
Iα ∗ F(un)

)
F(un) dx + o(1). (3.4)

Since ‖un‖X → ∞ as n → ∞, we have

1
2

∫
RN

(
Iα ∗ F(un)

)
F(un) dx =

1
pλ

‖un‖p
X –

c
λ

+
o(1)
λ

→ ∞ as n → ∞. (3.5)

In addition, it follows from Eq. (3.2) that

1
p
‖un‖p

X =
λ

2

∫
RN

(
Iα ∗ F(un)

)
F(un) dx + c – o(1)

for sufficiently large n. The assumption (F4) implies that there exists t0 > 1 such that F(t) >
|t|p for all |t| > t0. From the assumptions (F1) and (F2), there exists C > 0 such that |F(t)| ≤
C for all t ∈ [–t0, t0]. Therefore we can choose a real number C0 such that F(t) ≥ C0 for all
t ∈R, and thus

F(un) – C0
1
p‖un‖p

X
≥ 0

for all n ∈N. Therefore there exists a real number C1 such that

F(un) – C0
1
p‖un‖p

X
≥ (Iα ∗ F(un))F(un) – C1

1
p‖un‖p

X
≥ 0.

Set �1 = {x ∈R
N : w(x) �= 0}. By the convergence (3.3), we know that

∣∣un(x)
∣∣ =

∣∣wn(x)
∣∣‖un‖X → ∞ as n → ∞

for all x ∈ �1. So then it follows from the assumption (F4) and Hölder’s inequality that, for
all x ∈ �1, we have

lim
n→∞

(Iα ∗ F(un))F(un)
1
p‖un‖p

X
= lim

n→∞
(Iα ∗ F(un))F(un)

1
p |un(x)|p

∣∣wn(x)
∣∣p = ∞. (3.6)
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Hence we get meas(�1) = 0. Indeed, if meas(�1) �= 0, according to (3.5)–(3.6) and Fatou’s
lemma, we obtain

1
λ

= lim inf
n→∞

1
2
∫
RN (Iα ∗ F(un))F(un) dx

λ
2
∫
RN (Iα ∗ F(un))F(un) dx + c – o(1)

= lim inf
n→∞

∫
RN

(Iα ∗ F(un))F(un)
1
p‖un‖p

X
dx

≥ lim inf
n→∞

∫
�1

(Iα ∗ F(un))F(un)
1
p‖un‖p

X
dx – lim inf

n→∞

∫
�1

C1
1
p‖un‖p

X
dx

≥ lim inf
n→∞

∫
�1

(Iα ∗ F(un))F(un) – C1
1
p‖un‖p

X
dx

≥
∫

�1

lim inf
n→∞

(Iα ∗ F(un))F(un) – C1
1
p‖un‖p

X
dx

≥
∫

�1

lim inf
n→∞

(Iα ∗ F(un))F(un)
1
p‖un‖p

X
dx –

∫
�1

lim sup
n→∞

C1
1
p‖un‖p

X
dx

= ∞,

from which we deduce a contradiction. Thus w(x) = 0 for almost all x ∈ R
N . Using (3.2),

we get

c + 1 ≥ Iλ(un) –
1
p
〈
I ′

λ(un), un
〉

=
1
p

∫
RN

|∇un|p dx +
1
p

∫
RN

V (x)|un|p dx –
λ

2

∫
RN

(
Iα ∗ F(un)

)
F(un) dx

–
1
p

∫
RN

|∇un|p dx –
1
p

∫
RN

V (x)|un|p dx +
λ

p

∫
RN

(
Iα ∗ F(un)

)
f (un)un dx

= λ

∫
RN

(
Iα ∗ F(un)

)
F(un) dx for n large enough. (3.7)

Let us define �n(a, b) := {x ∈ R
N : a ≤ |un(x)| < b} for a ≥ 0. The convergence (3.3) means

that

wn → 0 in Lr(
R

N)
and wn(x) → 0 a.e. in R

N as n → ∞ (3.8)

for p ≤ r < p∗. Hence by the relation (3.4) we get

0 <
2
λp

≤ lim sup
n→∞

∫
RN

|Iα ∗ F(un)||F(un)|
‖un‖p

X
dx. (3.9)

On the other hand, from the assumption (F2) and Eq. (3.3), it follows that

∫
�n(0,r0)

(Iα ∗ F(un))F(un)
‖un‖p

X
dx

≤M
∫

�n(0,r0)

|F(un)|
‖un‖p

X
dx
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≤Mσ

∫
�n(0,r0)

( |un(x)|q1

q1‖un‖p
X

+
|un(x)|q2

q2‖un‖p
X

)
dx

≤Mσ

∫
�n(0,r0)

( |un(x)|q1–p

q1

∣∣wn(x)
∣∣p +

|un(x)|q2–p

q2

∣∣wn(x)
∣∣p

)
dx

≤Mσ
(
r0

q1–p + r0
q2–p)∫

RN

∣∣wn(x)
∣∣p dx → 0 as n → ∞ (3.10)

due to p < q1 ≤ q2. Set κ ′ = κ/(κ – 1). Since κ > N/p, we get p < κ ′p < p∗. Hence, it follows
from (F5), (3.7), and (3.8) that

∫
�n(r0,∞)

|Iα ∗ F(un)||F(un)|
‖un‖p

X
dx

=
∫

�n(r0,∞)

|Iα ∗ F(un)||F(un)|
|un(x)|p

∣∣wn(x)
∣∣p dx

≤
{∫

�n(r0,∞)

( |Iα ∗ F(un)||F(un)|
|un(x)|p

)κ

dx
} 1

κ
{∫

�(r0,∞)

∣∣wn(x)
∣∣κ ′p dx

} 1
κ′

≤ c
1
κ
0

{∫
�n(r0,∞)

∣∣Iα ∗ F(un)
∣∣κF(un) dx

} 1
κ
{∫

RN

∣∣wn(x)
∣∣κ ′p dx

} 1
κ′

≤ c
1
κ
0 M

κ–1
κ

{∫
�n(r0,∞)

∣∣Iα ∗ F(un)
∣∣F(un) dx

} 1
κ
{∫

RN

∣∣wn(x)
∣∣κ ′p dx

} 1
κ′

≤ c
1
κ
0 M

κ–1
κ

(
c + 1

λ

) 1
κ
{∫

RN

∣∣wn(x)
∣∣κ ′p dx

} 1
κ′

→ 0 as n → ∞. (3.11)

Combining the estimates (3.10) with (3.11), we have

∫
RN

|Iα ∗ F(un)||F(un)|
‖un‖p

X
dx

=
∫

�n(0,r0)

|Iα ∗ F(un)||F(un)|
‖un‖p

X
dx +

∫
�n(r0,∞)

|Iα ∗ F(un)||F(un)|
‖un‖p

X
dx

→ 0 as n → ∞,

which contradicts (3.9). This completes the proof. �

Using Lemma 3.2, we prove the existence of a nontrivial weak solution for our problem
under the assumptions.

Theorem 3.3 Assume that (V) and (F1)–(F5) hold. Then the problem (P) has a nontrivial
weak solution for all λ > 0.

Proof Note that Iλ(0) = 0. In view of Lemma 3.1, the geometric conditions in the moun-
tain pass theorem are fulfilled. And also, Iλ satisfies the (C)c-condition for any λ > 0 by
Lemma 3.2. Hence, the problem (P) has a nontrivial weak solution for all λ > 0. This com-
pletes the proof. �
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3.2 Existence of a sequence of weak solutions: approach to the fountain theorem
In this subsection, applying the fountain theorem in [31, Theorem 3.6] with the oddity
on f , we investigate infinitely many weak solutions for the problem (P). For this purpose,
let W be a reflexive and separable Banach space. Then there are {en} ⊆ W and {f ∗

n } ⊆ W ∗

such that

W = span{en : n = 1, 2, . . .}, W ∗ = span
{

f ∗
n : n = 1, 2, . . .

}
,

and

〈
f ∗
i , ej

〉
=

⎧⎨
⎩

1 if i = j,

0 if i �= j.

Let us denote Wn = span{en}, Yk =
⊕k

n=1 Wn, and Zk =
⊕∞

n=k Wn.

Lemma 3.4 Let X be a real reflexive Banach space. Suppose that I ∈ C1(X,R) satisfies the
(C)c-condition for any c > 0 and I is even. If for each sufficiently large k ∈ N, there exist
ρk > δk > 0 such that the following conditions hold:

(1) bk := inf{I(u) : u ∈ Zk ,‖u‖X = δk} → ∞ as k → ∞;
(2) ak := max{I(u) : u ∈ Yk ,‖u‖X = ρk} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists a se-
quence {un} ⊂ X such that I ′(un) = 0 and I(un) → ∞ as n → ∞.

Theorem 3.5 Assume that (V), (F1)–(F2), and (F4)–(F6) hold. Then, for any λ > 0, the
problem (P) possesses an unbounded sequence of nontrivial weak solutions {un} in X such
that Iλ(un) → ∞ as n → ∞.

Proof It is obvious that Iλ is an even functional and satisfies the (C)c-condition. It suffices
to show that there exist ρk > δk > 0 such that

(1) bk := inf{Iλ(u) : u ∈ Zk ,‖u‖X = δk} → ∞ as k → ∞;
(2) ak := max{Iλ(u) : u ∈ Yk ,‖u‖X = ρk} ≤ 0 for k large enough.

Denote

αk := sup
u∈Zk ,‖u‖X =1

(‖u‖Lq1 (RN ) + ‖u‖Lq2 (RN )
)
.

Then we have αk → 0 as k → ∞. In fact, assume to the contrary that there exist ε0 > 0,
k0 ∈N, and a sequence {uk} in Zk such that

‖uk‖X = 1 and ‖uk‖Lq1 (RN ) + ‖uk‖Lq2 (RN ) ≥ ε0

for all k ≥ k0. By the boundedness of the sequence {uk} in X, we can find an element u ∈ X
such that uk ⇀ u in X as k → ∞ and

〈
f ∗
j , u

〉
= lim

k→∞
〈
f ∗
j , uk

〉
= 0
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for j = 1, 2, . . . . Thus we deduce u = 0. However, we see that

ε0 ≤ lim
k→∞

(‖uk‖Lq1 (RN ) + ‖uk‖Lq2 (RN )
)

= ‖u‖Lq1 (RN ) + ‖u‖Lq2 (RN ) = 0,

which is a contradiction.
For any u ∈ Zk , we may suppose that ‖u‖X > 1. According to the assumption (F2), we

obtain

Iλ(u) =
1
p

∫
RN

|∇u|p dx +
1
p

∫
RN

V (x)|u|p dx –
λ

2

∫
RN

(
Iα ∗ F(u)

)
F(u) dx

≥ 1
p
‖u‖p

X –
λ

2

∫
RN

∣∣Iα ∗ F(u)
∣∣∣∣F(u)

∣∣dx

≥ 1
p
‖u‖p

X –
λMσ

2

∫
RN

( |u|q1

q1
+

|u|q2

q2

)
dx

≥ 1
p
‖u‖p

X –
λMσ

2q1

(‖u‖Lq1 (RN ) + ‖u‖Lq2 (RN )
)qi

≥ 1
p
‖u‖p

X –
λMσ

2q1
α

qi
k ‖u‖qi

X ,

where qi is either q1 or q2. If we take

δk =
(

λMσqiα
qi
k

2q1

)1/(p–qi)

,

then δk → ∞ as k → ∞ because p < qi and αk → 0 as k → ∞. Hence, if u ∈ Zk and ‖u‖X =
δk , then we conclude that

Iλ(u) ≥
(

1
p

–
1
qi

)
δ

p
k → ∞ as k → ∞.

This implies that the condition (1) holds.
The proof of the condition (2) proceeds analogously as in the proof of Theorem 1.3 of

[25]. For the reader’s convenience, we give the proof. Assume that the condition (2) is not
true. Then, for some k there exists a sequence {un} in Yk such that

‖un‖X → ∞ as n → ∞ and Iλ(un) ≥ 0. (3.12)

Set wn = un/‖un‖X . Note that ‖wn‖X = 1. Since dim Yk < ∞, there exists w ∈ Yk \ {0} such
that up to a subsequence,

‖wn – w‖X → 0 and wn(x) → w(x)

for almost all x ∈ R
N as n → ∞. If w(x) �= 0, then |un(x)| → ∞ for all x ∈ R

N as n → ∞.
Hence we obtain by the assumption (F4) that

lim
n→∞

F(un)
‖un‖p

X
= lim

n→∞
F(un)
|un|p

∣∣wn(x)
∣∣p = ∞
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for all x ∈ �2 := {x ∈R
N : w(x) �= 0}. A similar argument to (3.6) proves that

∫
�2

(Iα ∗ F(un))F(un)
‖un‖p

X
dx → ∞ as n → ∞.

Therefore, we conclude that

Iλ(un) =
1
p
‖un‖p

X –
λ

2

∫
RN

(
Iα ∗ F(un)

)
F(un) dx

= ‖un‖p
X

(
1
p

–
λ

2

∫
�2

(Iα ∗ F(un))F(un)
‖un‖p

X
dx

)
→ –∞ as n → ∞,

which contradicts (3.12). This completes the proof. �

3.3 Existence of a sequence of weak solutions converging to zero
Now, we deal with the existence of a sequence of weak solutions converging to zero for
the problem (P). First of all, we need the following additional assumptions for f :

(F7) pF(t) – f (t)t > 0 for t �= 0.
(F8) lim|t|→0

f (t)
|t|p–2t = +∞.

From the assumptions above, we show the existence of a sequence of solutions for the
problem (P) converging to zero in the L∞-norm based on the iteration method in [32,
Theorem 4.1]. Since the problem (P) contains the potential term V , more sophisticated
analysis has to be carefully carried out in comparison to the result in [32] (compare to [33]
for the bounded domain).

Proposition 3.6 Assume that (V) and (F1)–(F2) hold. If u is a weak solution of the problem
(P), then u ∈ L∞(RN ).

Proof The proof is given in the Appendix. �

The following lemma is quoted from [34].

Lemma 3.7 Let I ∈ C1(X,R) where X is a Banach space. Assume I satisfies the (PS)-
condition, is even and bounded from below, and I(0) = 0. If for any n ∈ N, there exist an
n-dimensional subspace Xn and ρn > 0 such that

sup
Xn∩Sρn

I < 0,

where Sρ := {u ∈ X : ‖u‖X = ρ}, then I has a sequence of critical values cn < 0 satisfying
cn → 0 as n → ∞.

The following lemmas are quoted from [28, 35].

Lemma 3.8 Let I ∈ C1(X,R) where X is a Banach space. Assume that (F1)–(F2) and (F7)
hold. Then

I(u) = 0 =
〈
I ′(u), u

〉
if and only if u = 0.
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Lemma 3.9 Assume that (F1)–(F2) and (F7)–(F8) hold. Then there exist t0 > 0 and f̃ ∈
C1(R,R) such that f̃ (t) is odd in t and satisfy

F̃ (t) := pF̃(t) – f̃ (t)t ≥ 0,

F̃ (t) = 0 if and only if t ≡ 0 or |t| ≥ 2t0,

where ∂
∂t F̃(t) = f̃ (t).

Proof Let us define a cut-off function κ ∈ C1(R,R) satisfying κ(t) = 1 for |t| ≤ t0, κ(t) = 0
for |t| ≥ 2t0, |κ ′(t)| ≤ 2/t0, and κ ′(t)t ≤ 0. So, we define

F̃(t) = κ(t)F(t) +
(
1 – κ(t)

)
ξ |t|p and f̃ (t) =

∂

∂t
F̃(t), (3.13)

where ξ > 0 is a constant. It is straightforward that

pF̃(t) – f̃ (t)t = κ(t)F (t) – κ ′(t)tF(t) + κ ′(t)tξ |t|p,

where F (t) := pF(t) – f (t)t. For |t| ≤ t0 and |t| ≥ 2t0 the conclusion follows. Due to (F8), we
choose a sufficiently small t0 > 0 such that F(t) ≥ ξ tp for t0 ≤ |t| ≤ 2t0. By the assumption
(F7) with the definition of κ , we get the conclusion. �

Now, for convenience of the reader, we prove the following result using Proposition 3.6
and Lemmas 3.7 and 3.9 (see e.g. [35, pp. 18–21]).

Theorem 3.10 Assume that (V), (F1)–(F2), and (F4)–(F8) hold. Then there exists a pos-
itive constant λ∗ such that, for every λ ∈ [0,λ∗), the problem (P) has a sequence of weak
solutions un such that ‖un‖L∞(RN ) → 0 as n → ∞.

Proof First of all, we claim that Iλ is coercive on X. Let u ∈ X and ‖u‖X > 1. For the
given function f , we can modify and extend f̃ ∈ C1(R,R) satisfying all properties listed
in Lemma 3.9 with ξ such that λpCξ ≤ 1. And also by Lemma 3.9, it is easy to show that
Ĩλ ∈ C1(X,R) and is even on X. Moreover, it follows from (F2) that, for |u(x)| ≤ 2t0 for a
sufficiently small t0, there exists a positive constant M1 such that |F(u)| ≤ M1|u|p.

Set �3 := {x ∈ R
N : |u(x)| ≤ t0}, �4 := {x ∈ R

N : t0 ≤ |u(x)| ≤ 2t0}, and �5 := {x ∈ R
N :

2t0 ≤ |u(x)|}, where t0 is given in Lemma 3.9. From (F8), (3.13), and the conditions of κ ,
we have

Ĩλ(u) =
1
p

∫
RN

|∇u|p dx +
1
p

∫
RN

V (x)|u|p dx –
λ

2

∫
RN

(
Iα ∗ F̃(u)

)
F̃(u) dx

≥ 1
p

∫
RN

|∇u|p dx +
1
p

∫
RN

V (x)|u|p dx –
λ

2

∫
�3

(
Iα ∗ F̃(u)

)
F̃(u) dx

–
λ

2

∫
�4

(
Iα ∗ F̃(u)

){
κ(u)F(u) +

(
1 – κ(u)

)
ξ |u|p}dx

–
λ

2

∫
�5

(
Iα ∗ F̃(u)

)
ξ |u|p dx

≥ 1
p
‖u‖p

X –
λM

2

∫
�3

∣∣F(u)
∣∣dx –

λM
2

∫
�4

∣∣F(u)
∣∣dx
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–
λM

2

∫
�4

ξ |u|p dx –
λM

2

∫
�5

ξ |u|p dx

≥ 1
p
‖u‖p

X –
λMM1

2

∫
�3

|u|p dx –
λMM1

2

∫
�4

|u|p dx

–
λM

2

∫
�4

ξ |u|p dx –
λM

2

∫
�5

ξ |u|p dx

≥ 1
p
‖u‖p

X –
λM(M1 + ξ )

2V0
‖u‖p

X .

If we set

λ∗ :=
2V0

pM(M1 + ξ )
,

then for every λ ∈ [0,λ∗) we have Ĩλ is coercive, that is, Ĩλ(u) → ∞ as ‖u‖X → ∞. By
a standard argument, Ĩλ satisfies the (PS)c-condition. In order to apply Lemma 3.7, we
only need to find for any n ∈ N, a subspace Xn and ρn > 0 such that supXn∩Sρn

Ĩλ < 0. For
any n ∈ N we find n independent smooth functions φi for i = 1, . . . , n, and define Xn :=
span{φ1, . . . ,φn}. Due to Lemma 3.9, when ‖u‖X < 1 we have

Ĩλ(u) =
1
p

∫
RN

|∇u|p dx +
1
p

∫
RN

V (x)|u|p dx –
λ

2

∫
RN

(
Iα ∗ F̃(u)

)
F̃(u) dx

≤ 1
p
‖u‖p

X –
λC
2

∫
RN

(
Iα ∗ F(u)

)
F(u) dx. (3.14)

It follows from the assumption (F8) that, for a sufficiently large M2 > 0, there exists δ0 > 0
such that |t| < δ0 implies F(t) ≥ M2

p |t|p and

∫
RN

(
Iα ∗ F(t)

)
F(t) dx ≥ M2

p

∫
RN

(
Iα ∗ F(t)

)|t|p dx.

Combining this and the fact that all norms on Xn are equivalent, choosing a suitable con-
stant C and sufficiently small ρn > 0, we can obtain by (3.14) that

sup
Xn∩Sρn

Ĩλ < 0.

By Lemma 3.7, we get a sequence cn < 0 for Ĩλ satisfying cn → 0 when n goes to ∞. Then,
for any un ∈ X satisfying Ĩλ(un) = cn and Ĩ ′

λ(un) = 0, the sequence {un} is a (PS)0-sequence
of Ĩλ(u) and {un} has a convergent subsequence. Lemmas 3.8 and 3.9 imply that 0 is the
only critical point with zero energy and the subsequence of {un} has to converge to 0. An
indirect argument shows the sequence {un} has to converge to 0. On the other hand, we
have un ∈ C(RN ,R) due to Proposition 3.6. Since ‖un‖L∞(RN ) → 0, by Lemma 3.9 again,
we deduce ‖un‖C(RN ) ≤ t0. Thus {un} are weak solutions of the problem (P). The proof is
complete. �

4 Conclusion
In this paper, we obtain the existence of nontrivial weak solutions for a quasilinear
Choquard equation on the whole space RN without (AR)-condition based on the uniform
boundedness of the convolution part in the Choquard term driven by the Riesz potential.
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Moreover, the existence of infinitely many weak solutions is obtained via the fountain the-
orem. Lastly, we prove that our problem has a sequence of solutions converging to zero in
the L∞-norm based on the iteration method.

Our arguments also allow one to prove Theorems 3.3 and 3.5 for the p(x)-Laplacian
equation

–�p(x)u + V (x)|u|p(x)–2u =
(
Iα ∗ F(u)

)
f (u) in R

N ,

where p : RN →R is Lipschitz continuous with 1 < p– ≤ p+ < N ,

p+ = sup
x∈RN

p(x) and p– = inf
x∈RN

p(x),

the potential V satisfying the assumption (V). Define the linear subspace

X =
{

u ∈ W 1,p(·)(
R

N)
:
∫
RN

(|∇u|p(x) + V (x)|u|p(x))dx < +∞
}

with the norm

‖u‖X = inf

{
λ > 0 :

∫
RN

(∣∣∣∣∇u
λ

∣∣∣∣
p(x)

+ V (x)
∣∣∣∣u
λ

∣∣∣∣
p(x))

dx ≤ 1
}

,

which is equivalent to the following norm:

‖u‖W 1,p(·)(RN ) = ‖∇u‖Lp(·)(RN ) + ‖u‖Lp(·)(RN ).

Under this circumstance, we introduce the functional Jλ : X →R by

Jλ(u) = 
(u) – λ�(u).

Then it follows that the functional Jλ ∈ C1(X,R) and its Fréchet derivative is

〈
J ′

λ(u), v
〉

=
∫
RN

|∇u|p(x)–2∇u · ∇v dx +
∫
RN

V (x)|u|p(x)–2uv dx

– λ

∫
RN

(
Iα ∗ F(u)

)
f (u)v dx

for any u, v ∈ X. In order to show the boundedness of the Cerami sequence, we use the
boundedness of the convolution part (3.1). For some properties of the variable exponent
Sobolev space, we refer to [25]. And hence we omit the details proof.

Appendix
In this section, we give proofs of Lemma 2.4 and Proposition 3.6 for the reader’s conve-
nience. In fact, these are well-known results in this area.

A.1 Proof of Lemma 2.4
Proof Let {un} be a sequence in X such that un ⇀ u in X as n → ∞. Then {un} is bounded
in X and we know the embedding X ↪→ Ls(RN ) is compact for p < s < p∗. So we see that

un → u in Lq1
(
R

N)
and un → u in Lq2

(
R

N)
as n → ∞.
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Then we may suppose that un → u in Lq1 (RN ) ∩ Lq2 (RN ) as n → ∞. By the convergence
principle, there exist a subsequence {unk } such that unk (x) → u(x) as k → ∞ for almost all
x ∈ R

N and a function u0 ∈ Lq1 (RN ) ∩ Lq2 (RN ) such that |unk (x)| ≤ u0(x) for all k ∈ N and
for almost all x ∈R

N .
First we prove that � is weakly strongly continuous on X. Since F ∈ C1(R,R), we see that

F(unk ) → F(u) as k → ∞ for almost all x ∈ R
N and so (Iα ∗F(unk ))F(unk ) → (Iα ∗F(u))F(u)

as k → ∞. From (F2), it follows that

∫
RN

∣∣(Iα ∗ F(unk )
)
F(unk )

∣∣dx ≤M
∫
RN

σ

q1

∣∣unk (x)
∣∣q1 +

σ

q2

∣∣unk (x)
∣∣q2 dx

≤Mσ
(‖u0‖q1

Lq1 (RN ) + ‖u0‖q2
Lq2 (RN )

)
.

Therefore, the Lebesgue convergence theorem tells us that

∫
RN

(
Iα ∗ F(unk )

)
F(unk ) dx →

∫
RN

(
Iα ∗ F(u)

)
F(u) dx

as k → ∞, which implies �(unk ) → �(u) as k → ∞. Thus � is weakly strongly continuous
on X.

Next, we show that � ′ is weakly strongly continuous on X. Since unk (x) → u(x) as k →
∞ for almost all x ∈R

N , f (unk ) → f (u) for almost all x ∈R
N as k → ∞. Hence,

(
Iα ∗ F(unk )

)
f (unk ) → (

Iα ∗ F(u)
)
f (u) as k → ∞.

By (F2) and Hölder’s inequality, we obtain for any ϕ ∈ X

∫
RN

∣∣(Iα ∗ F(unk )
)
f (unk )ϕ(x)

∣∣dx

≤
∫
RN

∣∣(Iα ∗ F(unk )
)∣∣σ (|unk |q1–1 + |unk |q2–1)∣∣ϕ(x)

∣∣dx

≤Mσ

∫
RN

(|unk |q1–1 + |unk |q2–1)∣∣ϕ(x)
∣∣dx

≤Mσ‖unk ‖q1–1
Lq1 (RN )‖ϕ‖Lq1 (RN ) + Mσ‖unk ‖q2–1

Lq2 (RN )‖ϕ‖Lq2 (RN )

≤Mσ
(‖u0‖q1–1

Lq1 (RN )‖ϕ‖X + ‖u0‖q2–1
Lq2 (RN )‖ϕ‖X

)
.

Combining this with the Lebesgue convergence theorem, we have

∥∥� ′(unk ) – � ′(u)
∥∥

X∗ = sup
‖ϕ‖X≤1

∣∣〈� ′(unk ) – � ′(u),ϕ
〉∣∣

= sup
‖ϕ‖X≤1

∫
RN

∣∣(Iα ∗ F(unk )
)
f (unk )ϕ(x) –

(
Iα ∗ F(u)

)
f (u)ϕ(x)

∣∣dx

→ 0 as k → ∞.

Therefore, we derive that � ′(unk ) → � ′(u) in X∗ as k → ∞. This completes the proof.
�
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A.2 Proof of Proposition 3.6
Following [36], we give the proof of Proposition 3.6.

Proof Suppose that u is nonnegative. For a positive constant M, define

vM(x) = min
{

u(x), M
}

and choose v = vkp+1
M (k ≥ 0) as a test function in (2.1). Then obviously v ∈ X ∩L∞(RN ) and

it follows from (2.1) that
∫
RN

|∇u|p–2∇u · ∇vkp+1
M dx +

∫
RN

V (x)|u|p–2uvkp+1
M dx

= λ

∫
RN

(
Iα ∗ F(u)

)
f (u)vkp+1

M dx (A.1)

Due to Lemma 2.1, the left-hand side of (A.1) can be estimated as follows:
∫
RN

|∇u|p–2∇u · ∇vkp+1
M dx +

∫
RN

V (x)|u|p–2uvkp+1
M dx

≥ (kp + 1)
∫
RN

vkp
M |∇vM|p dx +

∫
RN

V (x)v(k+1)p
M dx

≥ kp + 1
(k + 1)p

∫
RN

∣∣∇vk+1
M

∣∣p dx +
1

(k + 1)p

∫
RN

V (x)v(k+1)p
M dx

≥ 1
Cp

1 (k + 1)p

(∫
RN

|vM|(k+1)p∗
dx

) p
p∗

(A.2)

for some constant C1 > 0. By using the assumption (F2) and the Hölder inequality, the
right-hand side of (A.1) can be formally estimated from above and we obtain

λ

∫
RN

(
Iα ∗ F(u)

)
f (u)vkp+1

M dx

≤Mλ

∫
RN

|f (u)||u|kp+1 dx

≤Mλσ

(∫
RN

|u|(k+1)p|u|q1–p dx +
∫
RN

|u|(k+1)p|u|q2–p dx
)

≤Mλσ

{(∫
RN

|u|(k+1)s1 dx
) p

s1
(∫

RN
|u| s1(q1–p)

s1–p dx
) s1–p

s1

+
(∫

RN
|u|(k+1)s2 dx

) p
s2

(∫
RN

|u| s2(q2–p)
s2–p dx

) s2–p
s2

}
, (A.3)

where si = pp∗
p∗–(qi–p) for i = 1, 2. Obviously p < si ≤ p∗ and (qi+1–p)si

si–p = p∗ for i = 1, 2, and hence
(A.3) yields

λ

∫
RN

(
Iα ∗ F(u)

)
f (u)vkp+1

M dx ≤ C2λ

(∫
RN

|u|p∗
dx

) s–p
s

(∫
RN

|u|(k+1)s dx
) p

s
(A.4)

for some constant C2, where (q, s) is either (q1, s1) or (q2, s2). Now it follows from (A.1),
(A.2), (A.4), and the Sobolev inequality that there exists a constant C3 > 0 (independent



Lee et al. Journal of Inequalities and Applications  (2018) 2018:42 Page 18 of 20

of M and k > 0) such that

(∫
RN

|vM|(k+1)p∗
dx

) p
p∗

≤ C3(k + 1)p
(∫

RN
|u|(k+1)s dx

) p
s
,

which implies

‖vM‖L(k+1)p∗ (RN ) ≤ C
1

(k+1)p
3 (k + 1)

1
k+1 ‖u‖L(k+1)s(RN ). (A.5)

Equation (A.5) is a starting point for a bootstrap argument which plays an important role
in L∞-estimates. Since u ∈ X and hence u ∈ Lp∗ (RN ) we can choose k := k1 in (A.5) such
that (k1 + 1)s = p∗, i.e. k1 = p∗

s – 1. Then we have

‖vM‖L(k1+1)p∗ (RN ) ≤ C
1

(k1+1)p
3 (k1 + 1)

1
k1+1 ‖u‖L(k1+1)s(RN ). (A.6)

Due to u(x) = limM→∞ vM(x) for almost every x ∈R
N , the Fatou lemma and (A.6) imply

‖u‖L(k1+1)p∗ (RN ) ≤ C
1

(k1+1)p
3 (k1 + 1)

1
k1+1 ‖u‖L(k1+1)s(RN ). (A.7)

Thus, we can choose k = k2 in (A.5) such that (k2 + 1)s = (k1 + 1)p∗ = (p∗)2

s and repeating
the same argument we get

‖u‖L(k2+1)p∗ (RN ) ≤ C
1

(k2+1)p
3 (k2 + 1)

1
k2+1 ‖u‖L(k2+1)s(RN ).

By induction we obtain

‖u‖L(kn+1)p∗ (RN ) ≤ C
1

(kn+1)p
3 (kn + 1)

1
kn+1 ‖u‖L(kn+1)s(RN ) (A.8)

for any n ∈ N, where kn + 1 = ( p∗
s )n. It follows from (A.7) and (A.8) that

‖u‖L(kn+1)p∗ (RN ) ≤ C
1
p

∑n
j=1

1
kj+1

3 (k1 + 1)
1

k1+1 (k2 + 1)
1

k2+1 · · · (kn + 1)
1

kn+1 ‖u‖L(k1+1)s(RN ).

Since (kn + 1)
1

kn+1 > 1 and limkn→∞(kn + 1)
1

kn+1 = 1, there exists C4 > 1 (independent of kn)
such that

‖u‖L(kn+1)p∗ (RN ) ≤ C
1
p

∑n
j=1

1
kj+1

3 C4‖u‖L(k1+1)s(RN ). (A.9)

However,
∑n

j=1
1

kj+1 =
∑n

j=1( s
p∗ )nj and s

p∗ < 1. Hence it follows from (A.9) that there exists a
constant C5 > 0 such that

‖u‖Lrn (RN ) ≤ C5‖u‖Lp∗ (RN ), (A.10)

for rn = (kn + 1)p∗ → ∞ when n → ∞. Let us assume that ‖u‖L∞(RN ) > C5‖u‖Lp∗ (RN ). Then
there exist η > 0 and a set A of positive measure in R

N such that u(x) ≥ C5‖u‖Lp∗ (RN ) + η
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for x ∈ A. It follows that

lim inf
rn→∞

(∫
RN

∣∣u(x)
∣∣rn dx

) 1
rn ≥ lim inf

rn→∞

(∫
A

∣∣u(x)
∣∣rn dx

) 1
rn

≥ lim inf
rn→∞

(
C5‖u‖Lp∗ (RN ) + η

)(
meas(A)

) 1
rn

= C5‖u‖Lp∗ (RN ) + η,

which contradicts (A.10). Therefore

‖u‖L∞(RN ) ≤ C5‖u‖Lp∗ (RN ) ≤ C6

for some constant C6 > 0.
If u changes sign, we set

u+(x) = max
{

u(x), 0
}

and u–(x) = min
{

u(x), 0
}

.

Then it is clear that u+ ∈ X and u– ∈ X. Proceeding by a similar argument to above, we
obtain u+ ∈ L∞(RN ). Likewise, we get u– ∈ L∞(RN ). Therefore u = u+ + u– is in L∞(RN ).
This completes the proof. �
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