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Abstract
In this note, we solve the inverse nodal problem for Bessel-type p-Laplacian problem

–(y′(p–1))′ = (p – 1)(λ –ω(x))y(p–1), 1≤ x ≤ a,

y(1) = y(a) = 0,

on a special interval. We obtain some nodal parameters like nodal points and nodal
lengths. In addition, we reconstruct the potential function by nodal points. Results
obtained in this paper are similar to the classical Sturm–Liouville problem. However,
equations of this type are considered with the condition defined at the origin. We
solve the problem on the interval [1,a], that problem is not singular.
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1 Introduction
By using separation of variables, the wave equation can be written with spherical symme-
try

–y′′(x) + ω(x)y = λy, (1.1)

where λ is a constant referring to the eigenvalue of the problem, and ω(x) = ωo(x) + l(l+1)
x2

[1], where l is a positive integer or zero and ωo(x) will be defined in what follows.
Let us take into account the eigenvalue problem

–
(
y′(p–1))′ = (p – 1)

(
λ – ω(x)

)
y(p–1), 1 ≤ x ≤ a, (1.2)

y(1) = y(a) = 0, (1.3)

where l = 0, 1, 2, . . . , p > 1, a �= 0, and y(p–1) = |y|(p–2)y. In this work, we shall assume that
ω0(x) ∈ L2[1, a] and y(x,λ) denotes the solution of problem (1.2)–(1.3). The equation given
in (1.1) is taken into account by the condition defined at zero which is singular. So, it is
not easy to obtain the solution of the inverse problem. That is why we will consider the
problem on the interval [1, a] where the problem is regular. One can consider the singular
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case of the same problem. Note that for p = 2, the inverse problem for the Bessel operator
has been studied by [2]. In [3], the authors proved that the problem

–
(∣∣y′∣∣(p–2)y′)′ = (p – 1)

∣
∣y′∣∣(p–2)y,

y(0) = 0, y′(0) = 1,

has a solution Sp(x), where Sp(x) is called the sine function for any p, and they also defined
inversion of the integral

x =
∫ Sp(x)

0

1

(1 – tp)
1
p

dt.

Then the first zero πp of Sp(x) is

πp = 2
∫ 1

0

1

(1 – tp)
1
p

dt =
2π/p

sinπ/p
.

Also, the function Sp(x) satisfies |Sp(x)|p + |S′
p(x)|p = 1, which is similar to the trigonometric

identity sin2 x + cos2 x = 1 for p = 2.
An inverse nodal problem means finding the potential function through the nodal points

(zeros of eigenfunctions) without any other spectral data. Nowadays, solving this problem
for one-dimensional p-Laplacian problem is more popular. In this problem, given nodal
points, one can find the potential function in a general case. At the first stage, Prüfer trans-
formation is significant (see [3–8]). Especially, for l = 0, we obtain the regular Sturm–
Liouville problem, and it has solved by many authors (see [9, 10]).

The zero set Xn = {xn
j }n–1

j=1 of the eigenfunction yn(x) corresponding to λn is called the
set of nodal points. And ln

j = xn
j+1 – xn

j is called the nodal length of yn. The eigenfunction
yn(x) has exactly n – 1 nodal points on the interval, say 0 = x(n)

0 < x(n)
1 < · · · < x(n)

n–1 < x(n)
n = 1.

The inverse nodal problem has been studied, and many reconstructed formulas have been
derived and analyzed for different operators by many authors (see [11–16]).

Lemma 1.1 ([17])
(a) For S′

p �= 0,

(
S′

p
)′ = –

∣
∣∣
∣
Sp

S′
p

∣
∣∣
∣

p–2

Sp.

(b)

(
SpS′(p–1)

p
)′ =

∣
∣S′

p
∣
∣p – (p – 1)Sp

p = 1 – p|Sp|p = (1 – p) + p
∣
∣S′

p
∣
∣p.

In this study, we peruse the inverse nodal problem of the p-Laplacian modified Sturm–
Liouville problem with integrable potential on a general interval. Using the modified
Prüfer transformation, we will show that the potential function ω0(x) can be reconstructed
by nodal points.
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1.1 Results and discussion
In the present paper, we find the potential function by using nodal parameters for the
p-Laplacian Bessel operator on a regular interval [1, a]. Especially, we have used the
Prüfer substitution which is also used for regular problems. However, we consider the p-
Laplacian operator on a regular interval, one can consider it at the origin that the problem
is singular. In that time, the results are more interesting.

1.2 Conclusions
We aim to solve an inverse problem for singular operators. For this, by using the Prüfer
substitution, we obtain nodal points, nodal length, and the formula for a potential func-
tion. We believe that these results will give an idea on the solution of inverse problems for
some different singular problems.

1.3 Methods
This paper is organized as follows. In the first section, we give some preliminaries for the
Bessel equation and also the properties of nodal parameters. In the second section, we
define the Prüfer substitution for a p-Laplacian Bessel equation. We also give asymptotic
forms of nodal points and nodal lengths. In Section 3, we present a reconstruction formula
by nodal lengths for the p-Laplacian Bessel operator. The method used in this paper is
similar to the method used in the Sturm–Liouville problem.

2 Asymptotics of nodal parameters
In this section, we give some properties of (1.2) p-Laplacian operator with (1.3) conditions.
Let us define the Prüfer transformation for solution y of (1.2) as follows:

y(x) = R(x)Sp
(
λ1/pθ (x,λ)

)
,

y′(x) = (l + 1)λ1/pR(x)S′
p
(
λ1/pθ (x,λ)

)
,

(2.1)

or

y′(x)
y(x)

= (l + 1)λ1/p S′
p(λ1/pθ (x,λ))

Sp(λ1/pθ (x,λ))
, (2.2)

where R(x) is amplitude and θ (x) is Prüfer variable. By differentiation of (2.2), according
to x and using Lemma 1.1, we get

θ ′(x,λ) = (l + 1) +
[

–(l + 1) + (l + 1)1–p –
(l + 1)1–p

λ

{
ωo(x) +

l(l + 1)
x2

}]

× Sp
p
(
λ1/pθ (x,λ)

)
. (2.3)

Lemma 2.1 ([5]) Consider θ (x,λn) as in (2.1) and φn(x) = Sp
p(λ1/p

n θ (x,λn)) – 1
p . Then, for

any g ∈ L1(1, a),

∫ a

1
φn(x)g(x) dx = 0,

which is known as the generalized Riemann–Lebesgue lemma.
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Now, we can give eigenvalues and nodal parameters for problem (1.2), (1.3).

Theorem 2.1 For the problem given in (1.2), (1.3),

λ1/p
n =

nπp

l̃(a – 1)
+

(l + 1)1–pl̃p–2(a – 1)p–2

p(nπp)p–1

∫ a

1

{
ωo(s) +

l(l + 1)
s2

}
ds + O

(
1

np–1

)
,

as n → ∞, where l̃ = (l + 1)(1 – 1
p + 1

p(l+1)p ).

Proof For problem (1.2)–(1.3), let θ (1) = 0. Integrating (2.3) from 1 to a

θ (a,λ) = (l + 1)(a – 1)

+
∫ a

1

[
–(l + 1) + (l + 1)1–p –

(l + 1)1–pω(x)
λ

]
Sp

p
(
λ1/pθ (x,λ)

)
dx.

Let λn be an eigenvalue. By Lemma 2.1, we know that

∫ a

1
ρ(x)

{
Sp

p
(
λ1/p

n θ (x,λn)
)

–
1
p

}
dx = o(1), as n → ∞,

where ρ(x) is continuous on [1, a]. Hence

θ (a,λn) = l̃(a – 1) –
(l + 1)1–p

pλn

∫ a

1
ω(s) ds + O

(
1
λn

)
. (2.4)

On the other hand, letting θ (a,λn) = nπp

λ
1/p
n

, we get

1
λ

1/p
n

=
l̃(a – 1)

nπp
–

(l + 1)1–pl̃p(a – 1)p

p(nπp)p+1

∫ a

1
ω(s) ds + O

(
1

np+1

)
, (2.5)

and thus

λ1/p
n =

nπp

l̃(a – 1)
+

(l + 1)1–pl̃p–2(a – 1)p–2

p(nπp)p–1

∫ a

1
ω(s) ds + O

(
1

np–1

)
.

This completes the proof. �

Theorem 2.2 Nodal points of problem (1.2), (1.3) have the form

xn
j = 1 +

j(a – 1)l̃
(l + 1)n

–
jl̃p(a – 1)p

p(l + 1)pnp+1π
p
p

∫ a

1
ω(s) ds

+
∫ xn

j

1
Sp

p ds –
1

(l + 1)p

∫ xn
j

1

{
1 –

l̃p(a – 1)pw(s)
(nπp)p

}
Sp

p ds + O
(

j
np+1

)
(2.6)

as n → ∞.



Coskun et al. Journal of Inequalities and Applications  (2018) 2018:41 Page 5 of 7

Proof Integrating (2.3) from 1 to xn
j , we get

jπp

λ
1/p
n

= (l + 1)
(
xn

j – 1
)

– (l + 1)
∫ xn

j

1
Sp

p ds + (l + 1)1–p
∫ xn

j

1

{
1 –

w(s)
λn

}
Sp

p ds.

By considering the asymptotic estimates of eigenvalues, we obtain (2.6). �

Theorem 2.3 The nodal lengths of problem (1.2), (1.3) are

ln
j =

l̃(a – 1)
n(l + 1)

–
l̃p(a – 1)p

p(l + 1)pnp+1π
p
p

∫ a

1
ω(s) ds

+
∫ xn

j+1

xn
j

Sp
p ds –

1
(l + 1)p

∫ xn
j+1

xn
j

{
1 –

l̃p(a – 1)p

(nπp)p ω(s)
}

Sp
p ds + O

(
1

np+1

)
. (2.7)

Proof When we integrate (2.3) on [xn
j , xn

j+1] and take into account the definition of nodal
lengths, we get

πp

λ
1/p
n

= (l + 1)
(
xn

j+1 – xn
j
)

– (l + 1)
∫ xn

j+1

xn
j

Sp
p ds + (l + 1)1–p

∫ xn
j+1

xn
j

{
1 –

ω(s)
λn

}
Sp

p ds,

and formula (2.7) can be easily obtained. �

3 Reconstruction of the potential function in p-Laplacian Bessel equation
In this part, we prove Theorem 3.1, which means a formula by nodal lengths. Finally, we
show that there is a function Fn(x) converging to ω(x) for n → ∞. However, the method
used in this part is similar to the regular boundary value problem, we consider p-Laplacian
Bessel equation on a general interval as [1, a] (see [4, 18, 19]).

Theorem 3.1 Let ω(x) ∈ L2[1, a]. Then

ω(x) = lim
n→∞ p(l + 1)p–1λn

(
l̃λ

1
p
n

πp
ln
j – 1

)
, (3.1)

for j = jn(x) = max{j : xn
j < x}.

Proof We need to consider Theorem 2.3 to derive the reconstructed formula for the po-
tential function. After some straightforward computations, we have

ln
j =

πp

(l + 1)λ1/p
n

+
1
p

∫ xn
j+1

xn
j

ds –
1

p(l + 1)p

∫ xn
j+1

xn
j

(
1 –

ω(s)
λn

)
ds

+
∫ xn

j+1

xn
j

(
Sp

p –
1
p

)
ds –

1
(l + 1)p

∫ xn
j+1

xn
j

(
1 –

ω(s)
λn

)(
Sp

p –
1
p

)
ds.
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Furthermore,

p(l + 1)pλ
1
p +1
n

πp
ln
j = p(l + 1)p–1λn +

((l + 1)p – 1)λ
1
p +1
n

πp
ln
j

+
λ

1
p
n

πp

∫ xn
j+1

xn
j

ω(s) ds +
p(l + 1)pλ

1
p +1
n

πp

∫ xn
j+1

xn
j

(
Sp

p –
1
p

)
ds

–
pλ

1
p +1
n

πp

∫ xn
j+1

xn
j

(
1 –

ω(s)
λn

)(
Sp

p –
1
p

)
ds.

Then, by using a similar way as in [5], for j = jn(x) = max{j : xn
j < x}, we have

λ
1/p
n

πp

∫ xn
j+1

xn
j

ω(s) ds → ω(x),

and

p(l + 1)pλ
1
p +1
n

πp

∫ xn
j+1

xn
j

(
Sp

p –
1
p

)
ds → 0,

pλ
1
p +1
n

πp

∫ xn
j+1

xn
j

(
1 –

ω(s)
λn

)(
Sp

p –
1
p

)
ds → 0

pointwise converge almost everywhere. Hence, we get

ω(x) = lim
n→∞ p(l + 1)p–1λn

(
l̃λ

1
p
n

πp
ln
j – 1

)
. �

Theorem 3.2 Let {l(n)
j : j = 1, 2, . . . , n – 1}∞n=2 be a set of nodal lengths of (1.2)–(1.3), where

ω ∈ L2[1, a]. Furthermore, let us define

Fn(x) =
p(l + 1)p–1(nπp)p

l̃p(a – 1)p

( nl(n)
j

a – 1
– 1

)
+

1
l̃(a – 1)

∫ a

1
ω(s) ds. (3.2)

Then {Fn(x)} converges to ω almost everywhere in L1(1, a).

Proof By Theorem 3.2, we achieve

p(l + 1)p–1λn

(
l̃λ

1
p
n

πp
ln
j – 1

)
= p(l + 1)p–1λn

( nl(n)
j

a – 1
– 1

)

+
nln

j

l̃(a – 1)2

∫ a

1
ω(s) ds + o(1).
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Considering nl(n)
j = a – 1 + o(1), as n → ∞, this implies that

p(l + 1)p–1(nπp)p

l̃p(a – 1)p

( nl(n)
j

a – 1
– 1

)
→ ω(x) –

1
l̃(a – 1)

∫ a

1
ω(s) ds

pointwise converges almost everywhere in L1(1, a). �
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