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1 Introduction
During the last three decades, the theory of frames, which generalize the notion of bases
by allowing redundancy yet still providing a reconstruction formula, has been growing
rapidly, since several new applications such as nonlinear sparse approximation (e.g., image
compression), coarse quantization, data transmission with erasures, and wireless commu-
nication, have been developed [1–7]. As a special class of frames, the multi-band wavelets
have attracted considerable attention due to their richer parameter space, to give better
energy compaction than 2-band wavelets [8–16].

Let H be a separable Hilbert space, and E an indexing set. A sequence {fl}l∈E is called a
frame in H if there exist constants 0 < A ≤ B < +∞ such that

A‖f ‖2 ≤
∑

l∈E

∣∣〈f , fl〉
∣∣2 ≤ B‖f ‖2, ∀f ∈ H , (1.1)

where A and B are called lower and upper frame bounds, respectively. If A = B, the frame
is called tight frame.

When H = L2(R), a wavelet ψ(x) ∈ H gives rise to a classical wavelet frame {a–j/2ψ(a–jx –
bk), j, k ∈ Z} with parameters a > 1, b > 0. Chui and Shi [17] established the relationship
between the parameters and the frame bounds,

A ≤ 1
2b ln a

∫ +∞

–∞
|ψ̂(ω)|2

|ω| dω ≤ B. (1.2)

Equation (1.2) shows that the energy of a biorthogonal wavelet transform is controllable
although it is not conservative. Moreover, B – A or B̃ – Ã are smaller, the performance of
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a biorthogonal wavelet transform may be better, i.e., the energy is amplified in some cases
and decreased in other cases. The classical biorthogonal wavelets are not tight frames, so
obtaining the exact values of their bounds is difficult. Instead of estimating the bounds
in (1.2), we can try to obtain the upper bound and the lower bound of the norm of the
sub-band operator.

This paper is organized as follows. In Sect. 2, we define the sub-band operator, and ob-
tain the limit form of the norm of the sub-band operator. We present a method for com-
puting the upper bound and the lower bound of the norm of the sub-band operator based
on the theory of circular matrix. Section 3 gives some examples to illustrate the results
proposed in this paper.

2 Sub-band operator and d-circular matrix
Recall the sub-band coding scheme or Mallat algorithm associated to a d-band real
biorthogonal wavelets. There are 2d filters h = (hn)n∈Z , gi = (gi

n)n∈Z (i = 1, 2, . . . , d – 1),
h̃ = (̃hn)n∈Z and g̃i = (̃gi

n)n∈Z (i = 1, 2, . . . , d – 1), {h, g1, g2, . . . , gd–1} are used for decomposi-
tion and {̃h, g̃1, g̃2, . . . , g̃d–1} for reconstruction. Starting from a data sequence x = (xn)n∈Z ,
we convolve with {h, g1, g2, . . . , gd–1},

cn =
∑

k

hdn–kxk ,

pi
n =

∑

k

gi
dn–kxk , i = 1, 2, . . . , d – 1.

(2.1)

The reconstruction operation is

x̃k =
∑

n

(
h̃dn–kcn +

d–1∑

i=1

g̃i
dn–kpi

n

)
. (2.2)

The constraint conditions for biorthogonal d-band filter banks with perfect reconstruc-
tion property are:

a. the low-pass and high-pass condition

∑
hk =

∑
h̃k =

√
d,

∑
gi

k =
∑

g̃i
k = 0, i = 1, 2, . . . , d – 1;

b. the biorthogonal condition

∑

k

hkh̃k+dj = δj, hk̃gi
k+dj = gi

kh̃k+dj = 0, gi
k̃gl

k+dj = δi–lδj,

where δj denotes the Dirac sequence such that δj = 1 for j = 0 otherwise δj = 0;
c. the perfect reconstruction condition x = x̃.
In order to define (2.1) and (2.2) as operators, namely, sub-band operators, we as-

sume that the input signal x ∈ l2(–∞, +∞). Now consider the separable Hilbert space
l2(–∞, +∞). Define

(x, y) =
+∞∑

n=–∞
xiyi
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as the usual inner product on l2(–∞, +∞), where x, y ∈ l2(–∞, +∞), and yi denotes the
conjugate of the complex number yi.

Definition 2.1 The operator

T : Tx = y

is called a sub-band operator, where x ∈ l2(–∞, +∞), y = (. . . , c0, p1
0, p2

0, . . . , pd–1
0 , c1, p1

1,
p2

1, . . . , pd–1
1 , . . .), cn and pi

n, i = 1, 2, . . . , d – 1 are defined as in (2.1).

Throughout this paper, we assume h, g1, g2, . . . , gd–1, h̃, g̃1, g̃2, . . . , g̃d–1 have only finitely
many nonzero elements.

Theorem 2.1 If the d-band biorthogonal wavelets determined by the filters h, g1, g2, . . . ,
gd–1, h̃, g̃1, g̃2, . . . , g̃d–1 have the perfect reconstruction property, then the sub-band operator
T is a bounded linear operator and reversible on l2(–∞, +∞).

The proof of Theorem 2.1 is trivial.
As is well known, a bounded linear operator on l2(–∞, +∞) can be expressed by an

infinite-dimensional matrix. Using matrix notations, we have a more helpful expression
of the operator T . Let

sn,k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

hk–dn

g1
k–dn

g2
k–dn

...
gd–1

k–dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, s̃n,k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

h̃k–dn

g̃1
k–dn

g̃2
k–dn

...
g̃d–1

k–dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Then A = [sn,k] and Ã = [̃sn,k] (–∞ < n, k < +∞) are infinite block circular matrices along
four directions (up, down, left and right). At this time,

y = Ax,

where x and y are doubly infinite column vectors to fit the matrix operation. Hence T
can be viewed as an infinite matrix A, i.e., T = A. If the sub-band decomposition has the
perfect reconstruction condition, then it is obvious that A and Ã should satisfy

AÃ∗ = Ã∗A = I, (2.3)

where I denotes the infinite identity matrix and A∗ denotes the transpose of complex con-
jugate of A. Thus, T–1 = Ã∗.

Since (Ax, y) = (x, A∗y), the adjoint operator of T is T∗ = A∗. Let Q = T∗T , we have the
following lemma.



Zou et al. Journal of Inequalities and Applications  (2018) 2018:43 Page 4 of 13

Lemma 2.1 Retaining the definitions and notations as above, we have

(1) ‖Q‖ = ‖T‖2;

(2) T–1 = T̃∗ = Ã∗, T̃–1 = T∗ = A∗;

(3) ‖Q‖ = sup
‖x‖=1

{∣∣(Qx, x)
∣∣}.

Proof Items (1) and (2) are trivial according to the operator theory [18]. Item (3) follows
the fact that Q is a self-adjoint operator due to Q∗ = Q. �

Q = T∗T is called a frame operator in general [2]. Let νn and ν̃n denote the nth rows of
A and Ã, respectively. Clearly, (νj, ν̃k) = δj–k , where δj is the Dirac sequence, i.e., δj = 1 for
j = 0 otherwise δj = 0. Therefore, {νn} and {̃νn} are dual biorthogonal bases in l2(–∞, +∞).
Let en ∈ l2(–∞, +∞), its nth component be 1 and otherwise be 0. Then T ν̃n = en = T̃νn.
For an arbitrary x ∈ l2(–∞, +∞),

x =
+∞∑

n=–∞
(x,νn )̃νn =

+∞∑

n=–∞
(x, ν̃n)νn,

Qx =
+∞∑

n=–∞
(x,νn)Qν̃n =

+∞∑

n=–∞
(x,νn)T∗en =

+∞∑

n=–∞
(x,νn)T∗T̃νn =

+∞∑

n=–∞
(x,νn)νn.

Let m and M denote the lower bound and the upper bound of ‖T‖, respectively.

Tx =
+∞∑

n=–∞
(x,νn)T ν̃n =

+∞∑

n=–∞
(x,νn)en,

‖Tx‖2 =
+∞∑

n=–∞

∣∣(x,νn)
∣∣2.

Then

m2‖x‖2 ≤
+∞∑

n=–∞

∣∣(x,νn)
∣∣2 ≤ M2‖x‖2. (2.4)

Similarly,

m̃2‖x‖2 ≤
+∞∑

n=–∞

∣∣(x, ν̃n)
∣∣2 ≤ M̃2‖x‖2, (2.5)

where m̃ and M̃ are the lower bound and the upper bound of ‖T̃‖, respectively. Therefore,
(2.4) and (2.5) are the counterparts of (1.1) in l2(–∞, +∞).
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Now we define a finite matrix An as the partial matrix of the infinite matrix A, its row
index and column index are finite with the following form:

An =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 . . . hd–1 · · · 0 0 0 0
g1

0 g1
1 g1

2 . . . g1
d–1 · · · 0 0 0 0

g2
0 g2

1 g2
2 . . . g2

d–1 · · · 0 0 0 0
gd–1

0 gd–1
1 gd–1

2 . . . gd–1
d–1 · · · 0 0 0 0

h–d . . . h–3 h–2 h–1 · · · 0 0 0 0
g1

–d . . . g1
–3 g1

–2 g1
–1 · · · 0 0 0 0

g2
–d . . . g2

–3 g2
–2 g2

–1 · · · 0 0 0 0
gd–1

–d . . . gd–1
–3 gd–1

–2 gd–1
–1 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · h0 h1 h2 . . . hd–1

0 0 0 0 · · · g1
0 g1

1 g1
2 . . . g1

d–1
0 0 0 0 · · · g2

0 g2
1 g2

2 . . . g2
d–1

0 0 0 0 · · · gd–1
0 gd–1

1 gd–1
2 . . . gd–1

d–1
0 0 0 0 · · · h–d . . . h–3 h–2 h–1

0 0 0 0 · · · g1
–d . . . g1

–3 g1
–2 g1

–1

0 0 0 0 · · · g2
–d . . . g2

–3 g2
–2 g2

–1

0 0 0 0 · · · gd–1
–d . . . gd–1

–3 gd–1
–2 gd–1

–1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2.2 Let Qn = A∗
nAn and {τ (n)

1 , τ (n)
2 , . . . , τ (n)

dn } be all eigenvalues of Qn. Then

‖Q‖ = lim
n→∞ max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
.

Proof Since Qn is a positive operator, it has dn positive real eigenvalues, and (Qx, x) ≥ 0.
From Lemma 2.1, we have

‖Q‖ = sup
‖x‖=1

{∣∣(Qx, x)
∣∣} = sup

‖x‖=1

{
(Qx, x)

}
.

Hence, there exists an x(m) ∈ l2(–∞, +∞), such that ‖x(m)‖ = 1 and ‖Q‖ =
limm→∞(Qx(m), x(m)). Let dn-dimensional vector [x](m)

n be the finite part of x(m).
On one hand, clearly, ‖[x](m)

n ‖ ≤ ‖x(m)‖ for an arbitrary n. Let [y]n be a dn-dimensional
vector. Then

‖Q‖ = lim
m→∞

(
Qx(m), x(m)) = lim

m→∞ lim
n→∞

(
Qn[x](m)

n , [x](m)
n

)
.

Since Qn is a finite-dimensional self-adjoint compact operator, we have

sup
‖[y]n‖≤1

{(
Qn[y]n, [y]n

)}
= max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
.

Hence,

‖Q‖ ≤ lim
n→∞ max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
.
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On the other hand, for every sufficiently large n, there exists a dn-dimensional vector [y]n,
such that ‖[y]n‖ = 1, and

sup
‖y‖=1

{(
Qn[y], [y]

)}
=

(
Qn[y]n, [y]n

)
= max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
.

Extend [y]n to y(n) ∈ l2(–∞, +∞) by appending 0s to the tuples which are not defined by
[y]n. Clearly, ‖[y]n‖ = ‖y(n)‖ = 1, and

‖Q‖ = sup
‖x‖=1

{
(Qx, x)

} ≥ (
Qy(n), y(n)) =

(
Q[y]n, [y]n

)
= max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
.

It implies that

‖Q‖ ≥ lim
n→∞ max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
.

Hence, ‖Q‖ = limn→∞ max{τ (n)
1 , τ (n)

2 , . . . , τ (n)
dn }. The proof is complete. �

Theoretically, Theorem 2.2 gives an exact value for ‖Q‖ and ‖T‖ =
√‖Q‖ is used to

compute the norm of T . However, the eigenvalues are not easy to compute for generalized
block Toeplitz matrices. We shall use the theory of circular matrix to compute the norm
of Q. The block circular matrix is defined as follows [19]:

Bn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 . . . hd–1 · · · h–d . . . h–3 h–2 h–1

g1
0 g1

1 g1
2 . . . g1

d–1 · · · g1
–d . . . g1

–3 g1
–2 g1

–1

g2
0 g2

1 g2
2 . . . g2

d–1 · · · g2
–d . . . g2

–3 g2
–2 g2

–1

gd–1
0 gd–1

1 . . . gd–1
2 gd–1

d–1 · · · gd–1
–d . . . gd–1

–3 gd–1
–2 gd–1

–1

h–d . . . h–3 h–2 h–1 · · · h–2d . . . h–7 h–6 h–5

g1
–d . . . g1

–3 g1
–2 g1

–1 · · · g1
–2d . . . g1

–7 g1
–6 g1

–5
g2

–d . . . g2
–3 g2

–2 g2
–1 · · · g2

–2d . . . g2
–7 g2

–6 g2
–5

gd–1
–d . . . gd–1

–3 gd–1
–2 gd–1

–1 · · · gd–1
–2d . . . gd–1

–7 gd–1
–6 gd–1

–5
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
h2d h2d+1 h2d+2 . . . h3d–1 · · · hd hd+1 hd+2 . . . h2d–1

g1
2d g1

2d+1 g1
2d+2 . . . g1

3d–1 · · · g1
d g1

d+1 g1
d+2 . . . g1

2d–1
g2

2d g2
2d+1 g2

2d+2 . . . g2
3d–1 · · · g2

d g2
d+1 g2

d+2 . . . g2
2d–1

gd–1
2d gd–1

2d+1 gd–1
2d+2 . . . gd–1

3d–1 · · · gd–1
d gd–1

d+1 gd–1
d+2 . . . gd–1

2d–1
hd hd+1 hd+2 . . . h2d–1 · · · h0 h1 h2 . . . hd–1

g1
d g1

d+1 g1
d+2 . . . g1

2d–1 · · · g1
0 g1

1 g1
2 . . . g1

d–1
g2

d g2
d+1 g2

d+2 . . . g2
2d–1 · · · g2

0 g2
1 g2

2 . . . g2
d–1

gd–1
d gd–1

d+1 gd–1
d+2 . . . gd–1

2d–1 · · · gd–1
0 gd–1

1 gd–1
2 . . . gd–1

d–1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, An is different from Bn. Let Cn = Bn –An, then only finitely many (fixed) elements
in Cn are not 0 no matter how large the dimension 4n is. We have

A∗
nAn = B∗

nBn – C∗
nBn – B∗

nCn + C∗
nCn. (2.6)

We have Theorem 2.3.
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Theorem 2.3 Let Pn = B∗
nBn and {λ(n)

1 ,λ(n)
2 , . . . ,λ(n)

dn } be all eigenvalues of Pn. Then

‖Q‖ = lim
n→∞ max

{
λ

(n)
1 ,λ(n)

2 , . . . ,λ(n)
dn

}
.

Proof Let [x]n be a dn-dimensional vector. We first prove that for ‖[x]n‖ = 1,
limn→∞ |(C∗

nBn[x]n, [x]n)| = 0, limn→∞ |(B∗
nCn[x]n, [x]n)| = 0, limn→∞ |(C∗

nCn[x]n, [x]n)| = 0.
In fact, the operator Bn is bounded. For ‖[x]n‖ = 1, there exists a positive real number

M such that

∣∣(C∗
nBn[x]n, [x]n

)∣∣ =
∣∣(Bn[x]n, Cn[x]n

)∣∣

≤ ∥∥Bn[x]n
∥∥∥∥Cn[x]n

∥∥ ≤ M
∥∥Cn[x]n

∥∥.

Note that Cn[x]n only contains dn nonzero components.
Hence limn→∞ ‖Cn[x]n‖ = 0, i.e., limn→∞ |(C∗

nCn[x]n, [x]n)| = 0.
Similarly, we can verify limn→∞ |(B∗

nCn[x]n, [x]n)| = 0 and limn→∞ |(C∗
nCn[x]n, [x]n)| = 0.

It follows from (2.6) that

(
Qn[x]n, [x]n

)
=

(
Pn[x]n, [x]n

)
+

(
Rn[x]n, [x]n

)
,

where Rn = –C∗
nBn – B∗

nCn + C∗
nCn and limn→∞ |(Rn, [x]n)| = 0.

It implies that

lim
n→∞ sup

‖[x]n‖=1

{(
Qn[x]n, [x]n

)}
= lim

n→∞ sup
‖[x]n‖=1

{(
Pn[x]n, [x]n

)}
.

By Theorem 2.2, we have

‖Q‖ = lim
n→∞ max

{
τ

(n)
1 , τ (n)

2 , . . . , τ (n)
dn

}
= lim

n→∞ max
{
λ

(n)
1 ,λ(n)

2 , . . . ,λ(n)
dn

}
.

The proof is complete. �

A so-called d-circular matrix [20], which is generated by the filters h, g1, g2, . . . , gd–1, is
denoted as Mn. For d = 4, M3 is as follows:

M3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 h3 0 0 0 0 h–4 h–3 h–2 h–1

h–4 h–3 h–2 h–1 h0 h1 h2 h3 0 0 0 0
0 0 0 0 h–4 h–3 h–2 h–1 h0 h1 h2 h3

g1
0 g1

1 g1
2 g1

3 0 0 0 0 g1
–4 g1

–3 g1
–2 g1

–1

g1
–4 g1

–3 g1
–2 g1

–1 g1
0 g1

1 g1
2 g1

3 0 0 0 0
0 0 0 0 g1

–4 g1
–3 g1

–2 g1
–1 g1

0 g1
1 g1

2 g1
3

g2
0 g2

1 g2
2 g2

3 0 0 0 0 g2
–4 g2

–3 g2
–2 g2

–1

g2
–4 g2

–3 g2
–2 g2

–1 g2
0 g2

1 g2
2 g2

3 0 0 0 0
0 0 0 0 g2

–4 g2
–3 g2

–2 g2
–1 g2

0 g2
1 g2

2 g2
3

g3
0 g3

1 g3
2 g3

3 0 0 0 0 g3
–4 g3

–3 g3
–2 g3

–1

g3
–4 g3

–3 g3
–2 g3

–1 g3
0 g3

1 g3
2 g3

3 0 0 0 0
0 0 0 0 g3

–4 g3
–3 g3

–2 g3
–1 g3

0 g3
1 g3

2 g3
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Clearly, Bn and Mn are not so different. One can be obtained by exchanging the places
of some rows of another, i.e., there exists an orthonormal matrix En such that Mn = EnBn.
The purpose is to facilitate the calculation of the eigenvalues.

Similarly, let M̃n be a d-circular matrix generated by h̃, g̃1, g̃2, . . . , g̃d–1. The perfect re-
construction condition is that there exists an integer N0, such that, for all n ≥ N0 (in what
follows, n sufficiently large is in this sense),

MnM̃∗
n = Idn, (2.7)

where Idn is a dn × dn identity matrix.

Theorem 2.4 Let Mn be a d-circular matrix generated by h, g1, g2, . . . , gd–1. For sufficiently
large n, then

max{λ1,λ2, . . . ,λdn} ≤ max{C0, C1, . . . , Cd–1}, (2.8)

where

C0 =
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

hign
i+dj

∣∣∣∣,

Ck =
∑

j

∣∣∣∣
∑

i

gk
i hi+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

gk
i gn

i+dj

∣∣∣∣, 1 ≤ k ≤ d – 1.

Proof Define

‖Adn‖∞ = max
1≤i≤dn

dn∑

j=1

|ai,j|.

Since ‖AdnBdn‖∞ ≤ ‖Adn‖∞ × ‖Bdn‖∞, ‖ · ‖∞ is a compatible matrix norm. Note that
Adn = MnMT

n positive definite matrices, and all of the eigenvalues of MnMT
n are positive.

According to the theory of matrices [19], we have

|λi| ≤ ‖Adn‖∞ = max
1≤i≤dn

dn∑

j=1

|ai,j|, i = 1, 2, . . . , dn.

Note that the sub-matrices of MnMT
n such as HHT , HGT

1 , HGT
2 , . . . , HGT

d–1, . . . are all 1-
circular matrices. Then

kn+n∑

j=kn+1

|akn+1,j| =
kn+n∑

j=kn+1

|akn+2,j| = · · · =
kn+n∑

j=kn+1

|akn+n,j|, 0 ≤ k ≤ d – 1.

We have

C0 =
dn∑

j=1

|a1,j| =
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

hign
i+dj

∣∣∣∣.
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Firstly, we verify that, for n ≥ N0,

n∑

j=1

|a1,j| ≤
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣.

1. There exists N∗
0 : when n ≥ N∗

0 ≥ N0, we have

HHT =
[∑

hihi,
∑

hihi+d,
∑

hihi+2d, . . . , 0, . . . ,
∑

hihi+d

]
.

Note that when the dimension increases, the nonzero elements of HHT are the same.
Therefore

n∑

j=1

|a1,j| =
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣.

2. When N0 ≤ n ≤ N∗
0 , the nonzero elements of HHT decrease.

It follows from |a + b| ≤ |a| + |b| that

n∑

j=1

|a1,j| ≤
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣.

We obtain

n∑

j=1

|a1,j| ≤
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣.

Similarly, (2.8) holds true. �

Remark The right-hand side of (2.8) is only determined by the filters.

Theorem 2.5 Let T be the sub-band operator of d-band wavelets. Then

1√
max{C̃0, C̃1, . . . , C̃d–1}

≤ ‖T‖ ≤ √
max{C0, C1, . . . , Cd–1}, (2.9)

1√
max{C0, C1, . . . , Cd–1} ≤ ∥∥T–1∥∥ ≤

√
max{C̃0, C̃1, . . . , C̃d–1}, (2.10)

where the filter bands are {h, g1, g2, . . . , gd–1} and {̃h, g̃1, g̃2, . . . , g̃d–1}, respectively,

C0 =
∑

j

∣∣∣∣
∑

i

hihi+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

hign
i+dj

∣∣∣∣,

Ck =
∑

j

∣∣∣∣
∑

i

gk
i hi+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

gk
i gn

i+dj

∣∣∣∣, 1 ≤ k ≤ d – 1,
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C̃0 =
∑

j

∣∣∣∣
∑

i

h̃ĩhi+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

h̃ĩgn
i+dj

∣∣∣∣,

C̃k =
∑

j

∣∣∣∣
∑

i

g̃k
i h̃i+dj

∣∣∣∣ +
d–1∑

n=1

∑

j

∣∣∣∣
∑

i

g̃k
i g̃n

i+dj

∣∣∣∣, 1 ≤ k ≤ d – 1.

Proof By Theorem 2.3, we have

‖T‖2 = ‖Q‖ = lim
n→∞ max{λ1,λ2, . . . ,λdn},

where {λ1,λ2, . . . ,λdn} are all eigenvalues of MnMT
n .

According to Theorem 2.4, we have

‖T‖ =
√‖Q‖ ≤ √

max{C0, C1, . . . , Cd–1}.

Similarly,

∥∥T–1∥∥ ≤
√

max{C̃0, C̃1, . . . , C̃d–1}.

The proof is complete. �

3 Examples
In this section, we present two examples to illustrate the proposed results.

Example 3.1 Let the lengths of scaling filters be (15, 9). Assume that the scaling symbols
(H0(z), H̃0(z)) have the following form:

H0(z) =
(

1 + z + z2

3

)5

Q(z),

H̃0(z) =
(

1 + z + z2

3

)3

Q̃(z),

where (Q(z), Q̃(z)) are symmetric Laurent polynomials with degree (4, 2).
We can obtain the associated scaling filters as follows [21]:

h0 ≈ [0.0302708750, 0.0197271260, 0.0109853080, –0.12261759, 0.011382944,

0.24928687, 0.83207454, 0.93777986],

h̃0 ≈ [–0.20140256, –0.090291448, 0.13193077, 1.0694718, 1.1805829]

(whereas the other half is symmetric and so is skipped). Thus, the wavelet filters h1, h2 and
h̃1, h̃2 can be obtained as follows:

h1 ≈ [0.032348717, 0.021081228, 0.011739358, –0.75426796, 1.3781973],

h2 ≈ 4[–0.044296947, –0.028867731, –0.016075373, 0.29594173, 0],
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Figure 1 The spectral radius of MMT and M̃M̃T , respectively (from top to bottom)

h̃1 ≈ [–0.0047182543, –0.0021152562, 0.0030907400, 0.038680809, 0.033766352,

0.016128444, –0.75722871, 1.3447918],

h̃2 ≈ [0.14107656, 0.063246501, –0.092413623, –0.45441064, –0.69483538,

–0.94219467, 4.8815912, 0]/4

(whereas the other half is symmetric/antisymmetric and so skipped). See Fig. 1 for the
spectral radius of MnMT

n and M̃nM̃T
n . From Theorem 2.3, we can obtain ‖T‖ ≈ 1.06, which
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Figure 2 The spectral radius of MMT (M̃M̃T )

is an approximation and not an exact value. Similarly, ‖T–1‖ ≈ 1.32. By Theorem 2.5, we
can calculate that 0.66 ≤ ‖T‖ ≤ 1.15 and 0.94 ≤ ‖T–1‖ ≤ 1.51.

Example 3.2 In [20], a 4-band symmetric biorthogonal wavelets which is denoted as
Op(12-12) is designed. The corresponding wavelet filter banks {h, g1, g2, g3} are as follows:

⎡

⎢⎢⎢⎣

t0 t1 t2 t3 t4 t5 t5 t4 t3 t2 t1 t0

t1 –t0 –t3 t2 t5 –t4 –t4 t5 t2 –t3 –t0 t1

t̃0 –̃t1 t̃2 –̃t3 t̃4 –̃t5 t̃5 –̃t4 t̃3 –̃t2 t̃1 –̃t0

t̃1 t̃0 –̃t3 –̃t2 t̃5 t̃4 –̃t4 –̃t5 t̃2 t̃3 –̃t0 –̃t1

⎤

⎥⎥⎥⎦ ,

where t0 = 0.01129264, t1 = –0.01660958, t2 = –0.01418315, t3 = 0.02102888, t4 =
0.4676785, t5 = 0.5307927, t̃0 = –0.07653, t̃1 = –0.04528, t̃2 = 0.01722, t̃3 = 0.11097,
t̃4 = 0.46556, t̃5 = 0.52806.

It has been shown that the eigenvalues of MT
4nM4n appear in pairs of reciprocal, MT

4nM4n

and M̃T
4nM̃4n have the same eigenvalues [20]. It is obvious that max{λi} = max{̃λi} = 1

min{λi} =
1

min{̃λi} . See Fig. 2 for the spectral radius of MnMT
n and M̃nM̃T

n . From Theorem 2.3, we
can obtain ‖T‖ ≈ 1.14, which is an approximation and not an exact value. According to
Theorem 2.5, we have ‖T‖ = ‖T–1‖ ≤ 1.18.

4 Conclusions and future work
We can obtain the upper bound and the lower bound or an approximation of the sub-band
operator’s norm based on the theory of circular matrix which plays an important role.
We will calculate their norm for some special symmetric wavelets and design a family of
biorthogonal wavelets based on the size of the norm.
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