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Abstract
Among various approximation formulas for the gamma function, Smith showed that

�
(
x +

1
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)
∼ S(x) =

√
2π

(x
e

)x(
2x tanh

1
2x

)x/2
, x → ∞,

which is a little-known but accurate and simple one. In this note, we prove that the
function x �→ ln�(x + 1/2) – ln S(x) is strictly increasing and concave on (0,∞), which
shows that Smith’s approximation is just an upper one.
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1 Introduction
The Stirling formula

n! ∼
√

2πnnne–n (1.1)

has many important applications in statistical physics, probability theory and number the-
ory. Due to its practical importance, it has attracted much interest of many mathemati-
cians and has also motivated a large number of research papers concerning various gener-
alizations and improvements; see for example, Burnside’s [1], Gosper [2], Batir [3], Mortici
[4].

The gamma function �(x) =
∫ ∞

0 tx–1e–t dt for x > 0 is closely related to the Stirling for-
mula, since �(n + 1) = n! for all n ∈ N. This inspired some authors to also pay attention to
find various better approximations for the gamma function; see, for instance, Ramanujan
[5, p. 339], Windschitl (see Nemes [6, Corollary 4.1]), Yang and Chu [7], Chen [8].

More results involving the approximation formulas for the factorial or gamma function
can be found in [9–23] and the references cited therein.

In this note, we are interested in Smith’s approximation formula (see [24, equation (42)]):
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)
∼

√
2π

(
x
e

)x(
2x tanh

1
2x

)x/2

:= S(x), as x → ∞. (1.2)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1620-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1620-3&domain=pdf
http://orcid.org/0000-0002-7909-0517
mailto:shzhzheng@bjtu.edu.cn


Li et al. Journal of Inequalities and Applications  (2018) 2018:27 Page 2 of 7

It is easy to check that

�

(
x +

1
2

)
=

√
2π

(
x
e

)x(
2x tanh

1
2x

)x/2(
1 + O

(
1
x5

))
,

which shows that the rate of S(x) converging to �(x + 1/2) as x → ∞ is like x–5. Accord-
ing to the comment in [8, (3.5)–(3.10)], it is well known that Smith’s approximation is an
accurate but simple one for gamma function.

The aim of this short note is to further prove the Smith approximation S(x) is an upper
one. Our main result is stated as follows.

Theorem 1 The function

f (x) = ln�

(
x +

1
2

)
– ln

√
2π – x ln x + x –

x
2

ln

(
2x tanh

1
2x

)

is strictly increasing and concave from (0,∞) onto (– ln
√

2, 0).

2 Proof of Theorem 1
To prove Theorem 1 we need the following two lemmas.

Lemma 1 The inequality

ψ ′
(

x +
1
2

)
<

4
3

15x2 + 4
x(20x2 + 7)

(2.1)

holds for all x > 0.

Proof Let

f1(x) = ψ ′
(

x +
1
2

)
–

4
3

15x2 + 4
x(20x2 + 7)

. (2.2)

Using the recurrence formula [25, pp. 258–260]:

ψ (n)(x + 1) – ψ (n)(x) =
(–1)nn!

xn+1 ,

we have

f1(x + 1) – f1(x) = ψ ′
(

x +
3
2

)
–

4
3(x + 1)

15x2 + 30x + 19
20x2 + 40x + 27

– ψ ′
(

x +
1
2

)
+

4
3

15x2 + 4
x(20x2 + 7)

–
1

(x + 1/2)2 –
4

3(x + 1)
15x2 + 30x + 19
20x2 + 40x + 27

+
4
3

15x2 + 4
x(20x2 + 7)

=
144

x(x + 1)(2x + 1)2(20x2 + 7)(20x2 + 40x + 27)
> 0.
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It then follows that

f1(x) < f1(x + 1) < · · · < lim
n→∞ f1(x + n) = 0,

which proves the desired inequality (2.1). �

Lemma 2 The inequality

sinh2 t
cosh t

>
t2(21t2 + 60)

31t2 + 60
(2.3)

holds for all t > 0.

Proof It is obvious that the inequality what we consider is equivalent to

f2(t) =
(
31t2 + 60

)
(sinh t)2 – t2(21t2 + 60

)
cosh t > 0.

Simplifying and expanding it in power series lead us to

2f2(t) = 60 cosh 2t + 31t2 cosh 2t – 120t2 cosh t – 42t4 cosh t – 31t2 – 60

= 60
∞∑

n=0

22n

(2n)!
t2n + 31

∞∑
n=1

22n–2

(2n – 2)!
t2n

– 120
∞∑

n=1

1
(2n – 2)!

t2n – 42
∞∑

n=2

1
(2n – 4)!

t2n – 31t2 – 60

:=
∞∑

n=2

an

(2n)!
t2n,

where

an =
(
62n2 – 31n + 120

)
22n–1 – 24n(2n – 1)

(
14n2 – 35n + 31

)
.

It is easy to check that a2 = a3 = 0 and a4 = 49 184 > 0. It remains to prove an > 0 for n ≥ 5.
To this end, it suffices to prove bn = 22n–1 –6n(2n–1) > 0 for n ≥ 5, because the inequality

(
62n2 – 31n + 120

)
> 4

(
14n2 – 35n + 31

)

is clearly valid for n ≥ 5. We easily obtain

bn+1 – 4bn = 6
(
6n2 – 7n – 1

)
> 0

for n ≥ 5, which in combination with b5 = 242 > 0 yields bn > 0 for n ≥ 5. This completes
the proof. �

Now we are in a position to prove Theorem 1.
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Theorem 1 Differentiating and simplifying yields

f ′(x) = ψ

(
x +

1
2

)
– ln x –

1
2

ln

(
2x tanh

1
2x

)
+

1
2x sinh(1/x)

–
1
2

,

f ′′(x) = ψ ′
(

x +
1
2

)
+

1
2x3

cosh(1/x)
sinh2(1/x)

–
3

2x
.

As an application of inequalities (2.1) and (2.3) it gives

f ′′(x) <
4
3

15x2 + 4
x(20x2 + 7)

+
1

2x3
cosh(1/x)
sinh2(1/x)

–
3

2x

=
1

2x3
cosh(1/x)
sinh2(1/x)

–
1
6

60x2 + 31
x(20x2 + 7)

x=1/t=
t3

2

(
cosh t
sinh2 t

–
31t2 + 60

t2(21t2 + 60)

)
< 0.

Then it is deduced that

f ′(x) > lim
x→∞ f ′(x) = 0,

which in turn implies that

–
1
2

ln 2 = lim
x→0+

f (x) < f (x) < lim
x→∞ f (x) = 0.

This completes the proof. �

3 Corollaries and remarks
Using the increasing property of f (x + 1/2) given in Theorem 1 and noting that

f
(

1
2

)
= ln

√
e√

π (tanh 1)1/4 and f
(

3
2

)
= ln

(
2e

√
e33/4

27
√

π tanh3/4(1/3)

)
,

we have the corollaries.

Corollary 1 The double inequality

α1 <
ex+1/2�(x + 1)√

2π (x + 1/2)x+1/2[(2x + 1) tanh(1/(2x + 1))](2x+1)/4
< 1

holds for all x > 0 with the best constants 1 and α1 =
√

e/π/(tanh 1)1/4 ≈ 0.99573.

Corollary 2 The double inequality

α2 <
n!√

2π ((n + 1/2)/e)n+1/2[(2n + 1) tanh(1/(2n + 1))](2n+1)/4
< 1

holds for all n ∈N with the best constants 1 and

α2 =
2e

√
e33/4

27
√

π tanh3/4(1/3)
≈ 0.99994.
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By the decreasing property of f ′(x + 1/2) given in Theorem 1 and the facts that

f ′
(

1
2

)
=

1
sinh 2

–
1
2

ln(tanh 1) + ln 2 –
1
2

– γ ≈ 0.027823,

f ′
(

3
2

)
=

1
3 sinh(2/3)

–
1
2

ln

(
3 tanh

1
3

)
– ln

3
2

+ ψ(1) +
1
2

≈ 0.00016946,

the following corollaries are immediate.

Corollary 3 For x > 0, the inequalities

1
2

+
1
2

ln

(
(2x + 1) tanh

1
2x + 1

)
–

1
(2x + 1) sinh(2/(2x + 1))

< ψ(x + 1) – ln

(
x +

1
2

)

< β1 +
1
2

ln

(
(2x + 1) tanh

1
2x + 1

)
–

1
(2x + 1) sinh(2/(2x + 1))

hold, where the constants 1/2 and

β1 = ln 2 –
1
2

ln(tanh 1) +
1

sinh 2
– γ ≈ 0.52782

are the best possible.

Corollary 4 Let Hn =
∑n

k=1 for n ∈N. The inequalities

(
1
2

+ γ

)
+

1
2

ln

(
(2n + 1) tanh

1
2n + 1

)
–

1
(2n + 1) sinh(2/(2x + 1))

< Hn – ln

(
n +

1
2

)

< β2 +
1
2

ln

(
(2n + 1) tanh

1
2n + 1

)
–

1
(2n + 1) sinh(2/(2n + 1))

hold, where 1/2 + γ ≈ 1.0772 and

β2 =
1

3 sinh(2/3)
–

1
2

ln

(
3 tanh

1
3

)
– ln

3
2

+ 1 ≈ 1.0774

are the best possible constants.

Finally, as a by-product of Lemma 1, we draw the following conclusion.

Theorem 2 Let g be defined on (0,∞) by

g(x) = ln�

(
x+

1
2

)
–

[
1
2

ln 2π +
16
21

x ln x+
5x
42

ln

(
x2 +

7
20

)
–x–

√
35

42
arccot

(√
20
7

x
)]

.

Then g is strictly increasing and concave on (0,∞).
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Proof Differentiation yields

g ′(x) = ψ

(
x +

1
2

)
–

[
5

42
ln

(
x2 +

7
20

)
+

16
21

ln x
]

,

g ′′(x) = ψ ′
(

x +
1
2

)
–

4
3

15x2 + 4
x(20x2 + 7)

= f1(x) < 0,

where the inequality holds due to Lemma 1. This completes the proof. �

Remark 1 Theorem 2 gives a new approximation for the gamma function

�

(
x +

1
2

)
∼

√
2πx26x/21

(
x2 +

7
20

)5x/42

exp

[
–x –

√
35

42
arccot

(√
20
7

x
)]

,

as x → ∞, which satisfies

�

(
x +

1
2

)
=

√
2πx26x/21

(
x2 +

7
20

)5x/42

exp

[
–x –

√
35

42
arccot

(√
20
7

x
)](

1 + O
(
x–5)).

Remark 2 Theorem 2 also offers an asymptotic formula for the psi function

ψ

(
x +

1
2

)
∼

5
42

ln

(
x2 +

7
20

)
+

16
21

ln x as x → ∞.

Furthermore, by replacing x with x + 1/2, we have the following sharp inequalities:

5
42

ln

(
x2 + x +

3
5

)
+

16
21

ln

(
x +

1
2

)

< ψ(x + 1) < λ0 +
5

42
ln

(
x2 + x +

3
5

)
+

16
21

ln

(
x +

1
2

)
(3.1)

for x > 0 with the best constant

λ0 =
16
21

ln 2 –
5

42
ln

3
5

– γ ≈ 0.011709;

γ +
5

42
ln

(
n2 + n +

3
5

)
+

16
21

ln

(
n +

1
2

)

< Hn < λ0 + γ +
5

42
ln

(
n2 + n +

3
5

)
+

16
21

ln

(
n +

1
2

)

for n ∈N with the best constant

λ1 = 1 –
16
21

ln
3
2

–
5

42
ln

13
5

– γ ≈ 0.00010718.

Inequalities (3.1) first appeared in [26, Corollary 3.4].

4 Conclusions
In this note, we mainly presented an upper bound of Smith’s approximation in accordance
with the fact that the function x �→ ln�(x + 1/2) – ln S(x) is strictly increasing and con-
cave on (0,∞). As a consequence, we get some new sharp estimates to various classical
inequalities concerning the gamma function and hyperbolic functions.
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