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Abstract
An alternative error bound for linear complementarity problems for BS-matrices is
presented. It is shown by numerical examples that the new bound is better than that
provided by García-Esnaola and Peña (Appl. Math. Lett. 25(10):1379–1383, 2012) in
some cases. New perturbation bounds of BS-matrices linear complementarity
problems are also considered.
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1 Introduction
The linear complementarity problem is to find a vector x ∈ R

n such that

x ≥ 0, Mx + q ≥ 0, (Mx + q)T x = 0, (1)

where M ∈R
n×n and q ∈R

n. We denote problem (1) and its solution by LCP(M, q) and x∗,
respectively. The LCP(M, q) often arises from the various scientific areas of computing,
economics and engineering such as quadratic programs, optimal stopping, Nash equilib-
rium points for bimatrix games, network equilibrium problems, contact problems, and
free boundary problems for journal bearing, etc. For more details, see [2–4].

An interesting problem for the LCP(M, q) is to estimate

max
d∈[0,1]n

∥
∥(I – D + DM)–1∥∥∞, (2)

since it can often be used to bound the error ‖x – x∗‖∞ [5], that is,

∥
∥x – x∗∥∥∞ ≤ max

d∈[0,1]n

∥
∥M–1

D
∥
∥∞

∥
∥r(x)

∥
∥∞,

where MD = I – D + DM, D = diag(di) with 0 ≤ di ≤ 1 for each i ∈ N , d = [d1, d2, . . . , dn]T ∈
[0, 1]n, and r(x) = min{x, Mx + q} in which the min operator denotes the componentwise
minimum of two vectors; for more details, see [1, 6–14] and the references therein.
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In [1], García-Esnaola and Peña provided an upper bound for (2) when M is a BS-matrix
as a subclass of P-matrices [15], which contains B-matrices. Here a matrix M = [mij] ∈
R

n×n is called a B-matrix [16] if, for each i ∈ N = {1, 2, . . . , n},

∑

k∈N

mik > 0, and
1
n

(
∑

k∈N

mik

)

> mij for any j ∈ N and j �= i,

and a matrix M = [mij] ∈ R
n×n is called a BS-matrix [15] if there exists a subset S, with

2 ≤ card(S) ≤ n – 2, such that, for all i, j ∈ N , t ∈ T(i) \ {i}, and k ∈ K(j) \ {j},

RS
i > 0, RS

j > 0, and
(

mit – RS
i
)(

mjk – RS
j
)

< RS
i RS

j ,

where RS
i = 1

n
∑

k∈S mik , T(i) := {t ∈ S|mit > RS
i } and k(j) := {k ∈ S|mjk > RS

j } with S = N \{S}.

Theorem 1 ([1, Theorem 2.8]) Let M = [mij] ∈ R
n×n be a BS-matrix, and let X =

diag(x1, x2, . . . , xn) with

xi =

{

γ , i ∈ S,
1, otherwise,

such that M̃ := MX is a B-matrix with the form M̃ = B̃+ + C̃, where

B̃+ = [b̃ij] =

⎡

⎢
⎢
⎣

m11x1 – r̃+
1 · · · m1nxn – r̃+

1
...

...
mn1x1 – r̃+

n · · · mnnxn – r̃+
n

⎤

⎥
⎥
⎦

, C̃ =

⎡

⎢
⎢
⎣

r̃+
1 · · · r̃+

1
...

...
r̃+

n · · · r̃+
n

⎤

⎥
⎥
⎦

, (3)

and r̃+
i = max{0, mijxj|j �= i}. Then

max
d∈[0,1]n

∥
∥M–1

D
∥
∥∞ ≤ (n – 1) max{γ , 1}

min{β̃ ,γ , 1} , (4)

where β̃ = mini∈N {β̃i} with β̃i = b̃ii –
∑

j �=i |b̃ij|, and

(0 <) γ ∈
(

max
j∈N ,k∈K (j)\{j}

mjk – RS
j

RS
j

, min
i∈N ,t∈T(i)\{i}

RS
i

mit – RS
i

)

, (5)

where max (min) is set to be –∞ (∞) if K(j) \ {j} = ∅ (T(i) \ {i} = ∅).

Note that for some BS matrices, β̃ can be very small, thus the error bound (4) can be
very large (see examples in Section 3). Hence it is interesting to find an alternative bound
for LCP(M, q) to overcome this drawback. In this paper we provide a new upper bound
for (2) and give a family of examples of BS-matrices that are not B-matrices for which our
bound is a small constant in contrast to bound (4) of [1], which can be arbitrarily large.
Particularly, when the involved matrix is a B-matrix as a special class of BS-matrices, the
new bound is in line with that provided by Li et al. in [13].
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2 Main result
First, recall some definitions and lemmas which will be used later. A matrix M = [mij] ∈
R

n×n is called: (1) a P-matrix if all its principal minors are positive; (2) a strictly diagonally
dominant (SDD) matrix if |mii| >

∑n
j �=i |mij| for all i = 1, 2, . . . , n; (3) a nonsingular M-matrix

if its inverse is nonnegative and all its off-diagonal entries are nonpositive [2].

Lemma 1 ([1, Theorem 2.3]) Let M = [mij] ∈ R
n×n be a BS-matrix. Then there exists a

positive diagonal matrix X = diag(x1, x2, . . . , xn) with

xi =

{

γ , i ∈ S,
1, otherwise,

such that M̃ := MX is a B-matrix.

Lemma 2 ([1, Lemma 2.4]) Let M = [mij] ∈ R
n×n be a BS-matrix, and let X be the diagonal

matrix of Lemma 1 such that M̃ := MX is a B-matrix with the form M̃ = B̃+ + C̃, where
B̃+ = [b̃ij] is the matrix of (3). Then B̃+ is strictly diagonally dominant by rows with positive
diagonal entries.

Lemma 3 ([1, Lemma 2.6]) Let M = [mij] ∈ R
n×n be a BS-matrix that is not a B-matrix,

then there exist k, i ∈ N with k �= i such that

mik ≥ 1
n

n
∑

j=1

mij. (6)

Furthermore, if k ∈ S (resp., k ∈ S), then γ < 1 (resp., γ > 1), where the parameter γ satis-
fies (5).

Lemma 3 will be used in the proof of Corollary 1.

Lemma 4 [17, Theorem 3.2] Let A = [aij] be an n × n row strictly diagonally dominant
M-matrix. Then

∥
∥A–1∥∥∞ ≤

n
∑

i=1

(

1
aii(1 – ui(A)li(A))

i–1
∏

j=1

1
1 – uj(A)lj(A)

)

,

where ui(A) = 1
|aii|

∑n
j=i+1 |aij|, lk(A) = maxk≤i≤n{ 1

|aii|
∑n

j=k,
j �=i

|aij|}, and
∏i–1

j=1
1

1–uj(A)lj(A) = 1 if

i = 1.

Lemma 5 ([12, Lemma 3]) Let γ > 0 and η ≥ 0. Then, for any x ∈ [0, 1],

1
1 – x + γ x

≤ 1
min{γ , 1}

and

ηx
1 – x + γ x

≤ η

γ
.
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Lemma 6 ([11, Lemma 5]) Let A = [aij] ∈R
n×n with aii >

∑n
j=i+1 |aij| for each i ∈ N . Then,

for any xi ∈ [0, 1],

1 – xi + aiixi

1 – xi + aiixi –
∑n

j=i+1 |aij|xi
≤ aii

aii –
∑n

j=i+1 |aij| .

We now give the main result of this paper by using Lemmas 1, 2, 4, 5, and 6.

Theorem 2 Let M = [mij] ∈R
n×n be a BS-matrix and X = diag(x1, x2, . . . , xn) with

xi =

{

γ , i ∈ S,
1, otherwise,

such that M̃ := MX is a B-matrix with the form M̃ = B̃+ + C̃, where B̃+ = [b̃ij] is the matrix
of (3). Then

max
d∈[0,1]n

∥
∥M–1

D
∥
∥∞ ≤

n
∑

i=1

(n – 1) max{γ , 1}
min{β̂i, xi}

i–1
∏

j=1

b̃jj

β̂j
, (7)

where β̂i = b̃ii –
∑n

k=i+1 |b̃ik|li(B̃+), and
∏i–1

j=1
b̃jj
β̂j

= 1 if i = 1.

Proof Since X is a positive diagonal matrix and M̃ := MX, it is easy to get that MD =
I – D + DM = (X – DX + DM̃)X–1. Let M̃D = X – DX + DM̃. Then

M̃D = X – DX + DM̃ = X – DX + D
(

B̃+ + C̃
)

= B̃+
D + C̃D,

where B̃+
D = X – DX + DB̃+ = [b̂ij] with

b̂ij =

{

xi – dixi + dib̃ij, i = j,
dib̃ij, i �= j,

and C̃D = DC̃. By Lemma 2, B̃+ is strictly diagonally dominant by rows with positive di-
agonal entries. Similarly to the proof of Theorem 2.2 in [10], we can obtain that B̃+

D is an
SDD matrix with positive diagonal entries and that

∥
∥M–1

D
∥
∥∞ ≤ ∥

∥X–1∥∥∞ · ∥∥M̃–1
D

∥
∥∞

≤ ∥
∥X–1∥∥∞ · ∥∥(

I +
(

B̃+
D
)–1C̃D

)–1∥
∥∞ · ∥∥(

B̃+
D
)–1∥

∥∞

≤ max{γ , 1} · (n – 1) · ∥∥(

B̃+
D
)–1∥

∥∞. (8)

Next, we give an upper bound for ‖(B̃+
D)–1‖∞. Notice that B̃+

D is an SDD Z-matrix with
positive diagonal entries, and thus B̃+

D is an SDD M-matrix. By Lemma 4, we have

∥
∥
(

B̃+
D
)–1∥

∥∞ ≤
n

∑

i=1

(

1
(xi – dixi + dib̃ii)(1 – ui(B̃+

D)li(B̃+
D))

i–1
∏

j=1

1
1 – uj(B̃+

D)lj(B̃+
D)

)

,
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where

ui
(

B̃+
D
)

=
∑n

j=i+1 |b̃ij|di

xi – dixi + b̃iidi
, and lk

(

B̃+
D
)

= max
k≤i≤n

{ ∑n
j=k,�=i |b̃ij|di

xi – dixi + b̃iidi

}

.

By Lemma 5, we deduce for each k ∈ N that

lk
(

B̃+
D
)

= max
k≤i≤n

{

∑n
j=k,�=i |b̃ij|

xi
di

1 – di + b̃ii
xi

di

}

≤ max
k≤i≤n

{

1
b̃ii

n
∑

j=k,�=i

|b̃ij|
}

= lk
(

B̃+)

< 1,

and for each i ∈ N that

1
(xi – dixi + dib̃ii)(1 – ui(B̃+

D)li(B̃+
D))

=
1

xi – dixi + dib̃ii –
∑n

j=i+1 |b̃ij|dili(B̃+
D)

=
1
xi

1 – di + di
xi

(b̃ii –
∑n

j=i+1 |b̃ij|li(B̃+
D))

≤ 1
min{b̃ii –

∑n
j=i+1 |b̃ij|li(B̃+), xi}

=
1

min{β̂i, xi} . (9)

Furthermore, according to Lemma 6, it follows that for each j ∈ N ,

1
1 – uj(B+

D)lj(B+
D)

=
1 – dj + b̃jj

xj
dj

1 – dj + b̃jj
xj

dj –
∑n

k=j+1 |b̃jk |
xj

djlj(B+
D)

≤ b̃jj

b̃jj –
∑n

k=j+1 |b̃jk|lj(B̃+)
=

b̃jj

β̂j
. (10)

By (9) and (10), we derive

∥
∥
(

B̃+
D
)–1∥

∥∞ ≤
n

∑

i=1

1
min{β̂i, xi}

i–1
∏

j=1

b̃jj

β̂j
. (11)

Now the conclusion follows from (8) and (11). �

Remark here that when the matrix M is a B-matrix, then X = I and

B̃+ = [b̃ij] =

⎡

⎢
⎢
⎣

m11 – r+
1 · · · m1n – r+

1
...

. . .
...

mn1 – r+
n · · · mnn – r+

n

⎤

⎥
⎥
⎦

,

which yields

max
d∈[0,1]n

∥
∥(I – D + DM)–1∥∥∞ ≤

n
∑

i=1

n – 1
min{β̂i, 1}

i–1
∏

j=1

b̃jj

β̂j
.
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This upper bound is consistent with that provided by Li et al. in [13]. Furthermore, for a
BS-matrix that is not a B-matrix, the following corollary can be obtained easily by Lemma 3
and Theorem 2.

Corollary 1 Let M = [mij] ∈ R
n×n be a BS-matrix that is not a B-matrix, and let k, i ∈ N

with k �= i such that mik ≥ 1
n
∑n

j=1 mij. If k ∈ S, then

max
d∈[0,1]n

∥
∥M–1

D
∥
∥∞ ≤

n
∑

i=1

(n – 1)γ
min{β̂i, 1}

i–1
∏

j=1

b̃jj

β̂j
; (12)

if k ∈ S, then

max
d∈[0,1]n

∥
∥M–1

D
∥
∥∞ ≤

n
∑

i=1

n – 1
min{β̂i,γ }

i–1
∏

j=1

b̃jj

β̂j
, (13)

where γ satisfies (5).

Example 1 Consider the family of BS-matrices for S = {1, 2}:

Mm =

⎡

⎢
⎢
⎢
⎣

2 1 1 1.5
– 2m

m+1 2 1
m+1

1
m+1

1 1 2 1
1 1 1 2

⎤

⎥
⎥
⎥
⎦

,

where m ≥ 1. Appropriate scaling matrices could be X = diag{γ ,γ , 1, 1}, with γ ∈ ( 3.5
3 , 1.5).

So M̃m := MmX can be written M̃ = B̃+
m + C̃m as in (3), with

B̃+
m =

⎡

⎢
⎢
⎢
⎣

2γ – 1.5 γ – 1.5 –0.5 0
– 2m

m+1γ – 1
m+1 2γ – 1

m+1 0 0
0 0 2 – γ 1 – γ

0 0 1 – γ 2 – γ

⎤

⎥
⎥
⎥
⎦

,

and

C̃m =

⎡

⎢
⎢
⎢
⎣

1.5 1.5 1.5 1.5
1

m+1
1

m+1
1

m+1
1

m+1
γ γ γ γ

γ γ γ γ

⎤

⎥
⎥
⎥
⎦

.

By computations, we have β̃1 = 3γ – 3.5, β̃2 = 2(γ –1)
m+1 , β̃3 = β̃4 = 3 – 2γ , l1(B̃+) =

max{ 2–γ

2γ –1.5 , 2mγ +1
2(m+1)γ –1 , γ –1

2–γ
}, β̂1 = 2γ – 1.5 – (2 – γ )l1(B̃+), β̂2 = 2γ – 1

m+1 , β̂3 = 3–2γ

2–γ
, and

β̂4 = 2 – γ . Obviously, Mm satisfies mik ≥ 1
4
∑4

j=1 mij for i = 1 and k = 4 (∈ S): 1.5 > 1.375,
which implies that Mm is not a B-matrix. Then bound (12) in Corollary 1 is given by

3γ

(
1

min{β̂1,γ } +
1

min{β̂2,γ }
b̃11

β̂1
+

1
min{β̂3,γ }

b̃11

β̂1

b̃22

β̂2
+

1
min{β̂4,γ }

b̃11

β̂1

b̃22

β̂2

b̃33

β̂3

)

,
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Table 1 Bound (4) and bound (7) form = 2, 20, 30, . . . , +∞
m 2 20 30 60 100 . . . +∞
Bound (4) 7.3125 51.1875 75.5625 148.6875 246.1875 . . . +∞
Bound (7) 48.1089 54.4704 54.8144 55.1699 55.3155 . . . 55.5375

which converges to a constant

3γ

(
1

3γ – 3.5
+

2γ – 1.5
(3γ – 3.5)γ

+
2(2 – γ )(2γ – 1.5)
(3 – 2γ )(3γ – 3.5)

)

with γ ∈ ( 3.5
3 , 1.5) when m → +∞. In contrast, bound (4) in Theorem 1, with the hypothe-

ses that m ≥ 2, is

(4 – 1) max{γ , 1}
min{β̃ ,γ , 1} =

3γ

2γ – 1
(m + 1)

and it can be arbitrarily large when m → +∞.
In particular, if we choose γ = 1.3, then bound (4) and bound (7) for m = 2, 20, 30, . . . ,

+∞ can be given as shown in Table 1.

Remark 1 From Example 1, it is easy to see that each bound (4) or (7) can work better
than the other one. This means it is difficult to say in advance which one will work better.
However, for a BS-matrix M with M̃ = B̃+ + C̃, where the diagonal dominance of B̃+ is weak
(e.g., for a matrix Mm with a large number of m here), we can say that bound (7) is more
effective to estimate maxd∈[0,1]n ‖M–1

D ‖∞ than bound (4). Therefore, in general case, for the
LCP(M, q) involved with a BS-matrix, one can take the smallest of them:

max
d∈[0,1]n

∥
∥M–1

D
∥
∥∞ ≤ min

{

(n – 1) max{γ , 1}
min{β̃ ,γ , 1} ,

n
∑

i=1

(n – 1) max{γ , 1}
min{β̂i, xi}

i–1
∏

j=1

b̃jj

β̂j

}

.

To measure the sensitivity of the solution of the P-matrix linear complementarity prob-
lem, Chen and Xiang in [5] introduced the following constant for a P-matrix M:

βP(M) = max
d∈[0,1]n

∥
∥(I – D + DM)–1D

∥
∥

P,

where ‖ · ‖p is the matrix norm induced by the vector norm for p ≥ 1.
Similarly to the proof of Theorem 2.4 in [1], we can also give new perturbation bounds

for BS-matrices linear complementarity problems based on Theorem 2.

Theorem 3 Let M = [mij] ∈ R
n×n be a BS-matrix and B̃+ = [b̃ij] be the matrix given in

Lemma 2. Then

β∞(M) ≤
n

∑

i=1

(n – 1) max{γ , 1}
min{β̂i, xi}

i–1
∏

j=1

b̃jj

β̂j
,

where β̂i = b̃ii –
∑n

k=i+1 |b̃ik|li(B̃+), and
∏i–1

j=1
b̃jj
β̂j

= 1 if i = 1.
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Similarly, by Corollary 1 and Theorem 3, we can derive the following corollary.

Corollary 2 Let M = [mij] ∈ R
n×n be a BS-matrix that is not a B-matrix, and let k, i ∈ N

with k �= i such that mik ≥ 1
n
∑n

j=1 mij. If k ∈ S, then

β∞(M) ≤
n

∑

i=1

(n – 1)γ
min{β̂i, 1}

i–1
∏

j=1

b̃jj

β̂j
;

if k ∈ S, then

β∞(M) ≤
n

∑

i=1

n – 1
min{β̂i,γ }

i–1
∏

j=1

b̃jj

β̂j
,

where γ satisfies (5).

3 Conclusions
In this paper, we give an alternative bound for maxd∈[0,1]n ‖(I – D + DM)–1‖∞ when M
is a BS-matrix, which improves that provided by García-Esnaola and Peña [1] in some
cases. We also present new perturbation bounds of BS-matrices linear complementarity
problems.
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