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Abstract

It is known that the concept of ratio monotonicity is closely related to log-convexity
and log-concavity. In this paper, by exploring the log-behavior properties of a new
combinatorial sequence defined by Z.-W. Sun, we completely solve a conjecture on
ratio monotonicity by him.
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1 Introduction
To be self-contained in this paper, let us first review some necessary and important con-
cepts.

Let {z,},>0 be a number-theoretic or combinatorial sequence of positive numbers. It is
called (strictly) ratio monotonic if the sequence {z,/z,-1},>1 is (strictly) monotonically in-
creasing or decreasing. The concept of ratio monotonicity is closely related log-convexity
and log-concavity. A sequence {z,}%°, is called log-convex (resp. log-concave) if forall n > 1,

2 2
Zu-1Zni1 > 2, (resp.zp-1zu < 7z,,). (1.1)

Correspondingly, if the inequality in (1.1) is strict, then we call the sequence {z,,}32, strictly
log-convex (resp. log-concave).

Clearly, a sequence {z,}7°, is (strictly) log-convex (resp. log-concave) if and only if the se-
quence {Zzy+1/2n}u>0 is (strictly) increasing (resp. decreasing). So, to study the ratio mono-
tonicity is equivalent to study the log-convexity and log-concavity; see [1].

In recent years, Sun [2, 3] posed a series of conjectures on monotonicity of sequences of
the forms {z,,11/2,}72 0, { &/Zn} =1, and { "Y/z,41/ /2y )} nz1- It is worth mentioning that many
scholars have made valuable progress on this topic, such as Chen et al. [4], Hou et al. [5],
Luca and Sténica [6], Wang an Zhu [1], Sun et al. [7], and Zhao [8].

Sun [2] posed a conjecture on ratio monotonicity of the sequence

=S (VYL oo (1.2)
n_k=0k k )2k-1 —~ 7770 ’

He conjectured that the sequence {R,}%°, is strictly ratio increasing to the limit 3 + 2+/2
and that the sequence {{/R,}5, is strictly ratio decreasing to the limit 1.
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It is worth noting that Sun [2] also put forward a similar conjecture on the ratio mono-

tonicity of the sequence

s :Xn:(”>2<2k)(2k+1) n=0,1,2 (1.3)
" k) \k ’ bl '

k=0

By using a result on the sequence {S,};°, in [9], Sun et al. [7] deduced a three-term recur-
rence for S, and thus completely solved this conjecture on {S,}%,.

However, the ratio monotonicity conjecture on the sequence {R,}°, can not be attacked
with the methods of Sun et al. [7] since there exists no three-term recurrence for R,. In
fact, we can easily acquire a four-term recurrence for R,,. For example, using the holonomic
method in [10] or the Zeilberger algorithm [11, 12], we can find the following recurrence:

(n+3)R,s3 — (71 + 13)R,140 + (7 + 15)R1 — (m + 1R, = 0. (1.4)

In this paper, by studying the log-behavior properties of the sequence {R,}}°, we com-

pletely solve the ratio monotonicity conjecture on {R,}5%,.

Theorem 1.1 The sequence {R,.1/R,}.2 is strictly increasing to the limit 3 + 24/2, and the
sequence { "/R,.1/ IR, Y2 is strictly decreasing to the limit 1.

In what follows, in Section 2 we first introduce the interlacing method which can be used
to verify log-behavior property of a sequence. In Section 3 we establish a lower bound and
an upper bound for R,,,1/R,. We will give and prove some limits and log-behavior prop-
erties related to the sequence {R,}52, in Section 4 and finally prove Theorem 1.1 therein.

In the end, we conclude this paper with some open conjectures for further research.

2 The interlacing method
The interlacing method can be found in [13], yet it was formally considered as a method to
solve logarithmic behavior of combinatorial sequences by Dosli¢ and Veljan [14], in which
it was also called the sandwich method.

Let us give a simple introduction to this method to be self-contained in our paper. Sup-
pose that {z,},2, is a sequence of positive numbers and let

z
“ n>1.

qn = )
Zy-1
By the inequality in (1.1), the log-convexity or log-concavity of a sequence {z,},>¢ is

equivalent, respectively, to g, < g,.1 or g, > gy, for all n > 1. Generally, it is not easy

to prove the monotonicity of {g,},>1, yet if we can find an increasing (resp. a decreasing)

sequence {b,},>o such that
bn—l S qn E hn (reSP~ hn—l Z qn 2 bn) (21)

for all m > 1, or at least for all » > N for some positive integer N, then we can show its

monotonicity. Based on these arguments, the following proposition is obvious.
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Proposition 2.1 Suppose that {z,},>0 is a sequence of positive numbers. Then for some

positive integer N, the sequence {z,},>n is log-convex (resp. log-concave) if there exists an
increasing(resp. a decreasing) sequence {b,},>o such that
bn—l =qn= hn (7"9511 bn—l > qn = bn)

form>=N+1.

3 Bounds for R,.1/R,,

In this section, we establish lower and upper bounds for R,,,1/R,,.

Lemma 3.1 Letr, = I% and

b =3 4243~ 3(41+/2 + 58)
(142 + 20)n

9 3
= (3— —) +ﬁ(2— —>.
2n n
Then, for n > 3, we have

b,<r,<by.

Proof The recurrence relationship (1.4) implies that

Rm3_7n+13 m+15R,.1 n+1 R,

= + for n > 0.
R0 n+3 n+3 Ryo n+3R,0m
This equation can be rewritten as follows:
7n+13 7m+15 1 n+1 1
Yo = - — + . . (3'1)
n+3 n+3 Iy n+3 rurpa

Now we proceed the proof by induction.
First, note that

_3

5 87
by = o V2~291421, by = §(3 +24/2) ~ 3.64277, —

rs = —= A 3.48,
725

so it is easy to verify that b3 < r3 < b,.

Suppose that b, < ry, < by41 for n < k+ 1. It suffices to show that ry, < bry3 and ryn > biyo
We have

Tik+2 — bk+3

7k+13 7k+15 1 k+1 1
- . — .

k+3 k+3  rks1 k+3 0 e
7k+13 7k+15 1 k+1 1

i AR b
S Tk+3  k+3 bua k+3 bibgy <P

- bk+3

_ (Tk +13)bibyi1bisa = (Tk + 15)bibysy + (k + 1)byya — (k + 3)bicby,1bis2biss
- (k + 3)bibii1bg.n
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_ 3(2k(-4(179 + 127+/2)k + 1110v/2 + 1573) — 844+/2 — 1197)

N 16k(k + 1)(k + 2)(k + 3)brbis1brsn

 —24(179 + 127+/2)k* + 3(3146 + 2220+/2)k — 3(1197 + 844+/2)
- 16k(1 + k)(2 + k) (k + 3)bibi,1bisn '

Let f(x) = ax® + bx + ¢, where a = —24(179 + 127+/2), b = 3(3146 + 2220+/2), and ¢ =
—3(1197 + 844+/2). So we obtain that f(k) < f(3) = —3(4647 + 3328+/2) < 0 for k > 3 since
—% = %% ~ 1.09549. This gives us g3 — brys < 0.

The proof of ri,p > by, is similar, so we omit it for brevity.

According to the above analysis and the inductive argument, it follows that

b,<r,<b,,1 foralln>3. O

Remark 3.2 This bound was found by a lot of computer experiments. It is interesting to

explore a unified method that can be used to find lower and upper bounds for the sequence

{221 }n>0, where {z,},>0 is a sequence satisfying a four-term recurrence.
4 Log-behavior of the sequence {R,}°,
In this section, some log-behavior and limits properties can be deduced by using

Lemma 3.1.

Theorem 4.1 The sequence {R,}.>, is strictly log-convex. Equivalently, the sequence

{Ry+1/R, Y25 is strictly increasing.
Proof First, note that R3 — RyRy = 25* —7 - 87 = 16 > 0. By Lemma 3.1 we have

Rn+1
b, <r,= <by1 <ruys1<byyn form>3.

n

This gives that the sequence {r,}°; is strictly increasing, which implies that {R,}}°, is

log-convex by Proposition 2.1. O

Since

lim b, = lim b,,; =3 + 22,
n—00

n—00

the following corollary easily follows.

Corollary 4.2 For the sequence {R,}5, we have

R
lim I’;” =3+2V2.

n—00 n

Theorem 4.3 The sequence {/R,}52, is strictly increasing. Moreover,

lim /R, =3 +2+/2. (4.1)
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Proof By Theorem 4.1 we have

Rn+1
>

n n-1

for n > 3.

Since R; = 1, we can deduce that

Ry, R R, R, Rui\"
R,,=—2~—3|:-R1-—4--- :|<R3< 1) for n > 1. (4.2)
R Ry R3 R, R,

For n > 11, we have

R,.1 _ Rip 16,421,831 \/—
=+/Rs.

> = =

> it (4.3)
R, — R 3242377

Combining (4.2) and (4.3) gives us

R <R, forn>11.

This is equivalent to

(RZ*l)m<( i )m forn>11,

n+l

that is,

\”/Ri, < "YR,1 form>11.

by computing the value of R"*! — R"

For 1 < n < 10, we can simply prove that R"*! < R" R

n+l

Here are some examples:

RE-Ry=1-7=-6;

R — R3 =343 — 625 = —282;

R3 — R3 = 390,625 — 658,503 = —267,878;

RS — R = 4,984,209,207 — 1,268,163,904,241,521 = —673,1904,874;
RS — RS = 1,268,163,904,241,521 — 1,268,163,904,241,521

=-3,367,343,548,629,278.

oo

Moreover, recall that, for a real sequence {z,};°, with positive numbers, it was shown that

Zn+1

lim inf < lim inf ¥z, (4.4)
n—00 Zn n—00
and
z
lim sup ¥/z, < lim sup il (4.5)
n— 00 n— o0

Zn
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see Rudin [15, Section 3.37]. The inequalities in (4.4) and (4.5) imply that

Zn

lim ¥z, = lim
n—00 n—>00 z, 1

if limy,—, oo Z_: exists. Now (4.1) follows by Corollary 4.2.

Zn

This completes the proof. O
Theorem 4.4 For the sequence {J/R,}52,, we have

li n+\/1 Rn+1
1m =

n—>oo /R,

1.

Proof Consider

n
R,.1=R;3 Hrk for n > 3.
k=3

Hence, by Lemma 3.1 it follows that

Ry [ [bx < Rut <R ] [ b

k=3 k=3
We have
( ”*«I/R,Hl) logR,,1 logR,
log = -
IR, n+1 n
L 10g(Rs [Tis bit) _ Tog(Rs [Tics by)
n+1 n

_logRs + Y islogbi  logRs + ZZ;; log by
- n+1 n

and

n+\/1 Rn+ 1 Rn+ 1 Rn
log< 1> = 08 fni1 _ 108

VR, n+1 n

 Jog(Rs [Tis bi) _ log(Rs [Tics bic)
n+1 n

_logRs + )/ sloghy  logRs + S s log by
N n+1 n '

Since b, is an increasing function with respect to # and positive for all # > 3, we have

bnbn+1 b3b4 5
—=-03+2v2)> 1.
b Z T —0t2VY>

This gives us that

bnbn+1 0
>y,
bs

n n-1
Zlog bri1 — Zlog by =log
k=3 k=3
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and thus we have

n n-1
Z log b1 > Z log by. (4.6)
k=3 k=3
On the one hand, using inequality (4.6), it follows that, for n > 3,

logRs + ) y_3log by, ~ log R3 + ZZ;; log by
n+1 n

“ 1 1
> <10gR3 + Zlogbk+1> (n 1" ;)

k=3

_ _logRs + Y ko3 log b
n(n+1)

logR3 + (n—2)log by
> —

n(n+1)

On the other hand, for n > 3, we can deduce that

logR3 + Y 3 log b ~ log R3 + ZZ:; log by
n+1 n

logb, +logb,,1 —logbs
<

n
210g bn+1 - 10g bg
<—.
n

Since b,, is bounded, we have

logR; + (n—2)loghs 0

T
e n(n+1)
and
. 2logby,.1 —logbs
lim —————=° -0,
n—00 n

which implies that

n n-1
lim <logR3 + Y i slogbin _ logRs + D io3 log bk> _o. (4.7)
n—00 n+1 n
Similarly, with the same argument, we can also obtain that
-1
lim <logR3 + Zng loghy logRs + 37175 log bk+1> o @5)
n—00 n+ n

The limits (4.7) and (4.8) imply that

lim log( " R"”) =0,
n—00 IR,
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and thus
fim VRt
n—>00 m - O
Theorem 4.5 The sequence {J/R,}>2; is strictly log-concave. Equivalently, the sequence
n+l/p—
{ MIRL:H }o0 5 is strictly decreasing.

Before giving the proof of Theorem 4.5, we have to use to a criterion for log-concavity
of sequences in the form of { {/z,}%; this criterion was established by Xia [16].

Theorem 4.6 ([16, Theorem 2.1]) Let {z,}:°, be a positive sequence. Suppose that there
exist positive number k, positive integer Ny, and a function f(n) such that ko < Ng + Ny +2
and, for n > Ny,

(i) 0<f(n)< Z‘;—fl <f(n+1)

.y f(n+1) ko .
(ll) f(n+3) >1- n2+n+2’

___ko N2+Ny+2 £2Np 2
(i) (1 N3+N0+2) 0 70 (No) > ziy, -

Then the sequence {{/z},2y, is strictly log-concave.

We are now in a position to prove Theorem 4.5.

Proof of Theorem 4.5 Let f(n) = b, = V22 - %) - ﬁ + 3. First, by Lemma 3.1 we

have

R,
<f(n+1) forn>5.

0<f(n)< R

Note that

f+1) 12 6
f(n+3)_2n+1_nJrl

12 6 4
1) -(1-——
2n+l =m n+n+2

_ 2n-3)(n+2)
T nun+ D2 +n+2)

and

>0 forn>4.

So, taking ko = 4, condition (ii) in Theorem 4.6 is satisfied.
Moreover, note that

4 824842
(1 - m) f%(8) —R2 =-1.5798 x 10°
+8+
and

4 924942
(1 - m) f'8(9) = R} = 6.41905 x 10°.
+9+
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Therefore, with Ny = 9, ko = 4, and f(n) = b(n — 1), all conditions (i), (ii), and (iii) in Theo-
rem 4.6 are satisfied. This implies that the sequence {{/R, }7, is strictly log-concave, which
is equivalent to that {% Vg”*l g is strictly decreasing by Proposition 2.1.

However, we can verify that, for 5 <n <38,

n+1/Rn+1 N n+2/Rn+2

since
6 R6 7 R7 7 R7 8 Rg
- x0.00293164, - 2 0.00445875,
5 RS 6 R6 6 R6 7 R7
8 R8 9 R9 9 R9 10, RlO
- ~ 0.00452784, - ~ 0.00404051.
7/R7 8 RS 8 RS 9 R9
This completes the proof. O

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 By Theorems 4.1 and 4.2 we confirm the first part of Theorem 1.1.
Moreover, Theorems 4.5 and 4.4 imply the second part of Theorem 1.1. This ends the
proof. d

We conclude the paper with some conjectures for further research.

Conjecture 4.7 The sequence {
n>4.

Ryl . . . .
7t buza is log-concave, that is, R, is ratio log-concave for

Conjecture 4.8 The sequence {R% — R,,1R,_1},>¢ is 00-log-concave.
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