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Abstract

Let X, i > 1 be a sequence of random variables with different distributions F;,i > 1.
The partial sums are denoted by S, = >, X, n > 1. This paper mainly investigates
the precise large deviations of Sy, n > 1, for the widely orthant dependent random
variables X;,i > 1. Under some mild conditions, the lower and upper bounds of the
precise large deviations of the partial sums S,, n > 1, are presented.
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1 Introduction

Let X; (i > 1) and X be real-valued random variables (r.v.s) with distributions F; (i > 1)
and F and finite means y; (i > 1) and u, respectively. Let S, = >/, X;, n > 1, be the partial
sums. This paper investigates the precise large deviations for these partial sums S,;, n > 1.
That is to say, the paper studies the asymptotics of P(S,, — E(S,,) > x), which holds uniformly
for all x > yn for every fixed y > 0 as n tends to co. In order to give the main results of this
paper, we will introduce some notions and notation.

For a proper distribution V on (—00,00), let V = 1 -V be its tail. Throughout this paper,
all limit relations without explicit limit procedure are with respect to n — oo. For two
positive functions a(x) and b(x), we write a(x) = o(b(x)) if lim,_, o, a(x)/b(x) = 0 and write
a(x) = O(b(x)) if lim sup,._, ., a(x)/b(x) < cc. 14 is the indicator function of the event A. For
a real-valued number ¢, let ¢t = max{0, ¢} and ¢~ = —min{0, c}.

In this paper, we consider the random variables with heavy-tailed distributions. Some
subclasses of heavy-tailed distribution classes will be introduced in the following. If for all
B >0,

/ eP*V(dx) = oo,

(o]

we say that the r.v. & (or its corresponding distribution V) is heavy-tailed; otherwise, the
r.v. & (or V) is called light-tailed. A subclass of heavy-tailed distribution class is the class 2,
which consists of all distributions with dominantly varying tails. Say that a distribution V'

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


https://doi.org/10.1186/s13660-018-1613-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1613-2&domain=pdf
mailto:beewky@vip.163.com

Gao et al. Journal of Inequalities and Applications (2018) 2018:21 Page 2 of 18

on (—00,00) belongs to the class Z if, for any y € (0, 1),

)
msup — <00
xX—>00 V(x)

Another slightly smaller class is the class ¢, which consists of all distributions with con-
sistently varying tails. We say that a distribution V' on (-00, c0) belongs to the class €
if

V(xy) \_/(xy) _

limlimsup —— =1, or, equivalently, limliminf — 1.
¥/ x—so0 V(x) NI x—>00 V(x)

A subclass of the class € is the class of distributions with regularly varying tails. A distri-
bution V on (—00, 00) is said to be regularly varying at infinity with index «, denoted by
VeA,,if

Vv
lim L% _

x—>00 V(x)

holds for some 0 <« < oo and all y > O (see, e.g., Bingham et al. [1]).

For a distribution V, denote the upper Matuszewska index of V' by

_ v
| with V.(y) i= liminf L)
x—00 V(x)

logV,
Jiy=—lim OV )

,y> 1.
y—oo  logy r>

Let Ly =limy; V.(y). From Chapter 2.1 of Bingham et al. [1], we know that the following

assertions are equivalent:
i Veg; (i) 0<Ly<1; (iii) J; < oo.

From the definition of the class ¢, it holds that V € € if and only if Ly = 1.

When {X;,i > 1} are independent and identically distributed r.v.s, some studies of the
precise large deviations of the partial sums S,;, # > 1, can be found in Cline and Hsing [2],
Heyde [3, 4], Heyde [5], Mikosch and Nagaev [6], Nagaev [7], Nagaev [8], Ng et al. [9] and
so on. In Paulauskas and Skucaité [10] and Skucaité [11], the precise large deviations of
a sum of independent but not identically distributed random variables were investigated.
This paper considers the dependent r.v.s with different distributions. We investigate the

r.v.s with the wide dependence structure, which is introduced in Wang et al. [12].

Definition 1.1 For the r.v.s {§,,n > 1}, if there exists a finite real sequence {gy;(n),n > 1}

satisfying, for each integer #n > 1 and for all x; € (—00,00), 1 <i <n,
P(ﬂ{éi > xi}> <gu(m [ [ P& > %), (1.1)
i=1 i=1

then we say that the r.v.s {§,,n > 1} are widely upper orthant dependent (WUOD) with

dominating coefficients gy;(n),n > 1; if there exists a finite real sequence {g;(n),n > 1}
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satisfying, for each integer #n > 1 and for all x; € (—00,00), 1 <i <,

P(ﬂ{a < x,-}) <am[]PE <) (1.2)
i=1 i=1

then we say that the r.v.s {§,,n > 1} are widely lower orthant dependent (WLOD) with
dominating coefficients g; (1), n > 1; if they are both WUOD and WLOD, then we say that
the r.v.s {§,,n > 1} are widely orthant dependent (WOD).

Definition 1.1 shows that the wide dependence structure contains the commonly used
notions of the negatively upper/lower orthant dependence (see Ebrahimi and Ghosh [13]
and Block et al. [14]) and the extendedly negatively orthant dependence (see Liu [15], Chen
etal. [16] and Shen [17]). Here, we present an example of WOD r.v.s, which is the example
of Wang et al. [12].

Example 1.1 Assume that the random vectors (§,,71,),n = 1,2,..., are independent and,
for each integer n > 1, the r.v.s §, and 7, are dependent according to the Farlie-Gumbel-
Morgenstern copula with the parameter 6, € [-1,1]:

Co,w,v) = uv + 0,uv(1 —u)(1-v), (u,v)€[0,1]%

which is absolutely continuous with density

32C9n (u, V) _

1+6,(1-2u)1-2v), (4,v)el0,1]?
du dv

co, (1, v) =

(see, e.g., Example 3.12 in Nelsen [18]).

Suppose that the distributions of &, and 7n,,n =1,2,..., are absolutely continuous, de-
noted by Fy, and F,,,n = 1,2,..., respectively. Hence, by Sklar’s theorem (see, e.g., Chap-
ter 2 of Nelsen [18]), for each integer # > 1 and any x,, y, € (—00, ),

P(%'n S Xy Mn = yn) = C@,, (FE,, (x,,),Fn,, (yn))
= PSn (xn)an (yn)(l + HnF‘_EV,(xn)F_nn(yn))

and
1 1
P(&; > Xy My > V) = / / co, (u,v) dudv
Feyy (Xn) J Fyyy )
= F;, (%) Fy, () (1 + 0, Fc, (%) Fy, (7))

Therefore, for each n > 1, we have

a(0y):=  sup P&y < %1 = )
! %p1,yn €(—00,00) P(én = xn)P(nn Syn)

P&, > %, 11 > Yn)
= sup
Xn,yn €(—00,00) P&, > x,)P(n, >yn)

1+6, 0<6,<1;
1 -1<6,<0,
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where, by convention, 2 = 1. Thus, for each integer 7 > 1, we have

sup P& <x,m Y180 < %o iy < W)
%;,)i €(=00,00),i=1,..,n H?:l P(Et = xz’)P(ni = yz)

l_[z 1P$l§x”7’), l 1_[61(9)

X9 €(—00,00),i=1,....n 1_[, 1P & <x)P(n; <yz il

and

sup (51 SXLN S Y1 En S X)
%;,Y1€(~00,00),i 1 H P(sl = xl)P(m <yL)P(En = xn)

-1
- sup I_Hl 1 P(Et f Xi ni <yl 1_[6{
sieCooooizton [ P& < x)Pi <y1) 1.4

where, by convention, ]_[?:1 = 1. Similarly, for each integer n > 1, we have

P& > x1,m1 > Y1560 > Xy T > Yn)
sup | |a(9)
%Y1 €(~00,00),i=1,....n 1_[211 P(&; > x;)P(n; > J’z

and

n-1
P ’ 100
sup (El >XLM > Yoo €n > Xn) a(6).

%,);€(~00,00),i=1,....n l_[ P(éz > %) P(n; >yl)P(§n > xn) i=1

Hence, for the r.v.s 1,711, ...,&4, 1y, . .., We can take

am) = quln = { @@ m=2m
M7 a@) n=2m-1,

which makes relations (1.1) and (1.2) be satisfied. That is to say, the r.v.s &1, 91,..., &0 s - -+
are WLOD and WUQOD.

The wide dependent structure has been applied to many fields such as risk theory (see,
e.g., Liu et al. [19], Wang et al. [20], Wang et al. [12], Mao et al. [21]), renewal theory (see,
e.g., Wang and Cheng [22], Chen et al. [23]), complete convergence (Wang and Cheng
[22], Qiu and Chen [24], Wang et al. [25], Chen et al. [23]), precise large deviations (see,
e.g., Wang et al. [26], He et al. [27]) and some statistic fields (see, e.g., Wang and Hu [28]).

Wang et al. [12] gave the following properties of the wide dependent r.v.s.

Proposition 1.1 (1) Let {§,,n> 1} be WLOD (WUOD) with dominating coefficients
gr(n)(gu(n)),n = 1. If {f,(-), n > 1} are nondecreasing, then {f,(§,),n > 1} are still WLOD
(WUOD) with dominating coefficients g (n)(gy(n)),n > 1. If {f,(-),n > 1} are nonincreas-
ing, then {f,(&,),n > 1} are WUOD (WLOD) with dominating coefficients gr(n)(gy(n))

n>1.
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(2) If (£, n > 1} are nonnegative and WUOD with dominating coefficients gy (n),n > 1,

then, for each n > 1,

E[[& <gum [ ] E&:
i=1 i=1

In particular, if {§,,n > 1} are WUOD with dominating coefficients gy (n),n > 1, then, for

eachn>1andanys>0,

EeXp{sn&} <gu(n) HEGXP{S&}«

i=1 i=1

2 Main results

Now many studies of precise large deviations are focused on the dependent r.v.s. One can
refer to Wang et al. [29], Liu [30], Tang [31], Liu [15], Yang and Wang [32], Wang et al.
[20] and so on. Among them, Yang and Wang [32] consider the precise large deviations
for extendedly negatively orthant dependent r.v.s, and Wang et al. [20] investigate the pre-
cise large deviations for WUOD and WLOD r.v.s. Their results have used the following

assumptions.

Assumption 1 For some 7 >0,

" F " F
0 < ¢y :=liminf infM <limsup supM =: ¢y < 00,
n—>00 x=T I’IF(X) n—oo x>T }’IF(X)
1 Fi(— nFi(-
0 < c¢3 :=liminf infw <limsup supM =:1C4 <00
n—oo x>T nF(—x) n—ooo x>T MNF(—x)

Assumption 2 For all i > 1, F; € Z. Furthermore, assume that for any ¢ > 0, there exist
some w; = wy(e) > 1 and x; = x1(¢) > 0, irrespective of i, such that foralli > 1,1 <w <w,

and x > xq,

or, equivalently, for any ¢ > 0, there exist some 0 < wy = wy(e) < 1 and x; = x,(¢) > 0, irre-

spective of i, such that forall i > 1, w, <w <1 and x > x,,

Assumption 3 Foralli > 1, F; € 2. Furthermore, assume that for any 0 < § < 1, there exist
some v; = v1(8) > 1 and x; = x1(8) > O, irrespective of i, such that foralli>1,1<v <,

and x > xq,
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or, equivalently, for any § > 1, there exist some 0 < v, = v5(8) < 1 and x; = x5(8) > O, irre-
spective of i, such that forall i > 1, v, <v <1and x > x,,

For the lower bound of the precise large deviations of the partial sums S,;, # > 1, of the
WOD r.v.s, when u; =0, i > 1, under Assumptions 1 and 3 and some other conditions,
Theorem 2 of Wang et al. [20] obtained a lower bound: for every fixed y > 0,

e P(S, > x)
liminf inf ————>
n—00 x>yn Zi:l LF,'Fi(x)

The following result will still consider the WOD r.v.s X; with finite means u;, i > 1, and
only use Assumption 1 and some other conditions, without using Assumption 3, to obtain
a lower bound of the precise large deviations of the partial sums S,,, n > 1.

Theorem 2.1 Let {X;,i > 1} be a sequence of WOD r.v.s with dominating coefficients
gu(n) (n>1) and g1 (n) (n > 1) satisfying, for any o € (0,1),

lim gu(n)(nf(n))a =0, (2.1)
n—00
and for any B € (0,1),
lim gL(n)n”S =0. (2.2)
H—0Q
The distributions {F;,i > 1} and F satisfy Assumption 1, F € 9 and
xF(-x) = o(l_f(x)). (2.3)
Suppose that, for some r > 1,

supE((1i — X;)*)" < o0.

i>1
Then, for every fixed y > 0,

liminf inf w

= > ciLr. 2.4
n—00 x>yn nF(x) = HEE 249

For the upper bound of the precise large deviations of the partial sums S,, n > 1, of the
WUOD r.v.s, when u; =0, i > 1, under Assumptions 1 and 2 and some other conditions,
Theorem 1 of Wang et al. [20] gave an upper bound: for every fixed y >0,

. P(Sy > x)
msup Ssup —————
n—> oop le})n Z?zl L;"L.IFi(x)

In the following result, we will use the following Assumption 4 to replace Assumption 2
and give an upper bound of the precise large deviations of the partial sums S,;, n > 1, of
the WUOD r.v.s. Assumption 4 is easier to verify than Assumption 2.
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Assumption 4 The expectations j;, i > 1, satisfy Y -, iu; = O(n).

Note that if sup,,; 4; < 0o then Assumption 4 is satisfied. Particularly, the identically
distributed random variables satisfy Assumption 4.

Theorem 2.2 Let {X;,i > 1} be a sequence of WUOD r.v.s with dominating coefficients
gu(n) (n > 1) satisfying (2.1). The distributions {F;,i > 1} and F satisfy Assumptions 1 and
4 and F € 9. Then, for every fixed y > 0,

P(S, — E(Sy) > x) <

lim sup sup et (2.5)

n—o0 x>ymn nl_-"(x)

If we strengthen Assumption 1 to the following assumption, Assumption 4 can be
dropped in Theorem 2.2.

Assumption 1*

" F " F
O<cs:= liminfinfM < limsup SUpM =:¢g < OO,
n—oo x>0  pF(x) n>oo x20 MF(x)
" Fi(— " Fi(—x
0<cy:= liminfinfM < limsup supM =:cg < 00.
n—o0 x>0 nF(—x) nsoo x=0 MF(=x)

Theorem 2.3 Let {X;,i > 1} be a sequence of WUOD rv.s with dominating coefficients
gu(n) (n > 1) satisfying (2.1). The distributions {F;,i > 1} and F satisfy Assumptions 1*
and F € 9. Then, for every fixed y > 0,

. P(Sn _E(Sn) > x)
limsup sup —————

— < C6Lp_1.
n—->o00 x>yn nF(x)

When {X;,i > 1} are independent but non-identically distributed r.v.s, then gy (n) =
g.(n)=1,n>1,and (2.1) and (2.2) hold. By Theorems 2.1 and 2.2, the following two corol-
laries can be obtained.

Corollary 2.1 Let {X;,i > 1} be a sequence of independent but non-identically distributed
rv.s. The distributions {F;,i > 1} and F satisfy Assumption 1, F € € and (2.3). Suppose that,
Sorsomer > 1, sup.y E((n; — X;)*)" < 0o. Then, for every fixed y >0,

liminf inf DS ES) > %)

= >c. 2.6
n—-o0o x>yn nF(x) =" ( )

Corollary 2.2 Let {X;,i > 1} be a sequence of independent but non-identically distributed
rv.s. The distributions {F;,i > 1} and F satisfy Assumptions 1 and 4 and F € €. Then, for
every fixed y >0,

P(S, —E(S,) >x) _

lim sup sup . (2.7)

n—oo x>yn nF(x)
Remark 2.1 In Theorem of Paulauskas and Skucaité [10], the case that {X;,i > 1} is a
sequence of independent but non-identically distributed r.v.s was also considered, and
the following result was obtained.
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Let {X;,i > 1} be asequence of independent but non-identically distributed r.v.s. Assume
that:
(1) wi=0;
(2) F € Z_4 for a > 1 and the distributions {F;,i > 1} and F satisfy Assumption 1 for
¢=1,i=1,2,34.
(3) There exists a sequence of constants a, such that a,, 1 0o, supa,n
3% a’E|X,|P < oo for some 1< p < 2.

n=1

Then

1 < 00 and

P(S, > t,) _1

s nE(t,) (2.8)

for all sequences t, € (00, 00) satisfying the conditions limsup,,_, 1, < oo and Fi(t,) =
o(nF(t,)),i > 1.

From the proof of Theorem of Paulauskas and Skucaité [10], we note that ¢, should be
positive.

If conditions (1) and (2) hold, then the conditions of Corollary 2.2 are satisfied. If we let
a =lim,_, - supnt;!, then a € (0,00) and £, > (a + 1)"'n for large n. Thus, it follows from

(2.7) that
P(S, >t,
lim sup g <1
n—>00 nF(t,)

which means that the upper bound of P(S, > t,) in (2.8) can be obtained from Corol-
lary 2.2.

Comparing Corollary 2.1 and Theorem of Paulauskas and Skucaité [10], it can be found
that they give the lower bound of the precise large deviations of S,,, # > 1, under different
conditions.

When {X;,i > 1} and X are identically distributed r.v.s, Assumptions 1 and 1* are satis-
fied. The following two corollaries can be obtained directly from Theorems 2.1 and 2.3.

Corollary 2.3 Let {X;,i > 1,X} be identically distributed rv.s with common distribution
F € 9. Assume that {X;,i > 1} are WOD r.v.s with dominating coefficients gy (n) (n > 1)
and g (n) (n > 1) satisfying (2.1) and (2.2). If E(X~)" < 0o for some r > 1 and relation (2.3)
holds, then for every fixed y > 0,
P(S, - E(S,
fiminf inf ZC1ZEGD>2)

n—>00 x>yn nF(x)
Corollary 2.4 Let {X;,i > 1,X} be identically distributed r.v.s with common distribution
F € 9. Assume that {X;,i > 1} are WUOD r.v.s with dominating coefficients gi;(n) (n > 1)
satisfying (2.1). Then, for every fixed y >0,

P(Sn _E(Sn) >x) < L_1

lim sup sup <L;.

n—->oo x>yn nl_-"(x)

Remark 2.2 (1) We note that, for any fixedd >0and r > 1,

E(d-X)") <00 & EX7) <oo. (2.9)
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In fact, on the one hand,

E((d-X)*)" =E(d - X) Lo<x=a) + E(d - X) Lix.0)

>E(X)".
On the other hand, by C,-inequality, we have
E(d-X)") <E(d+X") <277Md + E(X)").

Thus (2.9) can be obtained.

(2) Corollaries 1 and 2 of Wang et al. [20] consider the identically distributed r.v.s X; (i >
1) with finite mean w; = 0 (i > 1). Corollaries 2.3 and 2.4 deal with the case that u; # 0
(i > 1). We note that when u; #0, i > 1, Corollaries 2.3 and 2.4 cannot be obtained directly
from Corollaries 1 and 2 of Wang et al. [20].

3 Proofs of results

3.1 Some lemmas

Before proving the main results, we first give some lemmas. The following lemma is a
combination of Proposition 2.2.1 of Bingham et al. [1] and Lemma 3.5 of Tang and Tsitsi-
ashvili [33].

Lemma 3.1 IfV € 9, then
(1) for each p > J;;, there exist positive constants A and B such that the inequality

AV p
()
V(x) y
holds for all x > y > B;
(2) it holds for each p > J, that

xP = o(\_/(x)).

Lemma 3.2 Let {&, k > 1} be WUOD r.v.s with dominating coefficients gy;(n) (n > 1), with
distributions {Vi,k > 1} and finite mean 0, satisfying sup;-, E(§{)" < oo for some r > 1.
Then, for each fixed y > 0 and p > 0, there exist positive numbers v and C = C(v,y), irre-
spective of x and n, such that foralln =1,2,...and x > yn,

P(Z = x) <> Vilva) + Cgu(n)x®.

k=1 k=1

This lemma extends Lemma 2.3 of Tang [31] to the WUOD r.v.s with different distri-
butions. The proof is similar to the proof of Lemma 2.3 of Tang [31]. However, for the

completeness of the proof, we give the following proof with some modifications.
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Proof If we prove the result is correct for all n > ny and x > yn, where ny is a positive

integer, then using the inequality
n n x
P > < P > —
(zsk_x) =y p(az L)
k=1 k=1
n
—f x
=ka<—>, n=1,2,..., 1, (3.1)
no

the result can be extended to alln =1,2,....
For any fixed v > 0, we denote é; = min{&,vx}, k = 1,2,..., by Proposition 1.1(1), they
are still WUOD with dominating coefficients g;;(n), n > 1. Using a standard truncation

argument, we get

n n ;
P(kX—;& Zx) -f ;Sk =% gfé‘nék g vx) +P<Z§k >x, lrélfsxnék < Vx)

k=1

< Vi(vx) + P(Z ‘.§~k > x) (3.2)

Now, we estimate the second term in (3.2). For a positive number /4, which we shall

specify later, using Chebyshev’s inequality and Proposition 1.1(2), we have

P(Z & > x) < gu(me ™ [ | E". (3.3)

k=1 i=1

For some 1 < g < min{r, 2}, Eé" is bounded from above by

0 VX ehu —1-hu .
/ (eh“ - 1) Vi(du) + / 4quq\/k(du) + (eh"x - 1) Vilvx) + huf +1,  (3.4)
—00 0 u

here u; = E£1,.0). For the first term in (3.4), since

hu
~1-h
Os%fu(ehu_gg_u forall u <0,

by the dominated convergence theorem, we have

Ll @) Vi) (0 - 1— hu o
}’% Y _}tl\ltr(l).[m TVk(du) + U = uy,

where u; = E&; 1y, <. Hence, there exists a real function «(-) with «(k) — 0 as 1 \ 0 such
that

0
/ (" = 1) Vildu) = (1 + a(h)) hu. (3.5)

oe]
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By the monotonicity of (" — 1 —hu)/u? for u € (0, 00), the second term in (3.4) is bounded
by

e 1 — hvx
(vx)4

E(&)", (3.6)

where & = max{&, 0}. Applying (3.5) and (3.6) to (3.4), from (3.3) we obtain that

P(Zs: . )
k=1
1-hvx

< gu(n)e_hx l_[{ (1 + oz(h))hu,: + WE(E,()

k=1

n

+ (" = 1) Vie(va) + huj + 1}

hvx

< gu(n)e’hx 1_[ exp{ (1 + a(h))hu,; + ﬁE(E;)q + (eh"" - 1)7/((1/96) + huj }
k=1

n hvx n "o
=gu(n) exp{Za(h)hu; + % ZE(S,:)[I + (ehw‘ 1) ) Vi(vx) - hx}, (3.7)

k=1 k=1 k=1

where at the second step we use the inequality s + 1 < ¢’ for all 5. In (3.7), take

vi-lxd
h=—1
"g(z“E(sk)q )

Since sup;-.; E(&)" < 0o, there exists a constant M, > 0, irrespective of x and #, such that
foralln=1,2,...,

By some calculation, we know that, for all large # such that for all x > yn,
1
|05(h)M1| = EJ/-

Then, for all large n and x > yn,

1 x
2 2'

Therefore, for all large n and x > y n, the right-hand side of (3.7) is bounded from above
by

1 q-1,q 1 q-1,q n 7
gu(n)eXp{ log( X 1> VI ) e Vi)

S EEY ) TV T S EE

1 | A1y )
Ty °g<ZZ_1E<s;>q ¥ )}
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1 v 30 Vi) Vil 7B
<gu(n) exp{ ot S EE) } <ZZ=1 E(S;:V)

= 1 v 30 Vi) vk o -5
aon| o S (o)

1 vqlxqzzzlvk(vx)}( i1y )21 .
X .

< gu(n) exp{ M + YL EE max=1 E(§{)4

Since, for each k= 1,2,... and for all x > 0,
EE)" = [ uVidd) = TG,
then the right-hand side of (3.8) is bounded from above by

2

q-1 ~% _ _
gu(me? (i) = Cgu(n)x’% < Cgu(mx7?,

max-1 E(§7)7
2 vicly L -1
where C =ev (W) 2 < 00. In the last step, we take a proper v > 0 such that “~ > p.
This completes the proof of this lemma. O

Lemma 3.3 Assumption 1* implies Assumptions 1 and 4.

Proof ltis clear that Assumption 1* implies Assumption 1. Now we prove Assumption 1*
implies Assumption 4. For sufficiently large 7, by Assumption 1*, we have

Z il < Z/ (F:(y) + Fi(-y)) dy
i=1 i-1 70
< Zn/ (cﬁf(y) + CgF(—y)) dy < oo,
0
which means that Assumption 4 holds. This completes the proof of this lemma. O

3.2 Proof of Theorem 2.1
We use the line of proof of Theorem 3.1 in Ng et al. [9] to prove this result. For any A > 1,

P(S, — E(Sy) > x)

> P(S,, - i,uk >x,Ln_J{X,» > Ax})

k=1 j=1

n n n
ZZP<S"_ZM" >x,X,»>)»x>— Z P(Sn—Zuk>x,X,>)\x,X,>)»x>
j=1 k=1

1<j<i<n k=1

n n
> ZP(S,, - ZM" >x,X; > Ax) - Z P(X; > Ax, X; > Ax)
j=1 k=1

1<j<i<n

n n n 2
> ZP(Sn -X;— Z,uk >x = hx, X > Ax) —gu(n) <ij(kx))

j=1 k=1 j=1
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1
;|
/;\
"é
M
"U
g
\/
|
M=
=
S
2
N
=
b
A
=
>
S—

=1 -, (3.9)

where s,‘{) = lek Si<n Xk. In the fourth step, the definition of WUOD was used, and we
use an elementary inequality P(AB) > P(B) — P(A°) for all events A and B in the fifth step.
We estimate the second term in (3.9). For all large # and x > yn, we have

12<ZP( Z (tx = X)) > (k;l)x).

= 1<k#j<n

By Proposition 1.1(1), the r.v.s {ix — Xi, k > 1} are WUOD with dominating coefficients
gr(n), n > 1. Then, for arbitrarily fixed y > 0 and B8 € (0,1), by Lemma 3.2, there exist
positive constants vy and C, irrespective of x and #, such that

ZP( Y (u-xo= 42 D”)

= 1<k#j<n

n

()\. - 1)x _(B+TE
< Z Z P(/Lk - X > 270 + Cngr(n)x (B+JF)

j=1 1<k#j<n

holds for all large #n and x > yn. By Lemma 3.1(2), F € & and (2.2), for all large » and
xX=yn,

+ B B+
ngL(n)x_(’S"/F) = ngL(n)x_7x_(7+]F)

< ngi(mym 5y~ 25D
= o(nl_-"()»x)).
By Assumption 1, F € & and (2.3),
, Yo Fe(F4h)
limsup sup —————
n—-oo0 x>ymn F()Lx)
S 55 AFEE) - FORR)
< limsup sup —Oy‘l lim sup ———2— limsup ———
n—oo x>ymn n (W) x—> 00 ((‘;T)x) x— 00 F(Ax)

=0.

Therefore, it holds that

I
lim sup sup

(3.10)
n—oo x>yn I’IF()»JC)
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Now we estimate /7. By (2.1), F € Z and Assumption 1,

lim sup sup gy; () Z Fi(Ax)
n—00 x>yn i

F(ryn) 27:1 F_}(kx)

< limsup sup gy;(n)nF(n)

n—oo x>ymn f(l’[) nf(kx)
_ E(r L FOx)
< limsup gy (n)nF(n) lim sup (_ ym) lim sup sup 21_14]
n—00 n—00 n n—oo x>ymn nF(Ax)
=0.
By Assumption 1, we have that
I " l?(kx)
liminf inf —~— > liminf inf 2’_14’ > . (3.11)
n— 00 xiV”nF(Ax) n—>00 X>ymn }’IF(}\QC)
Thus, by (3.9)-(3.11),
Sn _E Sn . . . f )\
liminf inf 2O £ >0 e timin Y
n—>00 x>yn nF(x) NI x—oe F(x)

The proof of Theorem 2.1 is completed.

3.3 Proof of Theorem 2.2
For any fixed positive integer m and forany 6 € (0, ;”5), we define )?k := min{Xg, 6x}, k > 1,

Syi= Y0 Xi,n>1and &, :=x + Y_, jux, n > 1. By a standard truncation argument, we

have

P(S,, - ES,) > x)

n n
=P(S,,— E Wi > X, ml?x Xk>9x> +P<S,,— E Ui > X, m/flx Xk§6x>
1<k<n 1<k<n

k=1 == k=1 ==

<Y P(Xi > 0x) + P(S, > &) (3.12)
k=1

We estimate the second termin (3.12). Let @ = max{—m1~! log(nF(6x)), 1}, which tends to oo
uniformly for x > yn when n tends to co. For any fixed / = h(x, n) > 0, when # is sufficiently
large, we have

P(S, > %)
nF(0x)

n
< gu(n)e™ " [ | E™
k=1

n Ox

= gu(n)e™* " 1_[{/

(ehy - l)Fk(dy) + (ehex - 1)Fk(9x) + 1}
k=1 Y7
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<gu(n) exp{ma hx, + Z/ Fk(dy) + ( hox ) f(@x)}

k=1

"o [ — (6
<gu(n) expima —hx, + Z(e a2 / ’ htFy(dy) + ehe"Fk(—f>>
0 a

k=1 -

h@x ZF/( Qx }

k=1 =1

<gu(n) exp{ma hx, +e az h Z i + "% ZFk( ) + (ehex - 1) I‘T(Qx)}
k

(n)exp{ma hx + h(e Tx— Z/Lk+eh0xZFk( )

h0x ZFk(Qx)} (313)

ma-2ploga

For p > Jf, take h = o

. By Assumption 4, for all large n and x > y n, it holds that

n n
W -1 (et e )Y
k=1

k=1

=o(1)hn

= o(hx). (3.14)

For any 8; > 0, by Assumption 1 and Lemma 3.1(1), for alllarge n and x > y#, it holds that

(6
ehgxg Fk<—:> <eh9an( )(cz+81)
a
k=1

< " nAa**F(0x)(cs + 81)

=A(62 +81). (315)

For the above §; > 0, by Assumption 1, for all large » and x > y n, it holds that

(e — ZFk(Ox)< ("% — 1)nF(0x)(c2 + &1)

= (a_zf’ - e_m“)(CQ +61)
= o(1). (3.16)
Hence, by (3.13)-(3.16), for all large n and x > yn,

P(S, > %)

E0) < gu(n)e™*exp{ma — hx + o(hx) + A(c + 81) + o(1) + a}

= gu(n) (nF(0x)) exp{ (m F1- % ¥ 0(1)) +Acy +81) + 0(1)}.
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By (2.1)and F € 2,

§\H

lim sup sup gu(n)(nP (Qx)) =0.

n—-oo x>yn

Sincem +1 — % <0 and liminf,_, » infy>, ,a = 0o, it holds that

P(S, >xn)
limsup sup ————
n—o0 x>yn I’lF(QﬁC)

Hence, by (3.12),

P(S, - E(S, . A
limsup sup Lon = ESW>2) _ o qup 2kt O

L3 (3.17)
n—-o00 x>yn nF(@x) n—-o00 x>yn nF(@x)

By the definition of Lr, for any ¢ > 0, there exist xp > 0 and 0 < 6y < 1 such that for all x > xq
and 6y <6 <1,

F(6x) <I;! (3.18)
F(x)

Take a positive integer m such that < . Then, forall 6, < 6 < =, by (3.17) and (3.18),

P(S, —E(S,) >x) -

limsup sup <o(Li' +é).

n—->o00 x>yn nl_-"(x)
By the arbitrariness of ¢, it holds that

. P(Sn - E(Sn) > x)
limsup sup —————

-1
— CzL .
n—>o00 x>yn VIF(?C) E

This completes the proof of Theorem 2.2.

3.4 Proof of Theorem 2.3

By Lemma 3.3, we know that Assumptions 1 and 4 are satisfied, and for any fixed T'> 0,

i . L Fi
lim sup sup =212 L Bl < limsup supM = .
n—oo x>T I’IF X n—oo x>0 nF(x)

Thus, by Theorem 2.2, for every fixed y > 0 and some fixed T > 0,

P(S, — E(S, " Ei(
limsup sup M < Ly~ limsup sup ==L 2 2 Fil®)
n—oo x>yn nF(x) n—oo x>T }’IF(X)

<ceLr!

This completes the proof of Theorem 2.3.
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