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Abstract
Let Xi , i ≥ 1 be a sequence of random variables with different distributions Fi , i ≥ 1.
The partial sums are denoted by Sn =

∑n
i=1 Xi , n ≥ 1. This paper mainly investigates

the precise large deviations of Sn,n ≥ 1, for the widely orthant dependent random
variables Xi , i ≥ 1. Under some mild conditions, the lower and upper bounds of the
precise large deviations of the partial sums Sn, n ≥ 1, are presented.
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1 Introduction
Let Xi (i ≥ 1) and X be real-valued random variables (r.v.s) with distributions Fi (i ≥ 1)
and F and finite means μi (i ≥ 1) and μ, respectively. Let Sn =

∑n
i=1 Xi, n ≥ 1, be the partial

sums. This paper investigates the precise large deviations for these partial sums Sn, n ≥ 1.
That is to say, the paper studies the asymptotics of P(Sn –E(Sn) > x), which holds uniformly
for all x ≥ γ n for every fixed γ > 0 as n tends to ∞. In order to give the main results of this
paper, we will introduce some notions and notation.

For a proper distribution V on (–∞,∞), let V = 1 – V be its tail. Throughout this paper,
all limit relations without explicit limit procedure are with respect to n → ∞. For two
positive functions a(x) and b(x), we write a(x) = o(b(x)) if limx→∞ a(x)/b(x) = 0 and write
a(x) = O(b(x)) if lim supx→∞ a(x)/b(x) < ∞. 1A is the indicator function of the event A. For
a real-valued number c, let c+ = max{0, c} and c– = – min{0, c}.

In this paper, we consider the random variables with heavy-tailed distributions. Some
subclasses of heavy-tailed distribution classes will be introduced in the following. If for all
β > 0,

∫ ∞

–∞
eβxV (dx) = ∞,

we say that the r.v. ξ (or its corresponding distribution V ) is heavy-tailed; otherwise, the
r.v. ξ (or V ) is called light-tailed. A subclass of heavy-tailed distribution class is the class D ,
which consists of all distributions with dominantly varying tails. Say that a distribution V
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on (–∞,∞) belongs to the class D if, for any y ∈ (0, 1),

lim sup
x→∞

V (xy)
V (x)

< ∞.

Another slightly smaller class is the class C , which consists of all distributions with con-
sistently varying tails. We say that a distribution V on (–∞,∞) belongs to the class C

if

lim
y↗1

lim sup
x→∞

V (xy)
V (x)

= 1, or, equivalently, lim
y↘1

lim inf
x→∞

V (xy)
V (x)

= 1.

A subclass of the class C is the class of distributions with regularly varying tails. A distri-
bution V on (–∞,∞) is said to be regularly varying at infinity with index α, denoted by
V ∈ R–α , if

lim
x→∞

V (xy)
V (x)

= y–α

holds for some 0 ≤ α < ∞ and all y > 0 (see, e.g., Bingham et al. [1]).
For a distribution V , denote the upper Matuszewska index of V by

J+
V = – lim

y→∞
log V ∗(y)

log y
, with V ∗(y) := lim inf

x→∞
V (xy)
V (x)

, y > 1.

Let LV = limy↘1 V ∗(y). From Chapter 2.1 of Bingham et al. [1], we know that the following
assertions are equivalent:

(i) V ∈ D ; (ii) 0 < LV ≤ 1; (iii) J+
V < ∞.

From the definition of the class C , it holds that V ∈ C if and only if LV = 1.
When {Xi, i ≥ 1} are independent and identically distributed r.v.s, some studies of the

precise large deviations of the partial sums Sn, n ≥ 1, can be found in Cline and Hsing [2],
Heyde [3, 4], Heyde [5], Mikosch and Nagaev [6], Nagaev [7], Nagaev [8], Ng et al. [9] and
so on. In Paulauskas and Skučaitė [10] and Skučaitė [11], the precise large deviations of
a sum of independent but not identically distributed random variables were investigated.
This paper considers the dependent r.v.s with different distributions. We investigate the
r.v.s with the wide dependence structure, which is introduced in Wang et al. [12].

Definition 1.1 For the r.v.s {ξn, n ≥ 1}, if there exists a finite real sequence {gU (n), n ≥ 1}
satisfying, for each integer n ≥ 1 and for all xi ∈ (–∞,∞), 1 ≤ i ≤ n,

P

( n⋂

i=1

{ξi > xi}
)

≤ gU (n)
n∏

i=1

P(ξi > xi), (1.1)

then we say that the r.v.s {ξn, n ≥ 1} are widely upper orthant dependent (WUOD) with
dominating coefficients gU (n), n ≥ 1; if there exists a finite real sequence {gL(n), n ≥ 1}
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satisfying, for each integer n ≥ 1 and for all xi ∈ (–∞,∞), 1 ≤ i ≤ n,

P

( n⋂

i=1

{ξi ≤ xi}
)

≤ gL(n)
n∏

i=1

P(ξi ≤ xi), (1.2)

then we say that the r.v.s {ξn, n ≥ 1} are widely lower orthant dependent (WLOD) with
dominating coefficients gL(n), n ≥ 1; if they are both WUOD and WLOD, then we say that
the r.v.s {ξn, n ≥ 1} are widely orthant dependent (WOD).

Definition 1.1 shows that the wide dependence structure contains the commonly used
notions of the negatively upper/lower orthant dependence (see Ebrahimi and Ghosh [13]
and Block et al. [14]) and the extendedly negatively orthant dependence (see Liu [15], Chen
et al. [16] and Shen [17]). Here, we present an example of WOD r.v.s, which is the example
of Wang et al. [12].

Example 1.1 Assume that the random vectors (ξn,ηn), n = 1, 2, . . . , are independent and,
for each integer n ≥ 1, the r.v.s ξn and ηn are dependent according to the Farlie-Gumbel-
Morgenstern copula with the parameter θn ∈ [–1, 1]:

Cθn (u, v) = uv + θnuv(1 – u)(1 – v), (u, v) ∈ [0, 1]2,

which is absolutely continuous with density

cθn (u, v) =
∂2Cθn (u, v)

∂u ∂v
= 1 + θn(1 – 2u)(1 – 2v), (u, v) ∈ [0, 1]2

(see, e.g., Example 3.12 in Nelsen [18]).
Suppose that the distributions of ξn and ηn, n = 1, 2, . . . , are absolutely continuous, de-

noted by Fξn and Fηn , n = 1, 2, . . . , respectively. Hence, by Sklar’s theorem (see, e.g., Chap-
ter 2 of Nelsen [18]), for each integer n ≥ 1 and any xn, yn ∈ (–∞,∞),

P(ξn ≤ xn,ηn ≤ yn) = Cθn

(
Fξn (xn), Fηn (yn)

)

= Fξn (xn)Fηn (yn)
(
1 + θnFξn (xn)Fηn (yn)

)

and

P(ξn > xn,ηn > yn) =
∫ 1

Fξn (xn)

∫ 1

Fηn (yn)
cθn (u, v) du dv

= Fξn (xn)Fηn (yn)
(
1 + θnFξn (xn)Fηn (yn)

)
.

Therefore, for each n ≥ 1, we have

a(θn) := sup
xn ,yn∈(–∞,∞)

P(ξn ≤ xn,ηn ≤ yn)
P(ξn ≤ xn)P(ηn ≤ yn)

= sup
xn ,yn∈(–∞,∞)

P(ξn > xn,ηn > yn)
P(ξn > xn)P(ηn > yn)

=

⎧
⎨

⎩

1 + θn 0 < θn ≤ 1;

1 –1 ≤ θn ≤ 0,
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where, by convention, 0
0 = 1. Thus, for each integer n ≥ 1, we have

sup
xi ,yi∈(–∞,∞),i=1,...,n

P(ξ1 ≤ x1,η1 ≤ y1, . . . , ξn ≤ xn,ηn ≤ yn)
∏n

i=1 P(ξi ≤ xi)P(ηi ≤ yi)

= sup
xi ,yi∈(–∞,∞),i=1,...,n

∏n
i=1 P(ξi ≤ xi,ηi ≤ yi)

∏n
i=1 P(ξi ≤ xi)P(ηi ≤ yi)

=
n∏

i=1

a(θi)

and

sup
xi ,yi∈(–∞,∞),i=1,...,n

P(ξ1 ≤ x1,η1 ≤ y1, . . . , ξn ≤ xn)
∏n–1

i=1 P(ξi ≤ xi)P(ηi ≤ yi)P(ξn ≤ xn)

= sup
xi ,yi∈(–∞,∞),i=1,...,n

∏n–1
i=1 P(ξi ≤ xi,ηi ≤ yi)

∏n–1
i=1 P(ξi ≤ xi)P(ηi ≤ yi)

=
n–1∏

i=1

a(θi),

where, by convention,
∏0

i=1 = 1. Similarly, for each integer n ≥ 1, we have

sup
xi ,yi∈(–∞,∞),i=1,...,n

P(ξ1 > x1,η1 > y1, . . . , ξn > xn,ηn > yn)
∏n

i=1 P(ξi > xi)P(ηi > yi)
=

n∏

i=1

a(θi)

and

sup
xi ,yi∈(–∞,∞),i=1,...,n

P(ξ1 > x1,η1 > y1, . . . , ξn > xn)
∏n–1

i=1 P(ξi > xi)P(ηi > yi)P(ξn > xn)
=

n–1∏

i=1

a(θi).

Hence, for the r.v.s ξ1,η1, . . . , ξn,ηn, . . . , we can take

gL(n) = gU (n) =

⎧
⎨

⎩

∏m
i=1 a(θi) n = 2m,

∏m–1
i=1 a(θi) n = 2m – 1,

m ≥ 1,

which makes relations (1.1) and (1.2) be satisfied. That is to say, the r.v.s ξ1,η1, . . . , ξn,ηn, . . . ,
are WLOD and WUOD.

The wide dependent structure has been applied to many fields such as risk theory (see,
e.g., Liu et al. [19], Wang et al. [20], Wang et al. [12], Mao et al. [21]), renewal theory (see,
e.g., Wang and Cheng [22], Chen et al. [23]), complete convergence (Wang and Cheng
[22], Qiu and Chen [24], Wang et al. [25], Chen et al. [23]), precise large deviations (see,
e.g., Wang et al. [26], He et al. [27]) and some statistic fields (see, e.g., Wang and Hu [28]).

Wang et al. [12] gave the following properties of the wide dependent r.v.s.

Proposition 1.1 (1) Let {ξn, n ≥ 1} be WLOD (WUOD) with dominating coefficients
gL(n)(gU (n)), n ≥ 1. If {fn(·), n ≥ 1} are nondecreasing, then {fn(ξn), n ≥ 1} are still WLOD
(WUOD) with dominating coefficients gL(n)(gU (n)), n ≥ 1. If {fn(·), n ≥ 1} are nonincreas-
ing, then {fn(ξn), n ≥ 1} are WUOD (WLOD) with dominating coefficients gL(n)(gU (n)),
n ≥ 1.
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(2) If {ξn, n ≥ 1} are nonnegative and WUOD with dominating coefficients gU (n), n ≥ 1,
then, for each n ≥ 1,

E
n∏

i=1

ξi ≤ gU (n)
n∏

i=1

Eξi.

In particular, if {ξn, n ≥ 1} are WUOD with dominating coefficients gU (n), n ≥ 1, then, for
each n ≥ 1 and any s > 0,

E exp

{

s
n∏

i=1

ξi

}

≤ gU (n)
n∏

i=1

E exp{sξi}.

2 Main results
Now many studies of precise large deviations are focused on the dependent r.v.s. One can
refer to Wang et al. [29], Liu [30], Tang [31], Liu [15], Yang and Wang [32], Wang et al.
[20] and so on. Among them, Yang and Wang [32] consider the precise large deviations
for extendedly negatively orthant dependent r.v.s, and Wang et al. [20] investigate the pre-
cise large deviations for WUOD and WLOD r.v.s. Their results have used the following
assumptions.

Assumption 1 For some T > 0,

0 < c1 := lim inf
n→∞ inf

x≥T

∑n
i=1 Fi(x)
nF(x)

≤ lim sup
n→∞

sup
x≥T

∑n
i=1 Fi(x)
nF(x)

=: c2 < ∞,

0 < c3 := lim inf
n→∞ inf

x≥T

∑n
i=1 Fi(–x)
nF(–x)

≤ lim sup
n→∞

sup
x≥T

∑n
i=1 Fi(–x)
nF(–x)

=: c4 < ∞.

Assumption 2 For all i ≥ 1, Fi ∈ D . Furthermore, assume that for any ε > 0, there exist
some w1 = w1(ε) > 1 and x1 = x1(ε) > 0, irrespective of i, such that for all i ≥ 1, 1 ≤ w ≤ w1

and x ≥ x1,

Fi(wx)
Fi(x)

≥ LFi – ε,

or, equivalently, for any ε > 0, there exist some 0 < w2 = w2(ε) < 1 and x2 = x2(ε) > 0, irre-
spective of i, such that for all i ≥ 1, w2 ≤ w ≤ 1 and x ≥ x2,

Fi(wx)
Fi(x)

≤ L–1
Fi

+ ε.

Assumption 3 For all i ≥ 1, Fi ∈ D . Furthermore, assume that for any 0 < δ < 1, there exist
some v1 = v1(δ) > 1 and x1 = x1(δ) > 0, irrespective of i, such that for all i ≥ 1, 1 ≤ v ≤ v1

and x ≥ x1,

Fi(vx)
Fi(x)

≥ δLFi ,
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or, equivalently, for any δ > 1, there exist some 0 < v2 = v2(δ) < 1 and x2 = x2(δ) > 0, irre-
spective of i, such that for all i ≥ 1, v2 ≤ v ≤ 1 and x ≥ x2,

Fi(vx)
Fi(x)

≤ δL–1
Fi

.

For the lower bound of the precise large deviations of the partial sums Sn, n ≥ 1, of the
WOD r.v.s, when μi = 0, i ≥ 1, under Assumptions 1 and 3 and some other conditions,
Theorem 2 of Wang et al. [20] obtained a lower bound: for every fixed γ > 0,

lim inf
n→∞ inf

x≥γ n

P(Sn > x)
∑n

i=1 LFi Fi(x)
≥ 1.

The following result will still consider the WOD r.v.s Xi with finite means μi, i ≥ 1, and
only use Assumption 1 and some other conditions, without using Assumption 3, to obtain
a lower bound of the precise large deviations of the partial sums Sn, n ≥ 1.

Theorem 2.1 Let {Xi, i ≥ 1} be a sequence of WOD r.v.s with dominating coefficients
gU (n) (n ≥ 1) and gL(n) (n ≥ 1) satisfying, for any α ∈ (0, 1),

lim
n→∞ gU (n)

(
nF(n)

)α = 0, (2.1)

and for any β ∈ (0, 1),

lim
n→∞ gL(n)n–β = 0. (2.2)

The distributions {Fi, i ≥ 1} and F satisfy Assumption 1, F ∈ D and

xF(–x) = o
(
F(x)

)
. (2.3)

Suppose that, for some r > 1,

sup
i≥1

E
(
(μi – Xi)+)r < ∞.

Then, for every fixed γ > 0,

lim inf
n→∞ inf

x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≥ c1LF . (2.4)

For the upper bound of the precise large deviations of the partial sums Sn, n ≥ 1, of the
WUOD r.v.s, when μi = 0, i ≥ 1, under Assumptions 1 and 2 and some other conditions,
Theorem 1 of Wang et al. [20] gave an upper bound: for every fixed γ > 0,

lim sup
n→∞

sup
x≥γ n

P(Sn > x)
∑n

i=1 L–1
Fi

Fi(x)
≤ 1.

In the following result, we will use the following Assumption 4 to replace Assumption 2
and give an upper bound of the precise large deviations of the partial sums Sn, n ≥ 1, of
the WUOD r.v.s. Assumption 4 is easier to verify than Assumption 2.
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Assumption 4 The expectations μi, i ≥ 1, satisfy
∑n

i=1 μi = O(n).

Note that if supi≥1 μi < ∞ then Assumption 4 is satisfied. Particularly, the identically
distributed random variables satisfy Assumption 4.

Theorem 2.2 Let {Xi, i ≥ 1} be a sequence of WUOD r.v.s with dominating coefficients
gU (n) (n ≥ 1) satisfying (2.1). The distributions {Fi, i ≥ 1} and F satisfy Assumptions 1 and
4 and F ∈ D . Then, for every fixed γ > 0,

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ c2LF
–1. (2.5)

If we strengthen Assumption 1 to the following assumption, Assumption 4 can be
dropped in Theorem 2.2.

Assumption 1∗

0 < c5 := lim inf
n→∞ inf

x≥0

∑n
i=1 Fi(x)
nF(x)

≤ lim sup
n→∞

sup
x≥0

∑n
i=1 Fi(x)
nF(x)

=: c6 < ∞,

0 < c7 := lim inf
n→∞ inf

x≥0

∑n
i=1 Fi(–x)
nF(–x)

≤ lim sup
n→∞

sup
x≥0

∑n
i=1 Fi(–x)
nF(–x)

=: c8 < ∞.

Theorem 2.3 Let {Xi, i ≥ 1} be a sequence of WUOD r.v.s with dominating coefficients
gU (n) (n ≥ 1) satisfying (2.1). The distributions {Fi, i ≥ 1} and F satisfy Assumptions 1∗

and F ∈ D . Then, for every fixed γ > 0,

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ c6LF
–1.

When {Xi, i ≥ 1} are independent but non-identically distributed r.v.s, then gU (n) =
gL(n) ≡ 1, n ≥ 1, and (2.1) and (2.2) hold. By Theorems 2.1 and 2.2, the following two corol-
laries can be obtained.

Corollary 2.1 Let {Xi, i ≥ 1} be a sequence of independent but non-identically distributed
r.v.s. The distributions {Fi, i ≥ 1} and F satisfy Assumption 1, F ∈ C and (2.3). Suppose that,
for some r > 1, supi≥1 E((μi – Xi)+)r < ∞. Then, for every fixed γ > 0,

lim inf
n→∞ inf

x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≥ c1. (2.6)

Corollary 2.2 Let {Xi, i ≥ 1} be a sequence of independent but non-identically distributed
r.v.s. The distributions {Fi, i ≥ 1} and F satisfy Assumptions 1 and 4 and F ∈ C . Then, for
every fixed γ > 0,

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ c2. (2.7)

Remark 2.1 In Theorem of Paulauskas and Skučaitė [10], the case that {Xi, i ≥ 1} is a
sequence of independent but non-identically distributed r.v.s was also considered, and
the following result was obtained.
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Let {Xi, i ≥ 1} be a sequence of independent but non-identically distributed r.v.s. Assume
that:

(1) μi = 0;
(2) F ∈ R–α for α > 1 and the distributions {Fi, i ≥ 1} and F satisfy Assumption 1 for

ci ≡ 1, i = 1, 2, 3, 4.
(3) There exists a sequence of constants an such that an ↑ ∞, sup ann–1 < ∞ and

∑∞
n=1 a–p

n E|Xn|p < ∞ for some 1 < p ≤ 2.
Then

lim
n→∞

P(Sn > tn)
nF(tn)

= 1 (2.8)

for all sequences tn ∈ (–∞,∞) satisfying the conditions lim supn→∞ nt–1
n < ∞ and Fi(tn) =

o(nF(tn)), i ≥ 1.
From the proof of Theorem of Paulauskas and Skučaitė [10], we note that tn should be

positive.
If conditions (1) and (2) hold, then the conditions of Corollary 2.2 are satisfied. If we let

a = limn→∞ sup nt–1
n , then a ∈ (0,∞) and tn ≥ (a + 1)–1n for large n. Thus, it follows from

(2.7) that

lim sup
n→∞

P(Sn > tn)
nF(tn)

≤ 1,

which means that the upper bound of P(Sn > tn) in (2.8) can be obtained from Corol-
lary 2.2.

Comparing Corollary 2.1 and Theorem of Paulauskas and Skučaitė [10], it can be found
that they give the lower bound of the precise large deviations of Sn, n ≥ 1, under different
conditions.

When {Xi, i ≥ 1} and X are identically distributed r.v.s, Assumptions 1 and 1∗ are satis-
fied. The following two corollaries can be obtained directly from Theorems 2.1 and 2.3.

Corollary 2.3 Let {Xi, i ≥ 1, X} be identically distributed r.v.s with common distribution
F ∈ D . Assume that {Xi, i ≥ 1} are WOD r.v.s with dominating coefficients gU (n) (n ≥ 1)
and gL(n) (n ≥ 1) satisfying (2.1) and (2.2). If E(X–)r < ∞ for some r > 1 and relation (2.3)
holds, then for every fixed γ > 0,

lim inf
n→∞ inf

x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≥ LF .

Corollary 2.4 Let {Xi, i ≥ 1, X} be identically distributed r.v.s with common distribution
F ∈ D . Assume that {Xi, i ≥ 1} are WUOD r.v.s with dominating coefficients gU (n) (n ≥ 1)
satisfying (2.1). Then, for every fixed γ > 0,

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ L–1
F .

Remark 2.2 (1) We note that, for any fixed d > 0 and r > 1,

E
(
(d – X)+)r < ∞ ⇔ E

(
X–)r < ∞. (2.9)
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In fact, on the one hand,

E
(
(d – X)+)r = E(d – X)r1{0≤X≤d} + E(d – X)r1{X<0}

≥ E
(
X–)r .

On the other hand, by Cr-inequality, we have

E
(
(d – X)+)r ≤ E

(
d + X–)r ≤ 2r–1(dr + E

(
X–)r).

Thus (2.9) can be obtained.
(2) Corollaries 1 and 2 of Wang et al. [20] consider the identically distributed r.v.s Xi (i ≥

1) with finite mean μi = 0 (i ≥ 1). Corollaries 2.3 and 2.4 deal with the case that μi = 0
(i ≥ 1). We note that when μi = 0, i ≥ 1, Corollaries 2.3 and 2.4 cannot be obtained directly
from Corollaries 1 and 2 of Wang et al. [20].

3 Proofs of results
3.1 Some lemmas
Before proving the main results, we first give some lemmas. The following lemma is a
combination of Proposition 2.2.1 of Bingham et al. [1] and Lemma 3.5 of Tang and Tsitsi-
ashvili [33].

Lemma 3.1 If V ∈ D , then
(1) for each ρ > J+

V , there exist positive constants A and B such that the inequality

V (y)
V (x)

≤ A
(

x
y

)ρ

holds for all x ≥ y ≥ B;
(2) it holds for each ρ > J+

V that

x–ρ = o
(
V (x)

)
.

Lemma 3.2 Let {ξk , k ≥ 1} be WUOD r.v.s with dominating coefficients gU (n) (n ≥ 1), with
distributions {Vk , k ≥ 1} and finite mean 0, satisfying supk≥1 E(ξ+

k )r < ∞ for some r > 1.
Then, for each fixed γ > 0 and p > 0, there exist positive numbers v and C = C(v,γ ), irre-
spective of x and n, such that for all n = 1, 2, . . . and x ≥ γ n,

P

( n∑

k=1

ξk ≥ x

)

≤
n∑

k=1

Vk(vx) + CgU (n)x–p.

This lemma extends Lemma 2.3 of Tang [31] to the WUOD r.v.s with different distri-
butions. The proof is similar to the proof of Lemma 2.3 of Tang [31]. However, for the
completeness of the proof, we give the following proof with some modifications.
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Proof If we prove the result is correct for all n > n0 and x ≥ γ n, where n0 is a positive
integer, then using the inequality

P

( n∑

k=1

ξk ≥ x

)

≤
n∑

k=1

P
(

ξk ≥ x
n0

)

=
n∑

k=1

Vk

(
x
n0

)

, n = 1, 2, . . . , n0, (3.1)

the result can be extended to all n = 1, 2, . . . .
For any fixed v > 0, we denote ξ̃k = min{ξk , vx}, k = 1, 2, . . . , by Proposition 1.1(1), they

are still WUOD with dominating coefficients gU (n), n ≥ 1. Using a standard truncation
argument, we get

P

( n∑

k=1

ξk ≥ x

)

= P

( n∑

k=1

ξk ≥ x, max
1≤k≤n

ξk > vx

)

+ P

( n∑

k=1

ξk ≥ x, max
1≤k≤n

ξk ≤ vx

)

≤
n∑

k=1

Vk(vx) + P

( n∑

k=1

ξ̃k ≥ x

)

. (3.2)

Now, we estimate the second term in (3.2). For a positive number h, which we shall
specify later, using Chebyshev’s inequality and Proposition 1.1(2), we have

P

( n∑

k=1

ξ̃k ≥ x

)

≤ gU (n)e–hx
n∏

i=1

Eehξ̃k . (3.3)

For some 1 < q < min{r, 2}, Eehξ̃k is bounded from above by

∫ 0

–∞

(
ehu – 1

)
Vk(du) +

∫ vx

0

ehu – 1 – hu
uq uqVk(du) +

(
ehvx – 1

)
Vk(vx) + hu+

k + 1, (3.4)

here u+
k = Eξk1{ξk >0}. For the first term in (3.4), since

0 ≤ ehu – 1 – hu
h

≤ u
(
ehu – 1

) ≤ –u for all u ≤ 0,

by the dominated convergence theorem, we have

lim
h↘0

∫ 0
–∞(ehu – 1)Vk(du)

h
= lim

h↘0

∫ 0

–∞
ehu – 1 – hu

h
Vk(du) + u–

k = u–
k ,

where u–
k = Eξk1{ξk≤0}. Hence, there exists a real function α(·) with α(h) → 0 as h ↘ 0 such

that

∫ 0

–∞

(
ehu – 1

)
Vk(du) =

(
1 + α(h)

)
hu–

k . (3.5)
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By the monotonicity of (ehu – 1 – hu)/uq for u ∈ (0,∞), the second term in (3.4) is bounded
by

ehvx – 1 – hvx
(vx)q E

(
ξ+

k
)q, (3.6)

where ξ+
k = max{ξk , 0}. Applying (3.5) and (3.6) to (3.4), from (3.3) we obtain that

P

( n∑

k=1

ξ̃k ≥ x

)

≤ gU (n)e–hx
n∏

k=1

{
(
1 + α(h)

)
hu–

k +
ehvx – 1 – hvx

(vx)q E
(
ξ+

k
)q

+
(
ehvx – 1

)
Vk(vx) + hu+

k + 1
}

≤ gU (n)e–hx
n∏

k=1

exp

{
(
1 + α(h)

)
hu–

k +
ehvx – 1

(vx)q E
(
ξ+

k
)q +

(
ehvx – 1

)
Vk(vx) + hu+

k

}

= gU (n) exp

{ n∑

k=1

α(h)hu–
k +

ehvx – 1
(vx)q

n∑

k=1

E
(
ξ+

k
)q +

(
ehvx – 1

) n∑

k=1

Vk(vx) – hx

}

, (3.7)

where at the second step we use the inequality s + 1 ≤ es for all s. In (3.7), take

h =
1
vx

log

(
vq–1xq

∑n
k=1 E(ξ+

k )q + 1
)

.

Since supk≥1 E(ξk)r < ∞, there exists a constant M1 > 0, irrespective of x and n, such that
for all n = 1, 2, . . . ,

∣
∣
∣
∣
∣

n∑

k=1

u–
k

∣
∣
∣
∣
∣

=
n∑

k=1

u+
k ≤ nM1.

By some calculation, we know that, for all large n such that for all x ≥ γ n,

∣
∣α(h)M1

∣
∣ ≤ 1

2
γ .

Then, for all large n and x ≥ γ n,

∣
∣
∣
∣
∣

n∑

k=1

α(h)u–
k

∣
∣
∣
∣
∣
≤ 1

2
γ n ≤ x

2
.

Therefore, for all large n and x ≥ γ n, the right-hand side of (3.7) is bounded from above
by

gU (n) exp

{
1
2v

log

(
vq–1xq

∑n
k=1 E(ξ+

k )q + 1
)

+
1
v

+
vq–1xq ∑n

k=1 Vk(vx)
∑n

k=1 E(ξ+
k )q

–
1
v

log

(
vq–1xq

∑n
k=1 E(ξ+

k )q + 1
)}
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≤ gU (n) exp

{
1
v

+
vq–1xq ∑n

k=1 Vk(vx)
∑n

k=1 E(ξ+
k )q

}(
vq–1xq

∑n
k=1 E(ξ+

k )q

)– 1
2v

= gU (n) exp

{
1
v

+
vq–1xq ∑n

k=1 Vk(vx)
∑n

k=1 E(ξ+
k )q

}(
vq–1x

∑n
k=1 E(ξ+

k )q

)– 1
2v

x– q–1
2v

≤ gU (n) exp

{
1
v

+
vq–1xq ∑n

k=1 Vk(vx)
∑n

k=1 E(ξ+
k )q

}(
vq–1γ

maxk≥1 E(ξ+
k )q

)– 1
2v

x– q–1
2v . (3.8)

Since, for each k = 1, 2, . . . and for all x > 0,

E
(
ξ+

k
)q ≥

∫ ∞

x
uqVk(du) ≥ xqVk(x),

then the right-hand side of (3.8) is bounded from above by

gU (n)e
2
v

(
vq–1γ

maxk≥1 E(ξ+
k )q

)– 1
2v

x– q–1
2v =: CgU (n)x– q–1

2v ≤ CgU (n)x–p,

where C = e 2
v ( vq–1γ

maxk≥1 E(ξ+
k )q )– 1

2v < ∞. In the last step, we take a proper v > 0 such that q–1
2v > p.

This completes the proof of this lemma. �

Lemma 3.3 Assumption 1∗ implies Assumptions 1 and 4.

Proof It is clear that Assumption 1∗ implies Assumption 1. Now we prove Assumption 1∗

implies Assumption 4. For sufficiently large n, by Assumption 1∗, we have

n∑

i=1

|μi| ≤
n∑

i–1

∫ ∞

0

(
Fi(y) + Fi(–y)

)
dy

≤ 2n
∫ ∞

0

(
c6F(y) + c8F(–y)

)
dy < ∞,

which means that Assumption 4 holds. This completes the proof of this lemma. �

3.2 Proof of Theorem 2.1
We use the line of proof of Theorem 3.1 in Ng et al. [9] to prove this result. For any λ > 1,

P
(
Sn – E(Sn) > x

)

≥ P

(

Sn –
n∑

k=1

μk > x,
n⋃

j=1

{Xj > λx}
)

≥
n∑

j=1

P

(

Sn –
n∑

k=1

μk > x, Xj > λx

)

–
∑

1≤j<l≤n

P

(

Sn –
n∑

k=1

μk > x, Xj > λx, Xl > λx

)

≥
n∑

j=1

P

(

Sn –
n∑

k=1

μk > x, Xj > λx

)

–
∑

1≤j<l≤n

P(Xj > λx, Xl > λx)

≥
n∑

j=1

P

(

Sn – Xj –
n∑

k=1

μk > x – λx, Xj > λx

)

– gU (n)

( n∑

j=1

Fj(λx)

)2
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≥
n∑

j=1

Fj(λx) –
n∑

j=1

P

(

S(j)
n –

n∑

k=1

μk ≤ (1 – λ)x

)

– gU (n)

( n∑

j=1

Fj(λx)

)2

=
n∑

j=1

Fj(λx)

(

1 – gU (n)
n∑

j=1

Fj(λx)

)

–
n∑

j=1

P

(

S(j)
n –

n∑

k=1

μk ≤ (1 – λ)x

)

=: I1 – I2, (3.9)

where S(j)
n =

∑
1≤k =j≤n Xk . In the fourth step, the definition of WUOD was used, and we

use an elementary inequality P(AB) ≥ P(B) – P(Ac) for all events A and B in the fifth step.
We estimate the second term in (3.9). For all large n and x ≥ γ n, we have

I2 ≤
n∑

j=1

P
( ∑

1≤k =j≤n

(μk – Xk) ≥ (λ – 1)x
2

)

.

By Proposition 1.1(1), the r.v.s {μk – Xk , k ≥ 1} are WUOD with dominating coefficients
gL(n), n ≥ 1. Then, for arbitrarily fixed γ > 0 and β ∈ (0, 1), by Lemma 3.2, there exist
positive constants v0 and C, irrespective of x and n, such that

n∑

j=1

P
( ∑

1≤k =j≤n

(μk – Xk) ≥ (λ – 1)x
2

)

≤
n∑

j=1

∑

1≤k =j≤n

P
(

μk – Xk ≥ (λ – 1)x
2v0

)

+ CngL(n)x–(β+J+
F )

≤ n
n∑

k=1

Fk

(
–(λ – 1)x

4v0

)

+ CngL(n)x–(β+J+
F )

holds for all large n and x ≥ γ n. By Lemma 3.1(2), F ∈ D and (2.2), for all large n and
x ≥ γ n,

ngL(n)x–(β+J+
F ) = ngL(n)x– β

2 x–( β
2 +J+

F )

≤ ngL(n)n– β
2 γ – β

2 x–( β
2 +J+

F )

= o
(
nF(λx)

)
.

By Assumption 1, F ∈ D and (2.3),

lim sup
n→∞

sup
x≥γ n

∑n
k=1 Fk( –(λ–1)x

4v0
)

F(λx)

≤ lim sup
n→∞

sup
x≥γ n

∑n
k=1 Fk( –(λ–1)x

4v0
)

nF( –(λ–1)x
4v0

)
γ –1 lim sup

x→∞

xF( –(λ–1)x
4v0

)

F( (λ–1)x
4v0

)
lim sup

x→∞

F( (λ–1)x
4v0

)

F(λx)

= 0.

Therefore, it holds that

lim sup
n→∞

sup
x≥γ n

I2

nF(λx)
= 0. (3.10)
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Now we estimate I1. By (2.1), F ∈ D and Assumption 1,

lim sup
n→∞

sup
x≥γ n

gU (n)
n∑

j=1

Fj(λx)

≤ lim sup
n→∞

sup
x≥γ n

gU (n)nF(n)
F(λγ n)

F(n)

∑n
j=1 Fj(λx)
nF(λx)

≤ lim sup
n→∞

gU (n)nF(n) lim sup
n→∞

F(λγ n)
F(n)

lim sup
n→∞

sup
x≥γ n

∑n
j=1 Fj(λx)
nF(λx)

= 0.

By Assumption 1, we have that

lim inf
n→∞ inf

x≥γ n

I1

nF(λx)
≥ lim inf

n→∞ inf
x≥γ n

∑n
j=1 Fj(λx)
nF(λx)

≥ c1. (3.11)

Thus, by (3.9)-(3.11),

lim inf
n→∞ inf

x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≥ c1 lim
λ↘1

lim inf
x→∞

F(λx)
F(x)

= c1LF .

The proof of Theorem 2.1 is completed.

3.3 Proof of Theorem 2.2
For any fixed positive integer m and for any θ ∈ (0, m

m+1 ), we define X̃k := min{Xk , θx}, k ≥ 1,
S̃n :=

∑n
k=1 X̃k , n ≥ 1 and x̃n := x +

∑n
k=1 μk , n ≥ 1. By a standard truncation argument, we

have

P
(
Sn – E(Sn) > x

)

= P

(

Sn –
n∑

k=1

μk > x, max
1≤k≤n

Xk > θx

)

+ P

(

Sn –
n∑

k=1

μk > x, max
1≤k≤n

Xk ≤ θx

)

≤
n∑

k=1

P(Xk > θx) + P(S̃n > x̃n). (3.12)

We estimate the second term in (3.12). Let a = max{–m–1 log(nF(θx)), 1}, which tends to ∞
uniformly for x ≥ γ n when n tends to ∞. For any fixed h = h(x, n) > 0, when n is sufficiently
large, we have

P(S̃n > x̃n)
nF(θx)

≤ gU (n)ema–hx̃n
n∏

k=1

EehX̃k

= gU (n)ema–hx̃n
n∏

k=1

{∫ θx

–∞

(
ehy – 1

)
Fk(dy) +

(
ehθx – 1

)
Fk(θx) + 1

}
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≤ gU (n) exp

{

ma – hx̃n +
n∑

k=1

∫ θx

–∞

(
ehy – 1

)
Fk(dy) +

(
ehθx – 1

) n∑

k=1

Fk(θx)

}

≤ gU (n) exp

{

ma – hx̃n +
n∑

k=1

(

e
hθx
a2

∫ θx
a2

–∞
htFk(dy) + ehθxFk

(
θx
a2

))

+
(
ehθx – 1

) n∑

k=1

Fk(θx)

}

≤ gU (n) exp

{

ma – hx̃n + e
hθx
a2 h

n∑

k=1

μk + ehθx
n∑

k=1

Fk

(
θx
a2

)

+
(
ehθx – 1

) n∑

k=1

Fk(θx)

}

= gU (n) exp

{

ma – hx + h
(
e

hθx
a2 – 1

) n∑

k=1

μk + ehθx
n∑

k=1

Fk

(
θx
a2

)

+
(
ehθx – 1

) n∑

k=1

Fk(θx)

}

. (3.13)

For ρ > J+
F , take h = ma–2ρ log a

θx . By Assumption 4, for all large n and x ≥ γ n, it holds that

h
(
e

hθx
a2 – 1

) n∑

k=1

μk = h
(
e

m
a e–ρ

log a2

a2 – 1
) n∑

k=1

μk

= o(1)hn

= o(hx). (3.14)

For any δ1 > 0, by Assumption 1 and Lemma 3.1(1), for all large n and x ≥ γ n, it holds that

ehθx
n∑

k=1

Fk

(
θx
a2

)

≤ ehθxnF
(

θx
a2

)

(c2 + δ1)

≤ ehθxnAa2ρF(θx)(c2 + δ1)

= A(c2 + δ1). (3.15)

For the above δ1 > 0, by Assumption 1, for all large n and x ≥ γ n, it holds that

(
ehθx – 1

) n∑

k=1

Fk(θx) ≤ (
ehθx – 1

)
nF(θx)(c2 + δ1)

=
(
a–2ρ – e–ma)(c2 + δ1)

= o(1). (3.16)

Hence, by (3.13)-(3.16), for all large n and x ≥ γ n,

P(S̃n > x̃n)
nF(θx)

≤ gU (n)e–a exp
{

ma – hx + o(hx) + A(c2 + δ1) + o(1) + a
}

= gU (n)
(
nF(θx)

) 1
m exp

{

a
(

m + 1 –
m
θ

+ o(1)
)

+ A(c2 + δ1) + o(1)
}

.
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By (2.1) and F ∈ D ,

lim sup
n→∞

sup
x≥γ n

gU (n)
(
nF(θx)

) 1
m = 0.

Since m + 1 – m
θ

< 0 and lim infn→∞ infx≥γ na = ∞, it holds that

lim sup
n→∞

sup
x≥γ n

P(S̃n > x̃n)
nF(θx)

= 0.

Hence, by (3.12),

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(θx)

≤ lim sup
n→∞

sup
x≥γ n

∑n
k=1 Fk(θx)
nF(θx)

≤ c2. (3.17)

By the definition of LF , for any ε > 0, there exist x0 > 0 and 0 < θ0 < 1 such that for all x ≥ x0

and θ0 ≤ θ ≤ 1,

F(θx)
F(x)

≤ L–1
F + ε. (3.18)

Take a positive integer m such that θ ≤ m
m+1 . Then, for all θ0 ≤ θ ≤ m

m+1 , by (3.17) and (3.18),

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ c2
(
L–1

F + ε
)
.

By the arbitrariness of ε, it holds that

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ c2L–1
F .

This completes the proof of Theorem 2.2.

3.4 Proof of Theorem 2.3
By Lemma 3.3, we know that Assumptions 1 and 4 are satisfied, and for any fixed T > 0,

lim sup
n→∞

sup
x≥T

∑n
i=1 Fi(x)
nF(x)

≤ lim sup
n→∞

sup
x≥0

∑n
i=1 Fi(x)
nF(x)

= c6.

Thus, by Theorem 2.2, for every fixed γ > 0 and some fixed T > 0,

lim sup
n→∞

sup
x≥γ n

P(Sn – E(Sn) > x)
nF(x)

≤ LF
–1 lim sup

n→∞
sup
x≥T

∑n
i=1 Fi(x)
nF(x)

≤ c6LF
–1.

This completes the proof of Theorem 2.3.
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