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Abstract
We prove an inequality of the Loéve-Young type for the Riemann-Stieltjes integrals
driven by irregular signals attaining their values in Banach spaces, and, as a result, we
derive a new theorem on the existence of the Riemann-Stieltjes integrals driven by
such signals. Also, for any p ≥ 1, we introduce the space of regulated signals
f : [a,b] → W (a < b are real numbers, andW is a Banach space) that may be uniformly
approximated with accuracy δ > 0 by signals whose total variation is of order δ1–p as
δ → 0+ and prove that they satisfy the assumptions of the theorem. Finally, we derive
more exact, rate-independent characterisations of the irregularity of the integrals
driven by such signals.
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1 Introduction
The first aim of this paper is a generalisation of the results of [1] and [2] to the functions at-
taining their values not only in R but in more general spaces. Next, to obtain more precise
results, for any p ≥ 1, we introduce the space Up([a, b], W ) of regulated functions/signals
f : [a, b] → W (a < b are real numbers, and W is a Banach space) that may be uniformly
approximated with accuracy δ > 0 by functions whose total variation is of order δ1–p as
δ → 0+. This way we will obtain a result about the existence of the limit of Riemann-
Stieltjes sums, which we will denote by

∫ b
a f dg , for functions from Up([a, b]) and Uq([a, b])

whenever p, q > 1, p–1 + q–1 > 1. Results of this type were earlier obtained by Young [3, 4]
and D’yačkov [5] (for very detailed account, see [6, Chapter 3]), but they were expressed in
terms of p- or (more general) φ-variations. The integral obtained as the limit of Riemann-
Stieltjes sums in this case is often called the Young integral. It is in place to mention that
nowadays there exists fairly rich literature on the integration with respect to irregular in-
tegrators where the object defined as an integral is not necessarily obtained as the limit of
Riemann-Stieltjes sums. In [7] an interesting approach based on fractional calculus was
developed. In the modern theory of rough paths developed by Terry Lyons, the existence
of integrals of the form

∫ t
0 f (ys) · dxs and y satisfying y(t) = y(0) +

∫ t
0 f (ys) · dxs is proven,

even for very irregular x, as long as f is sufficiently regular and one is provided with the
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values of the iterated integrals
∫

t1<s<t2
dxi

s,
∫

t1<s<t<t2
dxi

s dxj
t ,

∫
t1<s<t<u<t2

dxi
s dxj

t dxk
u, etc.; see

[8, 9]. Both approaches mentioned provide tools to deal also with the case where the in-
tegrand and integrator reveal the same irregularity as the standard Brownian motion or
more general semimartingales (although the Young integral fails to exist in such case, and
it was, historically, one of the main reasons for the development of the stochastic inte-
gral). To deal with the integrals driven by a fractional Brownian motion, which fails to be a
semimartingale except the special case when its Hurst parameter is 1/2, one uses various
integrals: Young’s integral, fractional integral or the Skorohod integral; see [10, 11].

To obtain the convergence of Riemann-Stieltjes sums, we will use a partial solution of
a variational problem similar to that considered in [1]. In [1] the following problem was
considered: given real a < b, c > 0, a regulated function/signal f : [a, b] → R (for the defi-
nition of a regulated function see the next section) and x ∈ [f (a) – c/2, f (a) + c/2], find the
infimum of total variations of all functions f c,x : [a, b] → R that uniformly approximate f
with accuracy c/2,

∥
∥f – f c,x∥∥

[a,b],∞ := sup
a≤t≤b

∣
∣f (t) – f c,x(t)

∣
∣ ≤ c/2,

and start from f c,x(a) = x. Recall that the total variation of g : [a, b] →R is defined as

TV
(
g, [a, b]

)
:= sup

n
sup

a≤t0<t1<···<tn≤b

n∑

i=1

∣
∣g(ti) – g(ti–1)

∣
∣.

This infimum is well approximated by the truncated variation of f , defined as

TVc(f , [a, b]
)

:= sup
n

sup
a≤t0<t1<···<tn≤b

n∑

i=1

max
{∣
∣f (ti) – f (ti–1)

∣
∣ – c, 0

}
, (1)

and the following bounds hold:

TVc(f , [a, b]
) ≤ inf

f c,x∈B(f ,c/2),f c,x(a)=x
TV

(
f c,x, [a, b]

) ≤ TVc(f , [a, b]
)

+ c,

where B(f , c/2) := {g : ‖f – g‖[a,b],∞ ≤ c/2} (see [1, Thm. 4 and Rem. 15]). Moreover, we
have

inf
f c∈B(f ,c/2)

TV
(
f c, [a, b]

)
= TVc(f , [a, b]

)
. (2)

Unfortunately, this result is no more valid for functions attaining their values in more
general metric spaces.

Remark 1 It is not difficult to see that (2) does not hold even for f attaining its values
in R

2 with | · | understood as the Euclidean norm in R
2. Indeed, let f : [0, 2] → R

2 be
defined by f (t) = (cos(2π�t	/3), sin(2π�t	/3)). We have TV

√
3(f , [0, 2]) = 0, but there exists

no sequence of functions fn : [0, 2] → R
2, n = 1, 2, . . . , such that ‖f – fn‖[0,2],∞ ≤ √

3/2 and
limn→+∞ TV(fn, [0, 2]) = 0. Thus for c =

√
3, inff c∈B(f ,c/2) TV(f c, [a, b]) > TVc(f , [a, b]).
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Remark 1 answers (negatively) the question posed few years ago by Krzysztof Oleszkie-
wicz if the truncated variation is the greatest lower bound for the total variation of func-
tions from B(f , c/2) attaining values in R

d , d = 2, 3, . . . , or in other spaces than R. Fortu-
nately, it is possible to state an easy estimate of the left side of (2) in terms of the truncated
variation of f , for f attaining values in any metric space (to define the total variation and
the truncated variation of f attaining its values in the metric space (E, d), we just replace
|f (ti) – f (ti–1)| by the distance d(f (ti), f (ti–1))); see Theorem 1.

One application of Theorem 1 will be a generalisation of the results of [2] on the exis-
tence of the Riemann-Stieltjes integral. We will consider the case where the integrand and
integrator attain their values in Banach spaces. The restriction to the Banach spaces stems
from the fact that the method of our proof requires multiple application of summation by
parts and proceeding to the limit of a Cauchy sequence, which may be done in a straight-
forward way in any Banach space. This way we will obtain a general theorem on the exis-
tence of the Riemann-Stieltjes integral along a path in some Banach space (E,‖ · ‖E) (with
the integrand being a path in the space L(E, V ) of continuous linear mappings F : E → V ,
where V is another Banach space) and an improved version of the Loéve-Young inequality
for integrals driven by irregular paths in this space.

The famous Loéve-Young inequality may be stated as follows. If f : [a, b] → L(E, V ) and
g : [a, b] → E are two regulated functions with no common points of discontinuity and f
and g have finite p- and q-variations, respectively, where p > 1, q > 1 and p–1 + q–1 > 1, then
the Riemann-Stieltjes integral

∫ b
a f dg exists, and we have the following estimate:

∥
∥
∥
∥

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∥
∥
∥
∥ ≤ C̃p,q

(
V p(f , [a, b]

))1/p(V q(g, [a, b]
))1/q. (3)

Here

V p(f , [a, b]
)

:= sup
n

sup
a≤t0<t1<···<tn≤b

n∑

i=1

∥
∥f (ti) – f (ti–1)

∥
∥p

L(E,V )

and

V q(g, [a, b]
)

:= sup
n

sup
a≤t0<t1<···<tn≤b

n∑

i=1

∥
∥g(ti) – g(ti–1)

∥
∥q

E

denote the p- and q-variations of f and g , respectively (sometimes called the strong varia-
tions). The original Loéve-Young estimate with the constant C̃p,q = 1 + ζ (1/p + 1/q), where
ζ is the famous Riemann zeta function, was formulated for real functions in [3]. The coun-
terpart of this inequality for more general, Banach space-valued functions, with the con-
stant C̃p,q = 41/p+1/qζ (1/p + 1/q), is formulated in the proof of [12, Theorem 1.16]. Our
improved version of (3) is the following:

∥
∥
∥
∥

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∥
∥
∥
∥

≤ Cp,q
(
V p(f , [a, b]

))1–1/q‖f ‖1+p/q–p
osc,[a,b]

(
V q(g, [a, b]

))1/q, (4)
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where ‖f ‖osc,[a,b] := supa≤s<t≤b ‖f (s) – f (t)‖L(E,V ), and Cp,q is a universal constant depending
on p and q only. Notice that always

(
V p(f , [a, b]

))1/p–(1–1/q) ≥ ‖f ‖1+p/q–p
osc,[a,b] . (5)

Let us comment shortly on the proofs of (3) and related results that have appeared so
far. Young’s original proof of (3) utlilised elementary but clever induction argument for
finite sequences. Since then, there appeared several generalizations of (3), for example,
based on control functions; see [8, Section 3.3] or [12, Section 1.3]. Another proof based
on control functions but with different constant may be found in [13, Chapter 6]. An ab-
stract version of the inequality proven in [13], called the sewing lemma, was proven in
[14]. All these approaches give an inequality where only p- and q-variation (or Hölder)
norms appear, whereas our approach gives an estimate where the p-variation norm of f ,
that is, (V p(f , [a, b]))1/p, is replaced by the factor (V p(f , [a, b]))1–1/q‖f ‖1+p/q–p

osc,[a,b] , which may
be many times smaller than this norm. We formulate an even more improved version of
the Loéve-Young inequality in Remark 2. The inequality formulated in Remark 2, together
with relation (18), yields (4), and this, together with (5), yields (3), but reasoning in oppo-
site direction (derivation of (4) or inequality stated in Remark 2 from (3)) seems to be not
possible.

These results may be applied, for example, when f and g are trajectories of α-stable pro-
cesses X1, X2 with α ∈ (1, 2). However, since the obtained results are formulated in terms
of rate-independent functionals, like the truncated variation or p-variation, they remain
valid when f (t) = F(X1(A(t))) and g(t) = G(X2(B(t))) (with the technical assumption that
the jumps of f and g do not occur at the same time), where A, B : [0, +∞) → [0, +∞) are
piecewise monotonic, possibly random, changes of time (i.e. there exist 0 = T0 < T1 < · · ·
such that Tn → +∞ almost surely as n → +∞, and A and B are monotonic on each interval
(Ti–1, Ti), i = 1, 2, . . .), and F , G : R →R are locally Lipschitz.

As it was already mentioned, it appears that it is possible to derive weaker conditions
under which the improved Loéve-Young inequality still holds, and we will prove that it
still holds (and the Riemann-Stieltjes integral

∫ b
a f dg exists) for functions f and g with no

common points of discontinuity, satisfying

sup
δ>0

δp–1 TVδ
(
f , [a, b]

)
< ∞ and sup

δ>0
δq–1 TVδ

(
g, [a, b]

)
< ∞,

respectively. Moreover, in such a case the indefinite integral I(t) :=
∫ t

a f dg reveals similar
irregularity as the integrator g , namely, supδ>0 δq–1 TVδ(I, [a, b]) < ∞. We will also prove
that, for any p ≥ 1, the class of functions f : [a, b] → W , where W is a Banach space, such
that TVδ(f , [a, b]) = O(δ1–p) as δ → 0+ is a Banach space. We denote it by Up([a, b], W ).
The property f ∈ Up([a, b], W ) is weaker than the finiteness of p-variation but stronger
than the finiteness of q-variation for all q > p.

From early work of Lyons [15] it is well known that whenever f and g have finite p- and
q-variations, respectively, p > 1, q > 1 and p–1 + q–1 > 1, then the indefinite integral I(·)
has finite q-variation. However, it is also well known that a symmetric α-stable process X
with α ∈ [1, 2] has finite p-variation for any p > α whereas its α-variation is infinite (on
any proper compact subinterval of [0, +∞)); see, for example, [16, Thm. 4.1]. Thus, if, for
example, f (t) = F(X1(A(t))) and g(t) = G(X2(B(t))) are like in the former paragraph, then
we can say that I(·) has finite p-variation on any compact subinterval of [0, +∞) for any
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p > α but cannot say much more. From our results it will follow that I(·) ∈ Uα([0, t],R) for
any t ≥ 0; moreover, we will get estimates for I stronger than those already known; see
Theorem 3. Thus, the introduction of the new spaces and inequalities has at least two ap-
plications: (1) we identify the family of functions with finite p-variation as a proper subset
of Up, that is, the family of functions that can be uniformly approximated with accuracy δ

by simple functions whose total variation is of order δ1–p as δ → 0+, (2) we get better es-
timates for the integrals driven by irregular paths, which may be used to strengthen some
results on the existence of solutions of the differential equations driven by irregular paths;
see [2, Section 3] and Section 4.3.

Let us comment on the organization of the paper. In the next section we prove very gen-
eral estimates for infg∈B(f ,c/2) TV(g, [a, b]) for regulated f : [a, b] → E, where E is any metric
space, in terms of the truncated variation of f . Next, in Section 3, we use the obtained es-
timates to prove a new theorem on the existence of the Riemann-Stieltjes integral driven
by irregular paths in Banach spaces. In the proofs we closely follow [2]. In Section 4, we
introduce the Banach spaces Up([a, b], W ), p ≥ 1 (Section 4.1) and in Section 4.2 obtain
more exact estimates of the rate-independent irregularity of functions from these spaces
(in terms of φ-variation). In the last subsection we deal with the irregularity of the integrals
driven by signals from the spaces Up([a, b], W ), p ≥ 1.

2 Estimates for the variational problem
Let (E, d) be a metric space with metric d. For given reals a < b, we say that the function
f : [a, b] → E is regulated if it has right limits f (t+) for any t ∈ [a, b) and left limits f (t–)
for any t ∈ (a, b]. If E is complete, then a necessary and sufficient condition for f to be
regulated is that it is a uniform limit of step functions (see [17, Thm. 7.6.1]).

Let f : [a, b] → E be regulated. For c > 0, let us consider the family B(f , c/2) of all func-
tions g : [a, b] → E such that supt∈[a,b] d(f (t), g(t)) ≤ c/2. We will be interested in the fol-
lowing variational problem: find

inf
g∈B(f ,c/2)

TV
(
g, [a, b]

)
, (6)

where

TV
(
g, [a, b]

)
:= sup

n
sup

a≤t0<t1<···<tn≤b

n∑

i=1

d
(
g(ti), g(ti–1)

)
.

To state our first main result, let us define the truncated variation of g with the trunca-
tion parameter c ≥ 0:

TVc(g, [a, b]
)

:= sup
n

sup
a≤t0<t1<···<tn≤b

n∑

i=1

max
{

d
(
g(ti), g(ti–1)

)
– c, 0

}
.

Intuitively, the truncated variation with the truncation parameter c takes into account only
those changes in the values of g whose distance is greater than c.

Theorem 1 For any regulated f : [a, b] → E, there exists a step function f c : [a, b] → E such
that supt∈[a,b] d(f (t), f c(t)) ≤ c/2 and for any λ > 1,

TV
(
f c, [a, b]

) ≤ λ · TV(λ–1)c/(2λ)(f , [a, b]
)
.
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Thus the following estimates hold:

TVc(f , [a, b]
) ≤ inf

g∈B(f ,c/2)
TV

(
g, [a, b]

) ≤ inf
λ>1

λ · TV(λ–1)c/(2λ)(f , [a, b]
)
.

In particular, taking λ = 2, we get the double-sided estimate

TVc(f , [a, b]
) ≤ inf

g∈B(f ,c/2)
TV

(
g, [a, b]

) ≤ 2 · TVc/4(f , [a, b]
)
.

Moreover, if E is a normed vector space with norm ‖ ·‖E , then there exists f c,lin : [a, b] → E
such that f c,lin is piecewise linear, the jumps of f c,lin occur only at the points where the jumps
of f do, supt∈[a,b] ‖f (t) – f c,lin(t)‖E ≤ c and TV(f c,lin, [a, b]) = TV(f c, [a, b]).

Proof The estimate from below

inf
g∈B(f ,c/2)

TV
(
g, [a, b]

) ≥ TVc(f , [a, b]
)

follows immediately from the triangle inequality: if supt∈[a,b] d(f (t), g(t)) ≤ c/2, then for any
a ≤ s < t ≤ b,

max
{

d
(
g(t), g(s)

)
– c, 0

} ≤ max
{

d
(
g(t), g(s)

)
– d

(
g(t), f (t)

)
– d

(
g(s), f (s)

)
, 0

}

≤ d
(
f (t), f (s)

)
.

The estimate from above follows from the following greedy algorithm. Let us consider
the sequence of times defined in the following way: τ0 = a and, for n = 1, 2, . . . ,

τn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf{t ∈ (τn–1, b] : d(f (t), f (τn–1)) > c/2}
if τn–1 < b and d(f (τn–1), f (τn–1+)) < c/2;

inf{t ∈ (τn–1, b] : d(f (t), f (τn–1+)) > c/2}
if τn–1 < b and d(f (τn–1), f (τn–1+)) ≥ c/2;

+∞ otherwise.

Note that, since f is regulated, limn→+∞ τn = +∞. (We apply the convention that inf∅ =
+∞.) Now we define a step function f c ∈ B(f , c/2) in the following way. For each n = 1, 2, . . .
such that τn–1 < b, we put

• if d(f (τn–1), f (τn–1+)) < c/2, then

f c(t) := f (τn–1) for t ∈ [τn–1, τn) ∩ [a, b];

• if d(f (τn–1), f (τn–1+)) ≥ c/2, then f c(τn–1) := f (τn–1) and

f c(t) := f (τn–1+) for t ∈ (τn–1, τn) ∩ [a, b].

This way the function f c is defined for all t ∈ [a, b].
It is not difficult to see that the just constructed f c satisfies supt∈[a,b] d(f (t), f c(t)) ≤ c/2,

and for each n = 1, 2, . . . such that τn ≤ b, we have
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• if d(f (τn–1), f (τn–1+)) < c/2 then

d
(
f c(τn–1), f c(τn–1+)

)
= 0 (7)

and

d
(
f c(τn–1+), f c(τn)

)
= d

(
f (τn–1), f (τn)

) ≥ c/2; (8)

• if d(f (τn–1), f (τn–1+)) ≥ c/2, then

d
(
f c(τn–1), f c(τn–1+)

)
= d

(
f (τn–1+), f (τn–1+)

) ≥ c/2 (9)

and

d
(
f c(τn–1+), f c(τn)

)
= d

(
f (τn–1+), f (τn)

) ≥ c/2. (10)

Let N = max{n : τn–1 < b}. From the elementary inequality x ≤ λmax{x – λ–1
2λ

c, 0} (which
holds for for x ∈ {0} ∪ [c/2, +∞) and λ > 1) and from (7)-(10) we have

TV
(
f c, [a, b]

)
=

N∑

n=1

{
d
(
f c(τn–1), f c(τn–1+)

)
+ d

(
f c(τn–1+), f c(τn ∧ b)

)}

≤ λ

N∑

n=1

max

{

d
(
f c(τn–1), f c(τn–1+)

)
–

λ – 1
2λ

c, 0
}

+ λ

N∑

n=1

max

{

d
(
f c(τn–1), f c(τn ∧ b)

)
–

λ – 1
2λ

c, 0
}

≤ λ

N∑

n=1

max

{

d
(
f (τn–1), f (τn–1+)

)
–

λ – 1
2λ

c, 0
}

+ λ

N∑

n=1

max

{

d
(
f (τn–1+), f (τn ∧ b)

)
–

λ – 1
2λ

c, 0
}

≤ λTV(λ–1)c/(2λ)(f , [a, b]
)
.

Thus, since f c ∈ B(f , c/2) and λ was an arbitrary number from the interval (1, +∞), we
have

inf
g∈B(f ,c/2)

TV
(
g, [a, b]

) ≤ TV
(
f c, [a, b]

) ≤ inf
λ>1

λ · TV(λ–1)c/(2λ)(f , [a, b]
)
.

The construction of the function f c,lin is similar. For τn, n = 0, 1, . . . , such that τn ≤ b,
we define f c,lin(τn) = f (τn), and for t ∈ (τn–1, τn) ∩ [a, b], n = 0, 1, . . . such that τn–1 < b, we
defined it as follows.

• If d(f (τn–1), f (τn–1+)) < c/2, τn ≤ b and f (τn–) �= f (τn), then for t ∈ (τn–1, τn), we put

f c,lin(t) := f (τn–1);
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• if d(f (τn–1), f (τn–1+)) < c/2 and τn = +∞, then for t ∈ (τn–1, b], we put

f c,lin(t) := f (τn–1);

• if d(f (τn–1), f (τn–1+)) < c/2, τn ≤ b and f (τn–) = f (τn), then for t ∈ (τn–1, τn), we put

f c,lin(t) :=
τn – t

τn – τn–1
f (τn–1) +

t – τn–1

τn – τn–1
f (τn);

• if d(f (τn–1), f (τn–1+)) ≥ c/2, τn ≤ b and f (τn–) �= f (τn), then for t ∈ (τn–1, τn), we put

f c,lin(t) := f (τn–1+);

• if d(f (τn–1), f (τn–1+)) ≥ c/2 and τn = +∞, then for t ∈ (τn–1, b] we put

f c,lin(t) := f (τn–1+);

• if d(f (τn–1), f (τn–1+)) ≥ c/2, τn ≤ b and f (τn–) = f (τn) then for t ∈ (τn–1, τn),

f c,lin(t) :=
τn – t

τn – τn–1
f (τn–1+) +

t – τn–1

τn – τn–1
f (τn).

It is straightforward to verify that supt∈[a,b] ‖f (t) – f c,lin(t)‖E ≤ c, TV(f c,lin, [a, b]) =
TV(f c, [a, b]) and the jumps of f c,lin occur only at the points where the jumps of f do. �

3 Integration of irregular signals in Banach spaces
Directly from the definition it follows that the truncated variation is a superadditive func-
tional of the interval, that is, for c ≥ 0 and d ∈ (a, b),

TVδ
(
f , [a, b]

) ≥ TVδ
(
f , [a; d]

)
+ TVδ

(
f , [d, b]

)
. (11)

Moreover, if (E,‖ · ‖E) is a normed vector space (with norm ‖ · ‖E), then we also have the
following easy estimate of the truncated variation of a function g : [a, b] → E perturbed
by some other function h : [a, b] → E:

TVδ
(
g + h, [a, b]

) ≤ TVδ
(
g, [a, b]

)
+ TV0(h, [a, b]

)
, (12)

which stems directly from the inequality

max
{∥
∥g(t) + h(t) –

{
g(s) + h(s)

}∥
∥

E – δ, 0
}

≤ max
{∥
∥g(t) – g(s)

∥
∥

E – δ, 0
}

+
∥
∥h(t) – h(s)

∥
∥

E , a ≤ s < t ≤ b.

Let now (E,‖ · ‖E), (W ,‖ · ‖W ) be Banach spaces, let (V ,‖ · ‖V ) be another Banach space,
and let (L(E, V ),‖ · ‖L(E,V )) be the space of continuous linear mappings F : E → V with the
norm ‖F‖L(E,V ) = supe∈E:‖e‖E=1 ‖F · e‖V . Throughout the rest of this paper, we will assume
that f : [a, b] → W and g : [a, b] → E. We will often encounter the situation where W =
L(E, V ).
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Relations (11) and (12), together with Theorem 1, will allow us to establish a new result
on the existence of the Riemann-Stieltjes integral with the integrand f : [a, b] → L(E, V )
and the integrator g . By saying that the Riemann-Stieltjes integral exists we will mean that
for any sequence of partitions πn = {a = tn

0 < tn
1 < · · · < tn

k(n) = b} such that mesh(πn) :=
maxi=1,2,...,k(n)(tn

i – tn
i–1) → 0 as n → +∞ and for any ξn

i ∈ [tn
i–1, tn

i ], the Riemann-Stieltjes
sums

k(n)∑

i=1

f
(
ξn

i
)[

g
(
tn
i
)

– g
(
tn
i–1

)]

converge, and the limit denoted by
∫ b

a f dg is independent of the choice of ξn
i . (For ξ , s, t ∈

[a, b], by f (ξ )[g(t) – g(s)] we mean the value of the linear mapping f (ξ ) evaluated at the
vector g(t) – g(s), that is, the element of the space V .)

Theorem 2 Let f : [a, b] → L(E, V ) and g : [a, b] → E be two regulated functions that have
no common points of discontinuity. Let η0 ≥ η1 ≥ · · · and θ0 ≥ θ1 ≥ · · · be two sequences
of positive numbers such that ηk ↓ 0, θk ↓ 0 as k → +∞. Define η–1 := 1

2 supa≤t≤b ‖f (t) –
f (a)‖L(E,V ) and

S := 4
+∞∑

k=0

3kηk–1 · TVθk /4(g, [a, b]
)

+ 4
∞∑

k=0

3kθk · TVηk /4(f , [a, b]
)
.

If S < +∞, then the Riemann-Stieltjes integral
∫ b

a f dg exists, and we have the following
estimate,

∥
∥
∥
∥

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∥
∥
∥
∥

V
≤ S. (13)

The proof of Theorem 2 is based on the following lemmas.

Lemma 1 (Summation by parts in a Banach space) Let f : [a, b] → L(E, V ), g : [a, b] → E,
and let c = t0 < t1 < · · · < tn = d be any partition of the interval [c, d] ⊂ [a, b]. Let ξ0 = c and
ξ1, . . . , ξn be such that ti–1 ≤ ξi ≤ ti for i = 1, 2, . . . , n. Then

n∑

i=1

[
f (ξi) – f (c)

][
g(ti) – g(ti–1)

]
=

n∑

i=1

[
f (ξi) – f (ξi–1)

][
g(d) – g(ti–1)

]
. (14)

Proof For i = 1, 2, . . . , n, let us denote fi = f (ξi) – f (ξi–1) and gi = g(ti) – g(ti–1). We have

n∑

i=1

[
f (ξi) – f (c)

][
g(ti) – g(ti–1)

]
=

n∑

i=1

( i∑

j=1

fj

)

gi =
n∑

j=1

fj

( n∑

i=j

gi

)

=
n∑

i=1

[
f (ξi) – f (ξi–1)

][
g(d) – g(ti–1)

]
. �

Lemma 2 Let f : [a, b] → L(E, V ) and g : [a, b] → E be two regulated functions. Let c = t0 <
t1 < · · · < tn = d be any partition of the interval [c, d] ⊂ [a, b], and let ξ0 = c and ξ1, . . . , ξn
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be such that ti–1 ≤ ξi ≤ ti for i = 1, 2, . . . , n. Then for δ–1 := 1
2 supc≤t≤d ‖f (t) – f (c)‖L(E,V ) and

any δ0 ≥ δ1 ≥ · · · ≥ δr > 0 and ε0 ≥ ε1 ≥ · · · ≥ εr > 0, the following estimate holds:

∥
∥
∥
∥
∥

n∑

i=1

f (ξi)
[
g(ti) – g(ti–1)

]
– f (c)

[
g(d) – g(c)

]
∥
∥
∥
∥
∥

V

≤ 4
r∑

k=0

3kδk–1 · TVεk /4(g, [c, d]
)

+ 4
r∑

k=0

3kεk · TVδk /4(f , [c, d]
)

+ nδrεr .

Proof The proof goes exactly along the same lines as the proof of [2, Lemma 1] with the
obvious changes. The idea is to utilize Theorem 1 and approximate the functions g an f
by two piecewise linear functions gε0 : [a, b] → E and f δ0 : [a, b] → L(E, V ) satisfying the
following conditions:

sup
t∈[c,d]

∥
∥g(t) – gε0 (t)

∥
∥

E ≤ ε0 and TV
(
gε0 , [c, d]

) ≤ 2 TVε0/4(g, [c, d]
)

(15)

and

sup
t∈[c,d]

∥
∥f (t) – f δ0 (t)

∥
∥

L(E,V ) ≤ δ0 and TV
(
f δ0 , [c, d]

) ≤ 2 TVδ0/4(f , [c, d]
)
. (16)

Define g0 := g , f0 := f , g1 := g0 – gε0
0 , f1 := f0 – f δ0

0 , and for k = 2, . . . , r, define gk := gk–1 – gεk–1
k–1

and fk := fk–1 – f δk–1
k–1 similarly as g1 and f1. Repeating the same arguments as in the proof of

[2, Lemma 1] (multiple application of the summation by parts), we get

∥
∥
∥
∥
∥

n∑

i=1

f (ξi)
[
g(ti) – g(ti–1)

]
– f (c)

[
g(d) – g(c)

]
∥
∥
∥
∥
∥

V

≤ 4
r∑

k=0

δk–1 · TVεk /4(gk , [c, d]
)

+ 4
r∑

k=0

εk · TVδk /4(fk , [c, d]
)

+ 4nδrεr (17)

and, for k = 1, 2, . . . , r,

TVεk /4(gk , [c, d]
) ≤ 3k TVεk /4(g, [c, d]

)

and

TVδk /4(fk , [c, d]
) ≤ 3k TVδk /4(f , [c, d]

)
.

By (17) and the last two estimates we get the desired estimate. �

Now we proceed to the proof of Theorem 2.

Proof of Theorem 2 Again, the proof goes exactly along the same lines as the proof of [2,
Thm. 1] with the obvious changes. �
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3.1 An improved version of the Loéve-Young inequality
Now we will obtain an improved version of the Loéve-Young inequality for integrals driven
by irregular signals attaining their values in Banach spaces. Our main tool will be Theo-
rem 2 and the following simple relation between the rate of growth of the truncated vari-
ation and finiteness of p-variation. If V p(f , [a, b]) < +∞ for some p ≥ 1, then for every
δ > 0,

TVδ
(
f , [a, b]

) ≤ V p(f , [a, b]
)
δ1–p. (18)

This result follows immediately from the elementary estimate: for any x ≥ 0,

δp–1 max{x – δ, 0} ≤
⎧
⎨

⎩

0 if x ≤ δ

xp if x > δ
≤ xp.

Notice also that if V p(f , [a, b]) < +∞ for some p > 0, then f is regulated. For p ≥ 1 and a
Banach space W , by Vp([a, b], W ) we denote the Banach space of all functions f : [a, b] →
W such that V p(f , [a, b]) < +∞. By ‖f ‖p-var,[a,b] we denote the seminorm

‖f ‖p-var,[a,b] :=
(
V p(f , [a, b]

))1/p.

Corollary 1 Let f : [a, b] → L(E, V ) and g : [a, b] → E be two functions with no common
points of discontinuity. If f ∈ Vp([a, b], L(E, V )) and g ∈ Vq([a, b], E), where p > 1, q > 1,
p–1 + q–1 > 1, then the Riemann-Stieltjes integral

∫ b
a f dg exists. Moreover, there exists a

constant Cp,q, depending on p and q only, such that

∥
∥
∥
∥

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∥
∥
∥
∥

V
≤ Cp,q‖f ‖p–p/q

p-var,[a,b]‖f ‖1+p/q–p
osc,[a,b]‖g‖q-var,[a,b].

Proof By Theorem 2 it suffices to prove that, for some positive sequences η0 ≥ η1 ≥ · · ·
and θ0 ≥ θ1 ≥ · · · such that ηk ↓ 0, θk ↓ 0 as k → +∞, and η–1 = supa≤t≤b ‖f (t) – f (a)‖L(E,V ),
we have

S := 4
+∞∑

k=0

3kηk–1 · TVθk /4(g, [a, b]
)

+ 4
+∞∑

k=0

3kθk · TVηk /4(f , [a, b]
)

≤ Cp,q‖f ‖p–p/q
p-var,[a,b]‖f ‖1+p/q–p

osc,[a,b]‖g‖q-var,[a,b].

The proof will follow from the proper choice of the sequences (ηk) and (θk). Choose

α =
√

(q – 1)(p – 1) + 1
2

, β =
1
2

sup
a≤t≤b

∥
∥f (t) – f (a)

∥
∥

L(E,V ),

γ =
(
V q(g, [a, b]

)
/V p(f , [a, b]

))1/q
βp/q

and for k = 0, 1, . . . , define

ηk–1 = β · 3–(α2/[(q–1)(p–1)])k+1
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and

θk = γ · 3–(α2/[(q–1)(p–1)])kα/(q–1).

By (18), similarly as in the proof of [2, Cor. 2], we estimate

S ≤ Cp,q
(
V q(g, [a, b]

))1/q(V p(f , [a, b]
))1–1/q

β1+p/q–p

≤ Cp,q‖g‖q-var,[a,b]‖f ‖p–p/q
p-var,[a,b]‖f ‖1+p/q–p

osc,[a,b]

with

Cp,q = 4q
+∞∑

k=0

3k+1–(1–α)(α2/[(q–1)(p–1)])k

+ 4p
+∞∑

k=0

3k+1–p–α(1–α)(α2/[(q–1)(p–1)])k/(q–1). �

4 Spaces Up([a, b], W)
4.1 Up([a, b], W) as a Banach space
Let p ≥ 1, and let W be a Banach space. In this subsection, we will prove that the fam-
ily Up([a, b], W ) of functions f : [a, b] → W such that supδ>0 δp–1 TVδ(f , [a, b]) < +∞ is a
Banach space and that the functional

‖ · ‖p-TV,[a,b] : Up([a, b]
) → [0, +∞)

defined by

‖f ‖p-TV,[a,b] :=
(

sup
δ>0

δp–1 TVδ
(
f , [a, b]

))1/p
(19)

is a seminorm on this space (whereas the functional ‖f ‖TV,p,[a,b] = ‖f (a)‖W + ‖f ‖p-TV,[a,b] is
a norm). From (18) it follows that

‖f ‖p-TV,[a,b] ≤ ‖f ‖p-var,[a,b], (20)

and thus Vp([a, b], W ) ⊂ Up([a, b], W ). It appears that this inclusion is strict. For example,
if 0 ≤ a < b, then a real symmetric α-stable process X with α ∈ (1, 2] has finite p-variation
for p > α, whereas (as it was already mentioned in the Introduction) its α-variation is a.s.
infinite (on any proper compact subinterval of [0, +∞)). On the other hand, trajectories of
X belong a.s. to Uα([0, t],R) for any t ≥ 0; see [18]. For another example, see [19, Thm. 17].

From the results of the next subsection it will also follow that

Up([a, b], W
) ⊂

⋂

q>p
Vq([a, b], W

)
,

but, again, this inclusion is strict.
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Remark 2 For further justifcation of the importance of the spaces Up([a, b], W ), p > 1, let
us also notice that if W = L(E, V ), f belongs to Uq([a, b], W ), g belongs to Uq([a, b], E) for
some q > 1 such that p–1 + q–1 > 1, and f and g have no common points of discontinuity,
then the integral

∫ b
a f dg still exists, and we have the estimate

∥
∥
∥
∥

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∥
∥
∥
∥

V
≤ Cp,q‖f ‖p–p/q

p–TV ,[a,b]‖f ‖1+p/q–p
osc,[a,b]‖g‖q-TV,[a,b]

with the same constant Cp,q that appears in Corollary 1. This follows from the fact that in
the proof of Corollary 1 we were using only estimate (18), which now may be replaced by
the estimate

TVδ
(
f , [a, b]

) ≤ ‖f ‖p
p-TV,[a,b]δ

1–p (21)

for any δ > 0, stemming directly from the definition of the norm ‖ · ‖p-TV,[a,b].

Proposition 1 For any p ≥ 1, the functional ‖ · ‖p-TV,[a,b] is a seminorm, and the functional
‖ · ‖TV,p,[a,b] is a norm on Up([a, b], W ). Up([a, b], W ) equipped with this norm is a Banach
space.

Proof For p = 1, ‖ · ‖p-TV,[a,b] coincides with V 1(f , [a, b]), ‖ · ‖TV,p,[a,b] coincides with the 1-
variation norm ‖f ‖var,1,[a,b] := ‖f (a)‖W + V 1(f , [a, b]), and U1([a, b], W ) is simply the same
as the space of functions with bounded total variation. Therefore, for the rest of the proof,
we will assume that p > 1.

The homogeneity of ‖ · ‖p-TV,[a,b] and ‖ · ‖TV,p,[a,b] follows easily from the fact that, for
α, δ > 0, TVαδ(αf , [a, b]) = α TVδ(f , [a, b]), which is a consequence of the equality

max
{∥
∥αf (t) – αf (s)

∥
∥

W – αδ, 0
}

= α max
{∥
∥f (t) – f (s)

∥
∥

W – δ, 0
}

.

To prove the triangle inequality, let us take f , h ∈ Up([a, b]) and fix ε > 0. Let δ0 > 0 and
a ≤ t0 < t1 < · · · < tn ≤ b be such that

(

δ
p–1
0

n∑

i=1

(∥∥f (ti) – f (ti–1) + h(ti) – h(ti–1)
∥
∥

W – δ0
)

+

)1/p

≥ ‖f + h‖p-TV;[a,b] – ε, (22)

where (·)+ := max{·, 0}. By standard calculus, for x > 0 and p ≥ 1, we have

sup
δ>0

δp–1(x – δ)+ = sup
δ≥0

δp–1(x – δ) = cpxp, (23)

where cp = (p – 1)p–1/pp ∈ [2–p; 1]. Denote x∗
0 = 0 and xi = ‖f (ti) – f (ti–1) + h(ti) – h(ti–1)‖W

for i = 1, 2, . . . , n. Let x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
n be the nondecreasing rearrangement of the se-
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quence (xi). Notice that by (23) for δ ∈ [x∗
j–1; x∗

j ], j = 1, 2, . . . , n, we have

δp–1
n∑

i=1

(∥∥f (ti) – f (ti–1) + h(ti) – h(ti–1)
∥
∥

W – δ
)

+

= δp–1
n∑

i=j

(
x∗

i – δ
)

= δp–1

( n∑

i=j

x∗
i – (n – j + 1)δ

)

= (n – j + 1)δp–1
( ∑n

i=j x∗
i

n – j + 1
– δ

)

≤ (n – j + 1)cp

( ∑n
i=j x∗

i

n – j + 1

)p

.

Hence

sup
δ>0

δp–1
n∑

i=1

(∥
∥f (ti) – f (ti–1) + h(ti) – h(ti–1)

∥
∥

W – δ
)

+

≤ max
j=1,2,...,n

(n – j + 1)cp

( ∑n
i=j x∗

i

n – j + 1

)p

. (24)

On the other hand,

sup
δ>0

δp–1
n∑

i=1

(∥∥f (ti) – f (ti–1) + h(ti) – h(ti–1)
∥
∥

W – δ
)

+

= sup
δ>0

δp–1
n∑

i=1

(
x∗

i – δ
)

+ ≥ sup
δ>0

max
j=1,2,...,n

δp–1
n∑

i=j

(
x∗

i – δ
)

= max
j=1,2,...,n

sup
δ>0

δp–1
n∑

i=j

(
x∗

i – δ
)

= max
j=1,2,...,n

(n – j + 1)cp

( ∑n
i=j x∗

i

n – j + 1

)p

. (25)

By (24) and (25) we get

(

sup
δ>0

δp–1
n∑

i=1

(∥
∥f (ti) – f (ti–1) + h(ti) – h(ti–1)

∥
∥

W – δ
)

+

)1/p

= max
j=1,2,...,n

(n – j + 1)1/p–1c1/p
p

n∑

i=j

x∗
i . (26)

Similarly, denoting by y∗
i and z∗

i the nondecreasing rearrangements of the sequences yi =
‖f (ti) – f (ti–1)‖W and zi = ‖h(ti) – h(ti–1)‖W , respectively, we get

‖f ‖p-TV,[a,b] ≥
(

sup
δ>0

δp–1
n∑

i=1

(∥∥f (ti) – f (ti–1)
∥
∥

W – δ
)

+

)1/p

= max
j=1,2,...,n

(n – j + 1)1/p–1c1/p
p

n∑

i=j

y∗
i
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and

‖h‖p-TV,[a,b] ≥
(

sup
δ>0

δp–1
n∑

i=1

(∥
∥h(ti) – h(ti–1)

∥
∥

W – δ
)

+

)1/p

= max
j=1,2,...,n

(n – j + 1)1/p–1c1/p
p

n∑

i=j

z∗
i .

By the triangle inequality and the definition of y∗
i and z∗

i for j = 1, 2, . . . , n, we have
∑n

i=j x∗
i ≤

∑n
i=j y∗

i +
∑n

i=j z∗
i . Hence

max
j=1,2,...,n

(n – j + 1)1/p–1c1/p
p

n∑

i=j

x∗
i

≤ max
j=1,2,...,n

(n – j + 1)1/p–1c1/p
p

n∑

i=j

(
y∗

i + z∗
i
)

≤ max
j=1,2,...,n

(n – j + 1)1/p–1c1/p
p

n∑

i=j

y∗
i + max

j=1,2,...,n
(n – j + 1)1/p–1c1/p

p

n∑

i=j

z∗
i

≤ ‖f ‖p-TV,[a,b] + ‖h‖p-TV,[a,b].

Finally, by (22), (26), and the last estimate we get

‖f + g‖p-TV,[a,b] – ε ≤ ‖f ‖p-TV,[a,b] + ‖g‖p-TV,[a,b].

Sending ε to 0, we get the triangle inequality for ‖ · ‖p-TV,[a,b]. From this also follows the
triangle inequality for ‖ · ‖TV,p,[a,b].

Now we will prove that the space Up([a, b], W ) equipped with the norm ‖ · ‖TV,p,[a,b] is a
Banach space. To prove this, we need the inequality

TVδ1+δ2
(
f + g, [a, b]

) ≤ TVδ1
(
f , [a, b]

)
+ TVδ2

(
g, [a, b]

)
(27)

for δ1, δ2 ≥ 0. It follows from the elementary estimate

(‖w1 – w2‖W – δ1 – δ2
)

+ ≤ (‖w1‖W – δ1
)

+ +
(‖w2‖W – δ2

)
+ (28)

for w1, w2 ∈ W and nonnegative δ1 and δ2. We also have TVδ(f , [a, b]) ≥ (‖f ‖osc,[a,b] – δ)+.
From this and from (23) it follows that

‖f ‖TV,p,[a,b] ≥ ∣
∣f (a)

∣
∣ + c1/p

p ‖f ‖osc,[a,b] ≥ c1/p
p ‖f ‖∞,[a,b], (29)

where ‖f ‖∞,[a,b] := supt∈[a,b] ‖f (t)‖W . Hence any Cauchy sequence (fn)∞n=1 in Up([a, b], W )
converges uniformly to some f∞ : [a, b] → W . Assume that ‖f∞ – fn‖TV,p,[a,b] � 0 as n →
+∞. Thus, there exist a positive number κ , a sequence of positive integers nk → +∞ and
a sequence of positive reals δk , k = 1, 2, . . . , such that δ

p–1
k TVδk (fnk – f∞, [a, b]) ≥ κp. Let N

be a positive integer such that

‖fm – fn‖TV,p,[a,b] < κ/21–1/p for m, n ≥ N , (30)
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and let k0 be the minimal positive integer such that nk0 ≥ N . For sufficiently large n ≥ N ,
we have ‖fn – f∞‖∞,[a,b] ≤ δk0 /4, and hence ‖fn – f∞‖osc,[a,b] ≤ δk0 /2 and

TVδk0 /2(fn – f∞, [a, b]
)

= 0. (31)

Now, by (27)

TVδk0
(
fnk0

– f∞, [a, b]
) ≤ TVδk0 /2(fnk0

– fn, [a, b]
)

+ TVδk0 /2(fn – f∞, [a, b]
)
.

From this and from (31) we get

(δk0 /2)p–1 TVδk0 /2(fnk0
– fn, [a, b]

) ≥ δ
p–1
k0

TVδk0
(
fnk0

– f∞, [a, b]
)
/2p–1 ≥ κp/2p–1,

but this (recall (19)) contradicts (30). Thus the sequence (fn)∞n=1 converges in the
Up([a, b], W ) norm to f∞. Since the sequence (fn)∞n=1 was chosen in an arbitrary way, this
proves that Up([a, b], W ) is complete. �

Remark 3 It is easy to see that the space Up([a, b], W ) equipped with the norm ‖·‖TV,p,[a,b]

is not separable. To see this, it suffices for two distinct vectors w1 and w2 from W to con-
sider the family of functions ft : [a, b] → {w1, w2}, ft(s) := 1{t}(s)w1 + (1 – 1{t}(s))w2, t ∈ [a, b]
(1A denotes the indicator function of a set A) and apply (29). However, we do not know if
the subspace of continuous functions in Up([a, b],R) is separable.

Remark 4 From the triangle inequality for ‖ · ‖p-TV,[a,b] it follows that it is an subadditive
functional of the interval, that is, for any p ≥ 1, f : [a, b] → W and d ∈ (a, b),

‖f ‖p-TV,[a,b] ≤ ‖f ‖p-TV,[a,d] + ‖f ‖p-TV,[d,b].

To see this, it suffices to consider the decomposition f (t) = f1(t) + f2(t), f1(t) = 1[a,d](t)f (t) +
1(d,b](t)f (d), f2(t) = 1(d,b](t)f (t) – 1(d,b](t)f (d). We naturally have

‖f ‖p-TV,[a,b] = ‖f1 + f2‖p-TV,[a,b]

≤ ‖f1‖p-TV,[a,b] + ‖f2‖p-TV,[a,b]

= ‖f ‖p-TV,[a,d] + ‖f ‖p-TV,[d,b].

However, superadditivity, as a function of the interval, holding for ‖·‖p
p-var,[a,b] = V p(·, [a, b])

is no more valid for ‖·‖p
p-TV,[a,b]. To see this, it suffices to consider the function f : [–1; 1] →

{–1, 0, 1}, f (t) = 1(–1,1)(t) – 1{1}(t). We have TVδ(f , [–1, 0]) = (1 – δ)+, TVδ(f , [0, 1]) = (2 – δ)+

and TVδ(f , [–1, 1]) = (1 – δ)+ + (2 – δ)+, and hence ‖f ‖2
2-TV,[–1;1] = 9/8 < ‖f ‖2

2-TV,[–1;0] +
‖f ‖2

2-TV,[0;1] = 1/4 + 1.

4.2 φ-variation of the functions from the space Up([a, b], W)
For a (nondecreasing) function φ : [0, +∞) → [0, +∞), let us define the φ-variation of f :
[a, b] → W as

V φ
(
f , [a, b]

)
:= sup

n
sup

a≤t0<t1<···<tn≤b

n∑

i=1

φ
(∥
∥f (ti) – f (ti–1)

∥
∥

W

)
.

In this subsection, we prove the following result.
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Proposition 2 Let p ≥ 1 and suppose that φ : [0, +∞) → [0, +∞) is such that φ(0) = 0 and
for each t > 0, φ(t) > 0,

sup
0<u≤s≤2u≤2t

φ(s)
φ(u)

< +∞ and
+∞∑

j=0

2pjφ
(
2–j) < +∞. (32)

Then for any function f ∈ Up([a, b], W ), we have Vφ(f , [a, b]) < +∞.

Remark 5 The function φ satisfies the same assumptions as in [20, Prop. 1].

Proof Let L be the least positive integer such that supt∈[a,b] ‖f (t)‖W ≤ 2L. Consider the
partition π = {a ≤ t0 < t1 < · · · < tn ≤ b} such that f (ti) �= f (ti–1) for i = 1, 2, . . . , n and for
j = 0, 1, . . . , define

Ij =
{

i ∈ {1, 2, . . . , n} :
∥
∥f (ti) – f (ti–1)

∥
∥

W ∈ (
2L–j, 2L–j+1]}

and δ(j) := 2L–j–1. Naturally, for i ∈ Ij,

∥
∥f (ti) – f (ti–1)

∥
∥

W – δ(j) ≥ 1
2
∥
∥f (ti) – f (ti–1)

∥
∥

W ,

and since {1, 2, . . . , n} =
⋃+∞

j=0 Ij, we estimate

n∑

i=1

φ
(∥∥f (ti) – f (ti–1)

∥
∥

W

)

=
+∞∑

j=0

∑

i∈Ij

φ
(∥∥f (ti) – f (ti–1)

∥
∥

W

)

≤
+∞∑

j=0

sup
s∈[2L–j ,2L–j+1]

φ(s)
2L–j

∑

i∈Ij

∥
∥f (ti) – f (ti–1)

∥
∥

W

≤
+∞∑

j=0

sup
s∈[2L–j ,2L–j+1]

φ(s)
2L–j · 2

∑

i∈Ij

max
{∥
∥f (ti) – f (ti–1)

∥
∥

W – δ(j), 0
}

≤
+∞∑

j=0

sup
s∈[2L–j ,2L–j+1]

φ(s)
2L–j · 2 TVδ(j)(f , [a, b]

)
(33)

=
+∞∑

j=0

sup
s∈[2L–j ,2L–j+1]

φ(s)
2L–j · 2 · 1

δ(j)p–1 δ(j)p–1 TVδ(j)(f , [a, b]
)

≤
+∞∑

j=0

sup
s∈[2L–j ,2L–j+1]

φ(s)
2L–j · 2 · 1

δ(j)p–1 sup
δ>0

{
δp–1 · TVδ

(
f , [a, b]

)}
(34)

= 2p‖f ‖p
p- TV,[a,b]

+∞∑

j=0

2p(j–L) sup
s∈[2L–j ,2L–j+1]

φ(s). (35)

By the first assumption in (32) we have that, for all j = 0, 1, . . . ,

sup
s∈[2L–j ,2L–j+1]

φ(s) ≤ C(φ, L) · φ(
2L–j)
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for some constant C(φ, L) depending on φ and L only. Thus, by the second assumption in
(32),

∑+∞
j=0 2pjφ(2–j) < +∞, we get

+∞∑

j=0

2p(j–L) sup
s∈[2L–j ,2L–j+1]

φ(s)

≤ C(φ, L)

{ L–1∑

j=0

2p(j–L)φ
(
2L–j) +

+∞∑

j=L

2p(j–L)φ
(
2L–j)

}

= C(φ, L)

{ L–1∑

j=0

2p(j–L)φ
(
2L–j) +

+∞∑

j=0

2pjφ
(
2–j)

}

< +∞. (36)

Since estimates (35) and (36) do not depend on the partition π , taking the supremum over
all partitions of the interval [a, b], we get Vφ(f , [a, b]) < +∞. �

Remark 6 From Proposition 2 it immediately follows that Up([a, b], W ) ⊂ Vq([a, b], W )
for any q > p, since for any q > p, φq(x) = xq satisfies (32). It is easy to derive more exact
results. For example, by standard calculus assumptions (32) hold for

φp,γ ,1(x) :=
xp

(ln(1 + 1/x))γ
or φp,γ ,2(x) :=

xp

ln(1 + 1/x)(ln ln(e + 1/x))γ

when γ > 1. From this we have that
⋂

q>p Vq([a, b], W ) �= Uq([a, b], W ) since there exist
functions f : [a, b] → W such that Vφp,2,1 (f , [a, b]) = +∞ but f ∈ Vq([a, b], W ) for any q > p.
An example of such a function is the following. Let w ∈ W be such that ‖w‖W = 1. Then
f : [0, 1] → W is defined as

f (t) =

⎧
⎨

⎩

(ln n/n)1/pw if t = 1/n for n = 1, 2, . . . ,

0 otherwise.

It remains an open question if it is possible to obtain the finiteness of the φ-variation of
functions from Up([a, b], W ) for φ vanishing slower (as x → 0+) than xp/ln(1 + 1/x).

4.3 Irregularity of the integrals driven by functions from Up([a, b], W)
In [15, Section 2], there are considered ‖ · ‖p-var,[a,b] norms of the integrals of the form
[a, b] � t �→ ∫ t

a f dg , with f ∈ Vp([a, b], L(E, V )) and g ∈ Vq([a, b], E), where p > 1, q > 1 and
p–1 + q–1 > 1. Now, we turn to investigate the ‖ · ‖p-TV,[a,b] norms of similar integrals, but
for f ∈ Up([a, b], L(E, V )) and g ∈ Uq([a, b], W ). This, in view of the preceding subsection,
will give us more exact results about the irregularity of the indefinite integrals

∫ ·
a f dg . We

will prove the following:

Theorem 3 Assume that f ∈ Up([a, b], L(E, V )) and g ∈ Uq([a, b], E) for some p > 1 and
q > 1 such that p–1 + q–1 > 1 and they have no common points of discontinuity. Then there
exists a constant Dp,q < +∞, depending on p and q only, such that

∥
∥
∥
∥

∫ ·

a

[
f (s) – f (a)

]
dg(s)

∥
∥
∥
∥

q-TV,[a,b]
≤ Dp,q‖f ‖p–p/q

p-TV,[a,b]‖f ‖1+p/q–p
osc,[a,b]‖g‖q-TV,[a,b].
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One more application of Theorem 3 is the following. Assume that y : [a, b] → E is a
solution of the equation of the form

y(t) = x0 +
∫ t

a
F
(
s, y(s)

)
dx(s), (37)

where x ∈ Uq([a, b], E) is continuous, and F(·, y(·)) ∈ Up([a, b], L(E, V )) for some p > 1
and q > 1 such that p–1 + q–1 > 1; from this by Theorem 3 we will obtain that y ∈
Uq([a, b], E).

In our case we have no longer the supperadditivity property of the functional ‖·‖p
p-TV,[a,b]

as the function of interval (see Remark 4), and hence the method of the proof of Theorem 3
will be different from those of related estimates in [15]. It will be similar to the proof of
Corollary 1. We need the following lemma.

Lemma 3 Let f : [a, b] → L(E, V ) and g : [a, b] → E be two regulated functions that
have no common points of discontinuity, and let δ0 ≥ δ1 ≥ · · · , ε0 ≥ ε1 ≥ · · · be two se-
quences of nonnegative numbers such that δk ↓ 0, εk ↓ 0 as k → +∞. Assume that, for
δ–1 := 1

2 supa≤t≤b ‖f (t) – f (a)‖L(E,V ) and

S = 4
+∞∑

k=0

3kδk–1 · TVεk
(
g, [a, b]

)
+ 4

∞∑

k=0

3kεk · TVδk
(
f , [a, b]

)
,

we have S < +∞. Defining

γ := 8
+∞∑

k=0

3kεk · TVδk
(
f , [a, b]

)
,

we get

TVγ

(∫ ·

a

[
f (s) – f (a)

]
dg(s), [a, b]

)

≤ 2
+∞∑

k=0

3kδk–1 · TVεk
(
g, [a, b]

)
.

Proof We proceed similarly as in the proof of Lemma 2. Define g0 = g , f0 = f , g1 := g0 – gε0
0 ,

f1 := f0 – f δ0
0 , where gε0

0 is piecewise linear, with possible discontinuities only at the points
where g is discontinuous, and such that

∥
∥g0 – gε0

0
∥
∥∞,[a,b] ≤ ε0 and TV0(gε0

0 , [a, b]
) ≤ 2 TVε0/4(g0, [a, b]

)
,

and, similarly, f δ0
0 is piecewise linear, with possible discontinuities only at the points where

f is discontinuous, and such that

∥
∥f0 – f δ0

0
∥
∥∞,[a,b] ≤ δ0 and TV0(f δ0

0 , [a, b]
) ≤ 2 TVδ0/4(f0, [a, b]

)
.

For k = 2, 3, . . . , gk := gk–1 – gεk–1
k–1 , fk := fk–1 – f δk–1

k–1 are defined similarly as g1 and f1. By the
linearity of the Riemann-Stieltjes integral with respect to the integrator, integrating by
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parts, for t ∈ [a, b], r = 1, 2, . . . , we have

∫ t

a

[
f (s) – f (a)

]
dg(s)

=
∫ t

a

[
f0(s) – f0(a)

]
dgε0 (s) +

∫ t

a

[
f0(s) – f0(a)

]
dg1(s)

=
∫ t

a

[
f0(s) – f0(a)

]
dgε0

0 (s) +
∫ t

a
df0(s)

[
g1(t) – g1(s)

]

=
∫ t

a

[
f0(s) – f0(a)

]
dgε0

0 (s) +
∫ t

a
df δ0

0 (s)
[
g1(t) – g1(s)

]

+
∫ t

a
df1(s)

[
g1(t) – g1(s)

]

=
∫ t

a

[
f0(s) – f0(a)

]
dgε0

0 (s) +
∫ t

a
df δ0

0 (s)
[
g1(t) – g1(s)

]

+
∫ t

a

[
f1(s) – f1(a)

]
dg1(s) = · · ·

=
r–1∑

k=0

(∫ t

a

[
fk(s) – fk(a)

]
dgεk

k (s) +
∫ t

a
df δk

k (s)
[
gk+1(t) – gk+1(s)

]
)

+
∫ t

a

[
fr(s) – fr(a)

]
dgr(s). (38)

By Theorem 2 we easily estimate that

∥
∥
∥
∥

∫ t

a

[
fr(s) – fr(a)

]
dgr(s)

∥
∥
∥
∥

V

≤ 4
+∞∑

k=r

3kδk–1 · TVεk /4(g, [a, t]
)

+ 4
∞∑

k=r

3kεk · TVδk /4(f , [a, t]
)

(39)

for r = 1, 2, . . . . Moreover, for k = 0, 1, . . . , similarly as in the proof of Lemma 2, we estimate

∥
∥
∥
∥

∫ t

a
df δk

k (s)
[
gk+1(t) – gk+1(s)

]
∥
∥
∥
∥

V
≤ 2εk TV0(f δk

k , [a, t]
) ≤ 2 · 3kεk TVδk /4(f , [a, t]

)
, (40)

and

TV0
(∫ ·

a

[
fk(s) – fk(a)

]
dgεk

k (s), [a, b]
)

≤ 2δk–1 TV0(gεk
k , [a, b]

)

≤ 2 · 3kδk–1 · TVεk /4(g, [a, b]
)
. (41)

(Notice that, for the function Fk(t) :=
∫ t

a [gk+1(t) – gk+1(s)] df δk
k (s), we could not obtain an

estimate similar to (41). This is due to the fact that Fk(t2) – Fk(t1) cannot be expressed as
the integral

∫ t2
t1

[gk+1(t) – gk+1(s)] df δk
k (s).) Defining

γ (r) := 8
+∞∑

k=r

3kδk–1 · TVεk
(
g, [a, b]

)
+ 8

+∞∑

k=0

3kεk · TVδk /4(f , [a, b]
)
,
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from (38), (40), and (39) we get

∥
∥
∥
∥
∥

∫ t

a

[
f (s) – f (a)

]
dg(s) –

r–1∑

k=0

∫ t

a

[
fk(s) – fk(a)

]
dgεk

k (s)

∥
∥
∥
∥
∥

V

≤
r–1∑

k=0

∥
∥
∥
∥

∫ t

a
df δk

k (s)
[
gk+1(t) – gk+1(s)

]
∥
∥
∥
∥

V
+

∥
∥
∥
∥

∫ t

a

[
fr(s) – fr(a)

]
dgr(s)

∥
∥
∥
∥

V

≤ 1
2
γ (r)

for any t ∈ [a, b]. Let us notice that by the definition of the truncated variation

TVγ

(∫ ·

a

[
f (s) – f (a)

]
dg(s), [a, t]

)

is bounded from above by the variation of any function approximating the indefinite in-
tegral

∫ ·
a[f (s) – f (a)] dg(s) with accuracy γ /2. By this variational property of the truncated

variation and by (41) we get

TVγ (r)
(∫ ·

a

[
f (s) – f (a)

]
dg(s), [a, b]

)

≤ TV0

( r–1∑

k=0

∫ ·

a

[
fk(s) – fk(a)

]
dgεk

k (s), [a, b]

)

≤ 2
r–1∑

k=0

3kδk–1 · TVεk /4(g, [a, b]
)
.

Passing to the limit as r → +∞, we get the assertion. �

Now we are ready to prove Theorem 3.

Proof Let γ > 0. We choose

α =
√

(q – 1)(p – 1) + 1
2

, δ–1 =
1
2

sup
a≤t≤b

∥
∥f (t) – f (a)

∥
∥

L(E,V )

and define β by the equality

2 · 4p

( +∞∑

k=0

3k+1–p–α(1–α)(α2/[(q–1)(p–1)])k/(q–1)

)

‖f ‖p
p-TV,[a,b]δ

1–p
–1 β = γ .

Now, for k = 0, 1, . . . , we define

δk–1 = 3–(α2/[(q–1)(p–1)])k+1δ–1,

εk = 3–(α2/[(q–1)(p–1)])kα/(q–1)β .
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Using (21), similarly as in the proof of Corollary 1, we estimate

+∞∑

k=0

3kδk–1 · TVεk /4(g, [a, b]
)

≤ 4q–1

( +∞∑

k=0

3k+1–(1–α)(α2/[(q–1)(p–1)])k

)

‖g‖q
q-TV,[a,b]δ–1β

1–q

and

γ̃ := 8
+∞∑

k=0

3kεk · TVδk /4(f , [a, b]
)

≤ 2 · 4p

( +∞∑

k=0

3k+1–p–α(1–α)(α2/[(q–1)(p–1)])k/(q–1)

)

‖f ‖p
p-TV,[a,b]δ

1–p
–1 β

= γ .

By the monotonicity of the truncated variation, Lemma 3 and the last two estimates we
get

TVγ

(∫ ·

a

[
f (s) – f (a)

]
dg(s), [a, b]

)

≤ TVγ̃

(∫ ·

a

[
f (s) – f (a)

]
dg(s), [a, b]

)

≤ 4
+∞∑

k=0

3kδk–1 · TVεk
(
g, [a, b]

)

≤ 4q

( +∞∑

k=0

3k+1–(1–α)(α2/[(q–1)(p–1)])k

)

‖g‖q
q-TV,[a,b]δ–1β

1–q

= D̃p,q‖f ‖pq–p
p-TV,[a,b]‖f ‖p+q–pq

osc,[a,b]‖g‖q
q-TV,[a,b]γ

1–q,

where

D̃p,q = 4q

( +∞∑

k=0

3k+1–(1–α)(α2/[(q–1)(p–1)])k

)

×
(

2 · 4p

( +∞∑

k=0

3k+1–p–α(1–α)(α2/[(q–1)(p–1)])k/(q–1)

))q–1

.

From this and the definition of ‖ · ‖q-TV,[a,b] we get

∥
∥
∥
∥

∫ ·

a

[
f (s) – f (a)

]
dg(s)

∥
∥
∥
∥

q-TV,[a,b]
≤ Dp,q‖f ‖p–p/q

p-TV,[a,b]‖f ‖p/q+1–p
osc,[a,b]‖g‖q-TV,[a,b],

where Dp,q = D̃1/q
p,q . �
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18. Łochowski, RM, Miłoś, P: Limit theorems for the truncated variation and for numbers of interval crossings of Lévy and

self-similar processes. Preprint (2014). http://akson.sgh.waw.pl/~rlocho/level_cross_Levy.pdf
19. Tronel, G, Vladimirov, AA: On BV-type hysteresis operators. Nonlinear Anal., Theory Methods Appl. 39(1), 79-98 (2000)
20. Vovk, V: Rough paths in idealized financial markets. Lith. Math. J. 51, 274-285 (2011)

http://akson.sgh.waw.pl/~rlocho/level_cross_Levy.pdf

	A new inequality for the Riemann-Stieltjes integrals driven by irregular signals in Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Estimates for the variational problem
	Integration of irregular signals in Banach spaces
	An improved version of the Loéve-Young inequality

	Spaces Up([a,b],W)
	Up([a,b],W) as a Banach space
	phi-variation of the functions from the space Up ([a,b], W )
	Irregularity of the integrals driven by functions from Up ([a,b],W )

	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


