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Abstract
Recently, many generalizations and extensions of well-known inequalities were
obtained via different kinds of fractional integrals. In this paper, we show that most of
those results are particular cases of (or equivalent to) existing inequalities from the
literature. As consequence, such results are not real generalizations.
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1 Introduction
Fractional calculus has received a great attention from many researchers in different dis-
ciplines. In particular, there has been an important interest in studying inequalities in-
volving different kinds of fractional integrals. Unfortunately, as we will show later, most
of the obtained results in this direction are particular cases of (or equivalent to) existing
inequalities from the literature.

At first, let us recall briefly some definitions on fractional calculus that will be used later.

Definition 1.1 (see [1]) Let f ∈ L1((a, b);R), (a, b) ∈ R
2, a < b. The Riemann-Liouville

fractional integrals Jα
a+ f and Jα

b– f of order α > 0 are defined by

Jα
a+ f (x) =

1
�(α)

∫ x

a
(x – t)α–1f (t) dt, x > a,

and

Jα
b– f (x) =

1
�(α)

∫ b

x
(t – x)α–1f (t) dt, x < b.

Definition 1.2 (see [2]) Let f ∈ L1((a, b);R), (a, b) ∈R
2, a < b. The fractional integrals Iα

a f
and Iα

b f of order α ∈ (0, 1) are defined by

Iα
a f (x) =

1
α

∫ x

a
exp

(
–

1 – α

α
(x – t)

)
f (t) dt, x > a,

and

Iα
b f (x) =

1
α

∫ b

x
exp

(
–

1 – α

α
(t – x)

)
f (t) dt, x < b.
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The paper is organized as follows. Section 2 is devoted to results and discussions. More
precisely, in Section 2.1, we discuss some recent Hermite-Hadamard-type inequalities via
different kinds of fractional integrals. We show that such inequalities are particular cases
of (or equivalent to) Fejér inequality. In Section 2.2, we discuss a Gruss-type inequality
involving fractional integrals, which was obtained by Dahmani et al. [3]. We show that
such inequality is a particular case of a weighted version of Gruss inequality, which was
established by Dragomir [4]. In Section 2.3, we discuss a fractional-type inequality re-
lated to weighted Chebyshev’s functional, which was presented by Dahmani [5]. We show
that such an inequality is not new, and it is equivalent to an existing inequality proved by
Dragomir [4]. We end the paper with a conclusion in Section 3.

2 Results and discussions
In this section, we discuss several recent inequalities involving different types of fractional
integrals, and we prove that these inequalities are particular cases of (or equivalent to)
previous existing results from the literature.

2.1 On Hermite-Hadamard-type inequalities involving fractional integrals
Let f : [a, b] →R, (a, b) ∈R

2, a < b, be a convex function. Then (see [6–8])

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (t) dt ≤ f (a) + f (b)

2
. (1)

Inequality (1) was known in the literature as Hermite-Hadamard inequality.
In [9], Fejér established the following result, which contains a weighted generalization

of (1).

Theorem 2.1 Let f : [a, b] → R, (a, b) ∈ R
2, a < b, be a convex function. Let w ∈

L1((a, b);R) be non-negative and symmetric to a+b
2 . Then

f
(

a + b
2

)∫ b

a
w(t) dt ≤

∫ b

a
f (t)w(t) dt ≤ f (a) + f (b)

2

∫ b

a
w(t) dt. (2)

Observe that (1) follows from (2) by taking w ≡ 1.
Recently, many generalizations and extensions of (1) were derived by many authors us-

ing fractional integrals. In this direction, we refer the reader to [2, 10–14], and the refer-
ences therein. In this section, we show that most of those results are particular cases of (or
equivalent to) Theorem 2.1. To simplify the presentation, we will consider only the results
obtained in [2, 12, 14].

In [14], Sarikaya et al. established the following Hermite-Hadamard-type inequality via
Riemann-Liouville integrals.

Theorem 2.2 Let f ∈ L1([a, b];R), (a, b) ∈R
2, a < b, be a convex function. Then

f
(

a + b
2

)
≤ �(α + 1)

2(b – a)α
[
Jα
a+ f (b) + Jα

b– f (a)
] ≤ f (a) + f (b)

2
, (3)

where α > 0.
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Note that in [14], it is supposed that a ≥ 0 and f is a non-negative function. We will
show later that such assumptions are superfluous.

In [12], Işcan presented the following result.

Theorem 2.3 Let f ∈ L1([a, b];R), (a, b) ∈ R
2, a < b, be a convex function. Let g ∈

L1((a, b);R) be non-negative and symmetric to a+b
2 . Then

f
(

a + b
2

)[
Jα
a+ g(b) + Jα

b– g(a)
] ≤ [

Jα
a+ (fg)(b) + Jα

b– (fg)(a)
]

≤ f (a) + f (b)
2

[
Jα
a+ g(b) + Jα

b– g(a)
]
, (4)

where α > 0.

In [2], Kirane and Torebek presented the following result.

Theorem 2.4 Let f ∈ L1([a, b];R), (a, b) ∈R
2, a < b, be a convex function. Then

f
(

a + b
2

)
≤ 1 – α

2(1 – exp(–A))
[
Iα

a f (b) + Iα
b f (a)

] ≤ f (a) + f (b)
2

, (5)

where α ∈ (0, 1) and A = 1–α
α

(b – a).

In [2], it is supposed that a ≥ 0 and f is a non-negative function. We will show later that
such assumptions are superfluous.

Our first observation is formulated by the following theorem.

Theorem 2.5 Theorem 2.1 �⇒ Theorem 2.2.

Proof Let us suppose that all assumptions of Theorem 2.2 are satisfied. Let us define the
function w by

w(t) =
1

�(α)
(
(b – t)α–1 + (t – a)α–1), a < t < b.

Clearly, w ∈ L1((a, b);R), and it is a non-negative function. Moreover, for all t ∈ (a, b), we
have

�(α)w(a + b – t) =
(
b – (a + b – t)

)α–1 +
(
(a + b – t) – a

)α–1

= (t – a)α–1 + (b – t)α–1 = �(α)w(t).

Therefore, w is symmetric to a+b
2 . Now, by Theorem 2.1, it follows from (2) that

f
(

a + b
2

)∫ b

a
w(t) dt ≤

∫ b

a
f (t)w(t) dt ≤ f (a) + f (b)

2

∫ b

a
w(t) dt. (6)

On the other hand, we have

�(α)
∫ b

a
w(t) dt =

∫ b

a
(b – t)α–1 dt +

∫ b

a
(t – a)α–1 dt =

2
α

(b – a)α . (7)
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Moreover, we have
∫ b

a
f (t)w(t) dt =

1
�(α)

∫ b

a
(b – t)α–1f (t) dt +

1
�(α)

∫ b

a
(t – a)α–1f (t) dt

= Jα
a+ f (b) + Jα

b– f (a). (8)

Therefore, using (6), (7), and (8), we obtain

f
(

a + b
2

)
≤ �(α + 1)

2(b – a)α
[
Jα
a+ f (b) + Jα

b– f (a)
] ≤ f (a) + f (b)

2
,

which is inequality (3). Therefore, we proved that Theorem 2.1 �⇒ Theorem 2.2. �

Next, we have the following observation concerning Theorem 2.3.

Theorem 2.6 Theorem 2.1 ⇔ Theorem 2.3.

Proof Let us suppose that all assumptions of Theorem 2.3 are satisfied. Let us define the
function w by

w(t) =
g(t)
�(α)

(
(b – t)α–1 + (t – a)α–1), a < t < b.

Clearly, w ∈ L1((a, b);R), and it is non-negative and symmetric to a+b
2 (since g is symmetric

to a+b
2 ). By Theorem 2.1, it follows from (2) that

f
(

a + b
2

)∫ b

a
w(t) dt ≤

∫ b

a
f (t)w(t) dt ≤ f (a) + f (b)

2

∫ b

a
w(t) dt. (9)

On the other hand, we have
∫ b

a
w(t) dt =

1
�(α)

∫ b

a
g(t)

(
(b – t)α–1 + (t – a)α–1)dt

=
1

�(α)

∫ b

a
(b – t)α–1g(t) dt +

1
�(α)

∫ b

a
(t – a)α–1g(t) dt

= Jα
a+ g(b) + Jα

b– g(a). (10)

Moreover,
∫ b

a
f (t)w(t) dt =

1
�(α)

∫ b

a
f (t)g(t)

(
(b – t)α–1 + (t – a)α–1)dt

=
1

�(α)

∫ b

a
(b – t)α–1f (t)g(t) dt +

1
�(α)

∫ b

a
(t – a)α–1f (t)g(t) dt

= Jα
a+ (fg)(b) + Jα

b– (fg)(a). (11)

Combining (9), (10), and (11), we obtain

f
(

a + b
2

)[
Jα
a+ g(b) + Jα

b– g(a)
] ≤ [

Jα
a+ (fg)(b) + Jα

b– (fg)(a)
] ≤ f (a) + f (b)

2
[
Jα
a+ g(b) + Jα

b– g(a)
]
,

which is inequality (4). Therefore, we proved that Theorem 2.1 �⇒ Theorem 2.3.
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Now, suppose that all the assumptions of Theorem 2.1 are satisfied. Taking g = w and
α = 1 in (4), we obtain (2). Therefore, we proved that Theorem 2.3 �⇒ Theorem 2.1. �

Our comment on Theorem 2.4 is formulated by the following theorem.

Theorem 2.7 Theorem 2.1 �⇒ Theorem 2.4.

Proof Let us suppose that all assumptions of Theorem 2.4 are satisfied. Let us define the
function w by

w(t) =
1
α

(
exp

(
–

1 – α

α
(b – t)

)
+ exp

(
–

1 – α

α
(t – a)

))
, a ≤ t ≤ b.

It can be easily seen that w ∈ L1((a, b);R), and it is non-negative and symmetric to a+b
2 . By

Theorem 2.1, it follows from (2) that

f
(

a + b
2

)∫ b

a
w(t) dt ≤

∫ b

a
f (t)w(t) dt ≤ f (a) + f (b)

2

∫ b

a
w(t) dt. (12)

On the other hand, we have

∫ b

a
w(t) dt =

1
α

∫ b

a

(
exp

(
–

1 – α

α
(b – t)

)
+ exp

(
–

1 – α

α
(t – a)

))
dt

=
1
α

∫ b

a
exp

(
–

1 – α

α
(b – t)

)
dt +

1
α

∫ b

a
exp

(
–

1 – α

α
(t – a)

)
dt

=
1

1 – α

(
1 – exp

(
–

1 – α

α
(b – a)

))
–

1
1 – α

(
exp

(
–

1 – α

α
(b – a)

)
– 1

)

=
2

1 – α

(
1 – exp

(
–

1 – α

α
(b – a)

))

=
2

1 – α

(
1 – exp(–A)

)
. (13)

Moreover, we have

∫ b

a
f (t)w(t) dt =

1
α

∫ b

a

(
exp

(
–

1 – α

α
(b – t)

)
+ exp

(
–

1 – α

α
(t – a)

))
f (t) dt

=
1
α

∫ b

a
exp

(
–

1 – α

α
(b – t)

)
f (t) dt +

1
α

∫ b

a
exp

(
–

1 – α

α
(t – a)

)
f (t) dt

= Iα
a f (b) + Iα

b f (a). (14)

Combining (12), (13), and (14), we obtain

f
(

a + b
2

)
≤ 1 – α

2(1 – exp(–A))
[
Iα

a f (b) + Iα
b f (a)

] ≤ f (a) + f (b)
2

,

which is inequality (5). Therefore, we proved that Theorem 2.1 �⇒ Theorem 2.4. �
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2.2 Discussion of Gruss-type inequalities involving fractional integrals
In 1935, Gruss [15] proved the following result.

Theorem 2.8 Let f , g ∈ L1((a, b);R), (a, b) ∈ R
2, a < b. Suppose that there exist constants

m, M, p, P ∈R such that

m ≤ f (x) ≤ M, p ≤ g(x) ≤ P, a ≤ x ≤ b.

Then
∣∣∣∣ 1
b – a

∫ b

a
f (x)g(x) dx –

(
1

b – a

∫ b

a
f (x) dx

)(
1

b – a

∫ b

a
g(x) dx

)∣∣∣∣
≤ (M – m)(P – p)

4
. (15)

Inequality (15) has evoked the interest of many researchers, and several generalizations
of this inequality have appeared in the literature. In particular, in 1998, Dragomir [4] es-
tablished the following interesting generalization, which provides a weighted version of
the Gruss inequality.

Theorem 2.9 Let f , g ∈ L1((a, b);R), (a, b) ∈ R
2, a < b. Suppose that there exist constants

m, M, p, P ∈R such that

m ≤ f (x) ≤ M, p ≤ g(x) ≤ P, a ≤ x ≤ b.

Let h ∈ L1((a, b);R) be a non-negative function such that
∫ b

a h(x) dx > 0. Then

∣∣∣∣
∫ b

a
h(x) dx

∫ b

a
f (x)g(x)h(x) dx –

∫ b

a
f (x)h(x) dx

∫ b

a
g(x)h(x) dx

∣∣∣∣

≤ (M – m)(P – p)
4

(∫ b

a
h(x) dx

)2

. (16)

Observe that (15) follows from (16) by taking h ≡ 1.
After the publication of reference [4], in 2010, Dahmani and Tabharit [3] presented the

following result.

Theorem 2.10 Let f and g be two integrable functions on [0,∞). Suppose that there exist
constants m, M, p, P ∈R such that

m ≤ f (x) ≤ M, p ≤ g(x) ≤ P, x ≥ 0.

Let p ∈ L1([0,∞);R) be a non-negative function such that Jα
0+ p(T) > 0, for all T > 0. Then

∣∣Jα
0+ p(T)Jα

0+ (pfg)(T) – Jα
0+ (pf )(T)Jα

0+ (pg)(T)
∣∣ ≤ (

Jα
0+ p(T)

)2 (M – m)(P – p)
4

(17)

for all α > 0 and T > 0.

We have the following observation.
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Theorem 2.11 Theorem 2.9 �⇒ Theorem 2.10.

Proof Suppose that all assumptions of Theorem 2.10 are satisfied. Let us fix α > 0 and
T > 0. Let

h(x) =
1

�(α)
(T – x)α–1p(x), 0 ≤ x < T .

Clearly, h is a non-negative function. Moreover, we have

∫ T

0
h(x) dx ≥ 1

�(α)

∫ T

0
(T – x)α–1p(x) dx = Jα

0+ p(T) > 0. (18)

Therefore, using (18), by Theorem 2.9 with (a, b) = (0, T), it follows from (16) that

∣∣∣∣Jα
0+ p(T)

∫ T

0
f (x)g(x)h(x) dx –

∫ T

0
f (x)h(x) dx

∫ T

0
g(x)h(x) dx

∣∣∣∣
≤ (M – m)(P – p)

4
(
Jα
0+ p(T)

)2. (19)

On the other hand, observe that

∫ T

0
f (x)g(x)h(x) dx = Jα

0+ (pfg)(T), (20)

∫ T

0
f (x)h(x) dx = Jα

0+ (pf )(T), (21)

∫ T

0
g(x)h(x) dx = Jα

0+ (pg)(T). (22)

Combining (19), (20), (21), and (22), we obtain inequality (17). Therefore, we proved that
Theorem 2.9 �⇒ Theorem 2.10. �

2.3 Discussion of fractional-type inequalities related to the weighted
Chebyshev’s functional

Let us introduce Chebyshev functional

M(f , g, p) =
∫ T

0
p(x) dx

∫ T

0
p(x)f (x)g(x) dx –

∫ T

0
p(x)f (x) dx

∫ T

0
p(x)g(x) dx,

where T > 0, f and g are two integrable functions on [0, T], and p is a non-negative and
integrable function on [0, T].

In [4], Dragomir proved the following interesting result.

Theorem 2.12 Suppose that f and g are two differentiable functions, f ′, g ′ ∈ L∞((0, T);R),
and p is a non-negative and integrable function on [0, T]. Then

∣∣M(f , g, p)
∣∣ ≤ ∥∥f ′∥∥∞

∥∥g ′∥∥∞

(∫ T

0
p(x) dx

∫ T

0
x2p(x) dx –

(∫ T

0
xp(x) dx

)2)
.
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Observe that if we assume also that f and g have the same monotony, then

M(f , g, p) ≥ 0.

Indeed, in this case, we have

F(x, y) :=
(f (x) – f (y))(g(x) – g(y))

2
≥ 0, (x, y) ∈ (0, T) × (0, T).

Therefore,

∫ T

0

∫ T

0
p(x)p(y)F(x, y) dx dy ≥ 0.

On the other hand, it can be easily seen that

M(f , g, p) =
∫ T

0

∫ T

0
p(x)p(y)F(x, y) dx dy ≥ 0.

Then we can state the following result.

Theorem 2.13 Suppose that f and g are two differentiable functions having the same
monotony, f ′, g ′ ∈ L∞((0, T);R), and p is a non-negative and integrable function on [0, T].
Then

0 ≤ M(f , g, p) ≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

(∫ T

0
p(x) dx

∫ T

0
x2p(x) dx –

(∫ T

0
xp(x) dx

)2)
. (23)

In [5], Dahmani presented the following fractional version of Theorem 2.13.

Theorem 2.14 Let p be a non-negative function on [0,∞) and let f and g be two differen-
tiable functions having the same monotony on [0,∞). If f ′, g ′ ∈ L∞((0,∞);R), then

0 ≤ Jα
0+ p(T)Jα

0+ (pfg)(T) – Jα
0+ (pf )(T)Jα

0+ (pg)(T)

≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

(
Jα
0+ p(T)Jα

0+
(
T2p

)
(T) –

(
Jα
0+ (Tp)(T)

)2), (24)

where α > 0.

We have the following observation concerning Theorem 2.14.

Theorem 2.15 Theorem 2.13 ⇔ Theorem 2.14.

Proof Suppose that all assumptions of Theorem 2.14 are satisfied. Let us introduce the
function

p̃(x) = (T – x)α–1p(x), 0 ≤ x < T .

Clearly, p̃ is non-negative and

∫ T

0
p̃(x) dx = Jα

0+ p(T). (25)
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By Theorem 2.13, it follows from (23) that

0 ≤ M(f , g, p̃) ≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

(∫ T

0
p̃(x) dx

∫ T

0
x2̃p(x) dx –

(∫ T

0
x̃p(x) dx

)2)
. (26)

On the other hand, it can be easily seen that

∫ T

0
P̃(x)f (x)g(x) dx = Jα

0+ (pfg)(T), (27)

∫ T

0
P̃(x)f (x) dx = Jα

0+ (pf )(T), (28)

∫ T

0
P̃(x)g(x) dx = Jα

0+ (pg)(T), (29)

∫ T

0
x2P̃(x) dx = Jα

0+
(
T2p

)
(T), (30)

∫ T

0
x̃P(x) dx = Jα

0+ (Tp)(T). (31)

Using (25), (27), (28), and (29), we obtain

M(f , g, p̃) = Jα
0+ p(T)Jα

0+ (pfg)(T) – Jα
0+ (pf )(T)Jα

0+ (pg)(T). (32)

Next, using (26), (25), (30), and (31), we obtain

0 ≤ Jα
0+ p(T)Jα

0+ (pfg)(T) – Jα
0+ (pf )(T)Jα

0+ (pg)(T)

≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

(
Jα
0+ p(T)Jα

0+
(
T2p

)
(T) –

(
Jα
0+ (Tp)(T)

)2),

which is inequality (24). Therefore, we proved that Theorem 2.13 �⇒ Theorem 2.14.
Finally, taking α = 1 in Theorem 2.14, we obtain the result given by Theorem 2.13. There-

fore, we have Theorem 2.14 �⇒ Theorem 2.13. �

3 Conclusion
Recently, a lot of papers are published concerning inequalities involving different kinds
of fractional integrals. In this paper, we proved that most of those inequalities are just
particular cases of (or equivalent to) existing results form the literature. We discussed only
three types of inequalities: Hermite-Hadamard- type inequalities, Gruss-type inequalities,
and an inequality related to Chebyshev’s functional. However, the used technique can be
also applied for many other published results.
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