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Abstract
In this paper, we use the algebra methods, the properties of the r-circulant matrix and
the geometric circulant matrix to study the upper and lower bound estimate
problems for the spectral norms of a geometric circulant matrix involving the
generalized k-Horadam numbers, and we obtain some sharp estimations for them.
We can also give a new estimation for the norms of a r-circulant matrix involving the
generalized k-Horadam numbers.
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1 Introduction
Let n ≥ 2 be an integer, r be any real or complex number. Then a n × n r-circulant matrix
Cr is defined by

Cr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c1 · · · cn–2 cn–1

rcn–1 c0 c1 · · · cn–3 cn–2

rcn–2 rcn–1 c0 · · · cn–4 cn–3
...

...
...

...
...

rc1 rc2 rc3 · · · rcn–1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

This matrix was first proposed by Davis in [1], then one found it has many interesting
properties, and it is one of the most important research subject in the field of the compu-
tation and pure mathematics (see [2–9]). For example, Shen and Cen [3] studied the norms
of r-circulant matrices with Fibonacci and Lucas numbers. Afterward, Kızılateş and Tuglu
[10] defined a new geometric circulant matrix,

Cr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c1 · · · cn–2 cn–1

rcn–1 c0 c1 · · · cn–3 cn–2

r2cn–2 rcn–1 c0 · · · cn–4 cn–3
...

...
...

...
...

rn–1c1 rn–2c2 rn–3c3 · · · rcn–1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,
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then they found the bounds for the spectral norms of geometric circulant matrices with the
generalized Fibonacci number and Lucas numbers. Obviously, Cr and Cr∗ are determined
by the parameter r and the first row elements of the matrix. When the parameter satisfies
r = 1, we get the classical circulant matrix.

The r-circulant matrix and geometric circulant matrix with some commonly chosen
values have also been studied by many researchers in recent years. Particularly, many
scholars have learned the norms of those matrices based on the special properties. For
example, many scholars have studied the spectral norms of circulant matrices and r-
circulant matrices with famous sequences [2–6]. In [7], Kocer et al. have obtained the
norms of semicirculant and circulant matrices with Horadam numbers. In [8], Yazlik and
Taskara have studied eigenvalues, determinant and the spectral norms of circulant ma-
trix involving the generalized k-Horadam numbers. In [9], Raza et al. have also studied
the norms of many special matrices with generalized Fibonacci sequences and gener-
alized Pell-Padovan. In [10], Can and Naim have defined geometric circulant matrices
and studied the bounds for the spectral norms of geometric circulant matrices involv-
ing the generalized Fibonacci number and Lucas numbers. Some great contributions for
the spectral norms of r-circulant matrix and geometric circulant matrix can be found in
references [11–17]. In particular, Köme and Yazlik [11] have presented new upper and
lower bounds for the spectral norms of the r-circulant matrices with biperiodic Fibonacci
and biperiodic Lucas numbers, Q = Cr(( b

a )
ξ (1)

2 q0, ( b
a )

ξ (2)
2 q1, ( b

a )
ξ (3)

2 q2, . . . , ( b
a )

ξ (n)
2 qn–1), and

L = Cr(( b
a )

ξ (0)
2 l0, ( b

a )
ξ (1)

2 l1, ( b
a )

ξ (2)
2 l2, . . . , ( b

a )
ξ (n–1)

2 ln–1), then they gave the lower and upper
bounds for the spectral norms of Kronecker and Hadamard products of the matrices Q
and L.

Considering the above articles, on the one hand, we obtain a new lower and upper
bounds estimates for the spectral norms of the geometric circulant matrix with the gener-
alized k-Horadam numbers, at the same time, we also get the spectral norms of geometric
circulant matrices involving all second-order recurrence sequences or polynomials. For
example, we get the bounds for the spectral norms of geometric circulant matrices in-
volving the generalized Fibonacci number and Lucas numbers [10]. On the other hand,
we improve the results in reference [18], and we give new and better upper bounds for the
norms of an r-circulant matrix involving the generalized k-Horadam numbers.

2 Preliminaries
Definition 1 The generalized k-Horadam numbers have the form (see [18])

Hk,n+2 = f (k)Hk,n+1 + g(k)Hk,n, Hk,0 = a, Hk,0 = b, (1)

where positive integer n ≥ 0, f 2(k) + 4g(k) > 0. Clearly, the form is a general shape of the
special second-order sequences or polynomials. For example, let f (k) = g(k) = 1, a = 0,
and b = 1, then we get the famous Fibonacci number. Let f (k) = g(k) = 1, a = 2, and b = 1,
the Lucas number is obtained. Let f (x) = 2x, g(x) = –1, a = 1, and b = x, then we have the
Chebyshev polynomial. Namely, if we take an appropriate value with f (k), g(k), a, b in (1),
then we get the familiar all second-order sequences.

For the sequence Hk,n, the characteristic equation x2 – f (k)x – g(k) = 0 has two distinct
roots, denoted by α, β . The Binet formula Hk,n can be represented by Hk,n = Xαn–Yβn

α–β
,

where X = b – aβ , Y = b – aα.
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Definition 2 The geometric circulant matrix Cr∗ is defined by (see [10])

Cr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c1 · · · cn–2 cn–1

rcn–1 c0 c1 · · · cn–3 cn–2

r2cn–2 rcn–1 c0 · · · cn–4 cn–3
...

...
...

...
...

rn–1c1 rn–2c2 rn–3c3 · · · rcn–1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

We denote it for convenience by Cr∗ = Circr∗ (c0, c1, c2, . . . , cn–1). When the parameter r = 1,
the geometric circulant matrix turns into a circulant matrix.

Definition 3 Let us take any matrix A = (aij) ∈ Mm×n(C), the spectral norm and the Eu-
clidean norm of the matrix A are

‖A‖2 =
√

max
1≤i≤n

λi
(
AHA

)
, ‖A‖E =

( m∑
i=1

n∑
j=1

|aij|2
) 1

2

,

respectively, where λi(AHA) is the eigenvalue of AHA and AH is the conjugate transpose
of matrix A.

The following inequalities hold between the Euclidean norm and spectral norm (see
[19]):

1√
n

‖A‖E ≤ ‖A‖2 ≤ ‖A‖E , ‖A‖2 ≤ ‖A‖E ≤ √
n‖A‖2. (2)

Definition 4 Let A = (aij) and B = (bij) be m × n matrices, then the Hadamard product of
A and B is the m × n matrix of elementwise products, namely A ◦ B = (aijbij).

Then we have the following inequalities (see [20]):

‖A ◦ B‖2 ≤ r1(A)C1(B), (3)

where r1(A) = max1≤i≤m

√∑n
j=1 |aij|2, C1(B) = max1≤j≤n

√∑m
i=1 |bij|2.

Lemma 1 Let �r be a basic r-circulant matrix, �r = Cr(0, 1, 0, . . . , 0), considering the
structure of the power of �r , clearly, �n

r = rIn, and Cr = f (�r) =
∑n–1

k=0 ck�
i
r , where f (x) =∑n–1

k=0 ckxi.

Lemma 2 For any positive integer n ≥ 1, we can easily get

n–1∑
i=0

Hk,i =
a + b – af (k) – Hk,n – g(k)Hk,n–1

1 – f (k) – g(k)
. (4)

Lemma 3 For any positive integer n ≥ 1,

n–1∑
i=0

(
Hk,i

|r|i
)2

=
N +

H2
k,n

|r|2n–4 – g2(k)
|r|2n H2

k,n–1

f 2(k) + 2g(k) – g2(k)
|r|2 – |r|2

, (5)

where N = (b – af (k))2 – a2|r|2 – 2XY (
1–(– g(k)

|r|2 )n

1+ g(k)
|r|2

).
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Proof Let A =
∑n–1

i=0 ( Hk,i
|r|i )2, by the definition of Hk,i, we get

A =
n–1∑
i=0

H2
k,i+1 + g2(k)H2

k,i–1 – 2g(k)Hk,i+1Hk,i–1

|r|2if 2(k)
,

n–1∑
i=0

Hk,i+1Hk,i–1

|r|2i =
n–1∑
i=0

X2α2i + Y 2β2i – XYαi+1β i–1 – XYαi–1β i+1

(α – β)2|r|2i

=
n–1∑
i=0

(Xαi – Yβ i)2

(α – β)2|r|2i – XY
n–1∑
i=0

(αβ)i–1

|r|2i

= A +
XY
g(k)

∗
1 – (– g(k)

|r|2 )n

1 + g(k)
|r|2

,

1
|r|2

n–1∑
i=0

(
Hk,i+1

|r|i
)2

= A – H2
k,0 +

(
Hk,n

|r|n
)2

,

|r|2
n–1∑
i=0

(
Hk,i–1

|r|i
)2

= A +
(

Hk,–1

|r|–1

)2

–
(

Hk,n–1

|r|n–1

)2

,

Af 2(k) = A
(

|r|2 +
g2(k)
|r|2 – 2g(k)

)
+

(
b – af (k)

)2 – a2|r|2 +
H2

k,n

|r|2n–4

–
g2(k)
|r|2n H2

k,n–1 – 2XY
(1 – (– g(k)

|r|2 )n

1 + g(k)
|r|2

)
.

So,

n–1∑
i=0

(
Hk,i

|r|i
)2

=
N +

H2
k,n

|r|2n–4 – g2(k)
|r|2n H2

k,n–1

f 2(k) + 2g(k) – g2(k)
|r|2 – |r|2

,

where N = (b – af (k))2 – a2|r|2 – 2XY (
1–(– g(k)

|r|2 )n

1+ g(k)
|r|2

). Let r = 1, we get

n–1∑
i=0

H2
k,i =

H2
k,n – g2(k)H2

k,n–1 + (b – af (k))2 – a2 – 2XY ( 1–(–g(k))n

1+g(k) )
f 2(k) – g2(k) + 2g(k) – 1

,

where X = b – aβ , Y = b – aα. �

3 Main results
Theorem 1 Let Hr∗ = Circr∗ (Hk,0, Hk,1, Hk,2, . . . , Hk,n–1) be an n×n geometric circulant ma-
trix, completely defined by generalized k-Horadam numbers.

(i) If |r| > 1, then
√∑n–1

i=0 H2
k,i ≤ ‖Hr∗‖2 ≤

√
1–|r|2n

1–|r|2
∑n–1

i=0 H2
k,i.

(ii) If |r| < 1, then
√

N |r|2n+|r|4H2
k,n–g2(k)H2

k,n–1

f 2(k)+2g(k)– g2(k)
|r|2 –|r|2

≤ ‖Hr∗‖2 ≤
√

n
∑n–1

i=0 H2
k,i, where

N = (b – af (k))2 – a2|r|2 – 2XY (
1–(– g(k)

|r|2 )n

1+ g(k)
|r|2

).
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Proof

Hr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Hk,0 Hk,1 Hk,2 · · · Hk,n–2 Hk,n–1

rHk,n–1 Hk,0 Hk,1 · · · Hk,n–3 Hk,n–2

r2Hk,n–2 rHk,n–1 Hk,0 · · · Hk,n–4 Hk,n–3
...

...
...

...
...

rn–1Hk,1 rn–2Hk,2 rn–3Hk,3 · · · rHk,n–1 Hk,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(i) From |r| > 1 and by using the definition of Euclidean norm, we have

‖Hr∗‖2
E =

n–1∑
i=0

(n – i)H2
k,i +

n–1∑
i=1

i
∣∣rn–i∣∣2H2

k,i

≥
n–1∑
i=0

(n – i)H2
k,i +

n–1∑
i=1

iH2
k,i

= n
n–1∑
i=0

H2
k,i.

That is,

1√
n

‖Hr∗‖E ≥
√√√√ n–1∑

i=0

H2
k,i,

from (2), we have
√∑n–1

k=0 H2
k,i ≤ ‖Hr∗‖2.

Let the matrices A and B be presented by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
r 1 1 · · · 1 1
r2 r 1 · · · 1 1
...

...
...

...
...

rn–1 rn–2 rn–3 · · · r 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Hk,0 Hk,1 Hk,2 · · · Hk,n–2 Hk,n–1

Hk,n–1 Hk,0 Hk,1 · · · Hk,n–3 Hk,n–2

Hk,n–2 Hk,n–1 Hk,0 · · · Hk,n–4 Hk,n–3
...

...
...

...
...

Hk,1 Hk,2 Hk,3 · · · Hk,n–1 Hk,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,
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then Hr∗ = A ◦ B. So ‖Hr∗‖2 = ‖A ◦ B‖2 ≤ r1(A)C1(B),

r1(A) = max
1≤i≤n

√√√√
n∑

j=1

|aij|2 =

√√√√
n∑

j=1

|anj|2

=
√

1 + |r|2 + · · · +
∣∣rn–1

∣∣2 =

√
1 – |r|2n

1 – |r|2 ,

c1(B) = max
1≤j≤n

√√√√
n∑

i=1

|bij|2 =

√√√√
n∑

j=1

|bin|2 =

√√√√ n–1∑
i=0

H2
k,i.

Therefore, we have

‖Hr∗‖2 ≤ r1(A)c1(B) =

√√√√1 – |r|2n

1 – |r|2
n–1∑
i=0

H2
k,i.

Thus, we can obtain the inequality

√√√√ n–1∑
i=0

H2
k,i ≤ ‖Hr∗‖2 ≤

√√√√1 – |r|2n

1 – |r|2
n–1∑
i=0

H2
k,i.

(ii) From |r| < 1,

‖Hr∗‖2
E =

n–1∑
i=0

(n – i)H2
k,i +

n–1∑
i=1

i
∣∣rn–i∣∣2H2

k,i

≥
n–1∑
i=0

(n – i)
∣∣rn–i∣∣2H2

k,i +
n–1∑
i=1

i
∣∣rn–i∣∣2H2

k,i

= n|r|2n
n–1∑
i=0

(
Hk,i

|r|i
)2

.

By using (5), we get

√√√√N |r|2n + |r|4H2
k,n – g2(k)H2

k,n–1

f 2(k) + 2g(k) – g2(k)
|r|2 – |r|2

≤ ‖Hr∗‖2.

For the matrices A and B as mentioned above we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
r 1 1 · · · 1 1
r2 r 1 · · · 1 1
...

...
...

...
...

rn–1 rn–2 rn–3 · · · r 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n
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and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Hk,0 Hk,1 Hk,2 · · · Hk,n–2 Hk,n–1

Hk,n–1 Hk,0 Hk,1 · · · Hk,n–3 Hk,n–2

Hk,n–2 Hk,n–1 Hk,0 · · · Hk,n–4 Hk,n–3
...

...
...

...
...

Hk,1 Hk,2 Hk,3 · · · Hk,n–1 Hk,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

In this case, Hr∗ = A ◦ B. So ‖Hr∗‖2 = ‖A ◦ B‖2 ≤ r1(A)C1(B),

r1(A) = max
1≤i≤n

√√√√
n∑

j=1

|aij|2 =
√

n,

c1(B) = max
1≤j≤n

√√√√
n∑

i=1

|bij|2 =

√√√√
n∑

j=1

|bin|2 =

√√√√ n–1∑
i=0

H2
k,i,

‖Hr∗‖2 ≤
√√√√n

n–1∑
i=0

H2
k,i.

Therefore, we have

√√√√N |r|2n + |r|4H2
k,n – g2(k)H2

k,n–1

f 2(k) + 2g(k) – g2(k)
|r|2 – |r|2

≤ ‖Hr∗‖2 ≤
√√√√n

n–1∑
i=0

H2
k,i,

where N = (b – af (k))2 – a2|r|2 – 2XY (
1–(– g(k)

|r|2 )n

1+ g(k)
|r|2

). �

Theorem 2 Let Hr = Circr(Hk,0, Hk,1, Hk,2, . . . , Hk,n–1) be an n × n r-circulant matrix.
(i) If |r| > 1, then

√√√√ n–1∑
i=0

H2
k,i ≤ ‖Hr‖2 ≤ a – |r|(af (k) – b) – |r|nHk,n – g(k)|r|n+1Hk,n–1

1 – |r|f (k) – |r|2g(k)
.

(ii) If |r| < 1, then

|r|
√√√√ n–1∑

i=0

H2
k,i ≤ ‖Hr‖2 ≤

n–1∑
i=0

Hk,i.

Proof

Hr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Hk,0 Hk,1 Hk,2 · · · Hk,n–2 Hk,n–1

rHk,n–1 Hk,0 Hk,1 · · · Hk,n–3 Hk,n–2

rHk,n–2 rHk,n–1 Hk,0 · · · Hk,n–4 Hk,n–3
...

...
...

...
...

rHk,1 rHk,2 rHk,3 · · · rHk,n–1 Hk,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.
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For |r| > 1, from the definition of a Euclidean norm we have

‖Hr‖2
E =

n–1∑
i=0

(n – i)H2
k,i +

n–1∑
i=1

i|r|2H2
k,i ≥ n

n–1∑
i=0

H2
k,i.

In this case,

1√
n

‖Hr‖E ≥
√√√√ n–1∑

i=0

H2
k,i,

then by using (2), we have
√∑n–1

i=0 H2
k,i ≤ ‖Hr‖2.

For |r| < 1,

‖Hr‖2
E =

n–1∑
i=0

(n – i)H2
k,i +

n–1∑
i=1

i|r|2H2
k,i ≥ n|r|2

n–1∑
i=0

H2
k,i.

So,

1√
n

‖Hr‖E ≥ |r|
√√√√ n–1∑

i=0

H2
k,i.

By Lemma 1, we get Hr = f (�r) =
∑n–1

i=0 Hk,i�
i
r , where f (x) =

∑n–1
i=0 Hk,ixi.

In this case,

‖Hr‖2 =

∥∥∥∥∥
n–1∑
i=0

Hk,i�
i
r

∥∥∥∥∥
2

≤
n–1∑
i=0

Hk,i‖�r‖i
2,

because �H
r �r has the form

�H
r �r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|r|2 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

So for |r| > 1, ‖�r‖2 = |r|; for |r| < 1, ‖�r‖2 = 1, and when |r| > 1, we get

‖Hr‖2 ≤
n–1∑
i=0

Hk,i‖�r‖i
2 =

n–1∑
i=0

|r|iHk,i

=
a – |r|(af (k) – b) – |r|nHk,n – g(k)|r|n+1Hk,n–1

1 – |r|f (k) – |r|2g(k)
,

when |r| < 1, ‖Hr‖2 ≤ ∑n–1
i=0 Hk,i. �
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3.1 Some notes
The methods of this paper can be deduced on the norms of r-circulant matrix, circulant
matrix, geometric circulant matrices in particular with all second-order sequences, lead-
ing to better estimations than in reference [18].
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