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Abstract
Let {ξi , i ∈ Z} be a stationary LNQD sequence of random variables with zero means
and finite variance. In this paper, by the Kolmogorov type maximal inequality and
Stein’s method, we establish the result of the law of the iterated logarithm for LNQD
sequence with less restriction of moment conditions. We also prove the law of the
iterated logarithm for a linear process generated by an LNQD sequence with the
coefficients satisfying

∑∞
i=–∞ |ai| <∞ by a Beveridge and Nelson decomposition.
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1 Introduction
Two random variables X and Y are said to be negatively quadrant dependent (NQD, for
short), if P(X ≤ x, Y ≤ y) – P(X ≤ x)P(Y ≤ y) ≤ 0 for all x, y ∈ R. A sequence {Xk , k ∈ Z} is
said to be linear negatively quadrant dependent (LNQD, for short) if for any disjoint finite
subsets A, B ⊂ Z and any positive real numbers rj,

∑
i∈A riXi and

∑
j∈B rjXj are NQD. It is

obvious that LNQD implies NQD. The definitions of NQD and LNQD can be found in
Lehmann [1] and Newman [2].

A much stronger concept than LNQD was introduced by Joag-Dev and Proschan [3]:
for a finite index set I , the r.v.s. {Xi, i ∈ I} are said to be negatively associated (NA, for
short), if for any disjoint nonempty subsets A and B of I , and any coordinatewise non-
decreasing function G and H with G : RA → R and H : RB → R and EG2(Xi, i ∈ A) < ∞,
EH2(Xj, j ∈ B) < ∞, we have Cov(G(Xi, i ∈ A), H(Xj, j ∈ B)) ≤ 0. An infinite family is NA if
every finite subfamily is NA.

Some applications for LNQD sequence have been found. For example, Newman [2]
established the central limit theorem for a strictly stationary LNQD process, Dong and
Yang [4] provided the almost sure central limit theorem for an LNQD sequence, Wang
and Zhang [5] provided uniform rates of convergence in the central limit theorem for
LNQD sequence, Li and Wang [6] obtained the asymptotic distribution for products sums
of LNQD sequence, Ko et al. [7] studied the strong convergence for weighted sums of
LNQD arrays, Ko et al. [8] obtained the Hoeffding-type inequality for LNQD sequence,
Zhang et al. [9] established an almost sure central limit theorem for products sums of
partial sums under LNQD sequence, Wang et al. [10] discussed the exponential inequal-
ities and complete convergence for an LNQD sequence, Choi [11] obtained the Limsup
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results and a uniform LIL for partial sums of an LNQD sequence, Wang and Wu [12] ob-
tained the strong laws of large numbers for arrays of rowwise NA and LNQD random
variables, Wang and Wu [13] established the central limit theorem for stationary linear
processes generated by LNQD sequence, Li et al. [14] established some inequalities for
LNQD sequence, Shen et al. [15] proved the complete convergence for weighted sums of
LNQD sequence, and so forth. It is easily seen that independent random variables and
NA random variables are LNQD. Since LNQD random variables are much weaker than
independent random variables and NA random variables, studying the limit theorems for
LNQD sequence is of interest.

The main purpose of this paper is to discuss the limit theory for LNQD sequence. In
Section 2, by the Kolmogorov type maximal inequalities and Stein’s method, we obtain the
law of the iterated logarithm for strictly stationary LNQD sequence with finite variance.
In Section 3, we prove the law of the iterated logarithm for linear process generated by
LNQD sequence with less restrictions by Beveridge and Nelson decomposition for linear
process.

Throughout the paper, C denotes a positive constant, which may take different values
whenever it appears in different expressions. We have log x = ln max{e, x}.

2 Main results
We will need the following property.

(H1) (Hoeffding equality): For any absolutely continuous functions f and g on R
1 and

for any random variables X and Y satisfying Ef 2(X) + Eg2(Y ) < ∞, we have

Cov
(
f (X), g(Y )

)

=
∫ ∞

–∞

∫ ∞

–∞
f ′(x)g ′(y)

{
P(X ≥ x, Y ≥ y) – P(X ≥ x)P(Y ≥ y)

}
dx dy.

Now we state the law of iterated logarithm for LNQD sequence.

Theorem 2.1 Let {ξi, i ≥ 1} be a strictly stationary LNQD sequence with Eξi = 0, Eξ 2
i < ∞

and σ 2 = Eξ 2
1 + 2

∑∞
i=2 Eξ1ξi > 0. Put Sn =

∑n
i=1 ξi. Then

lim sup
n→∞

Sn

(2σ 2n log log n)1/2 = 1 a.s. (2.1)

Remark 2.2 Our theorem extends the corresponding results of Corollary 1.2 in Choi [11].
Choi established a law of the iterated logarithm for LNQD sequence with E|ξ1|2+δ < ∞ for
some δ > 0 and variance coefficients decaying polynomially. But our theorem only restricts
the finite variance.

The proof of Theorem 2.1 is based on the following lemmas.

Lemma 2.3 (Lehmann [1]) Let random variables X and Y be NQD, then
1. EXY ≤ EXEY ;
2. P(X > x, Y > y) ≤ P(X > x)P(Y > y);
3. if f and g are both nondecreasing (or both nonincreasing) functions, then f (X) and

g(Y ) are NQD.
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Lemma 2.4 Let {ξi, 1 ≤ 1 ≤ n} be an LNQD sequence of random variables with mean zero
and finite second moments. Let Sn =

∑n
i=1 ξi and Bn =

∑n
i=1 Eξ 2

i . Then, for all x > 0, a > 0
and 0 < α < 1, we know

P
(

max
1≤k≤n

Sk ≥ x
)

≤ P
(

max
1≤k≤n

ξk > a
)

+
1

1 – α
exp

(

–
x2α

2(ax + Bn)

{

1 +
2
3

log

(

1 +
ax
Bn

)})

≤ P
(

max
1≤k≤n

ξk > a
)

+
1

1 – α
exp

(

–
x2α

2(ax + Bn)

)

, (2.2)

P
(

max
1≤k≤n

|Sk| ≥ x
)

≤ 2P
(

max
1≤k≤n

|ξk| > a
)

+
2

1 – α
exp

(

–
x2α

2(ax + Bn)

{

1 +
2
3

log

(

1 +
ax
Bn

)})

≤ 2P
(

max
1≤k≤n

|ξk| > a
)

+
2

1 – α
exp

(

–
x2α

2(ax + Bn)

)

. (2.3)

In particular, we have

P
(

max
1≤k≤n

|Sk| ≥ x
)

≤ 2P
(

max
1≤k≤n

|ξk| > a
)

+ 4 exp

(

–
x2

8Bn

)

+ 4
(

Bn

4(ax + Bn)

)x/(12a)

. (2.4)

Proof By Lemma 2.3, following the proof of Theorem 3 in Shao [16], we can easily get the
results of Lemma 2.4. �

Lemma 2.5 Let {Yi, 1 ≤ i ≤ n} be an LNQD sequence of random variables with EYi = 0
and E|Yi|3 < ∞. Define Tn =

∑n
i=1 Yi and B2

n =
∑n

i=1 EY 2
i . Then, for any x > 0,

P(Tn ≥ xBn) ≥ (
1 – �(x + 1)

)
+ 6B–2

n

∑

1≤i	=j≤n

E(YiYj) – 12B–3
n

n∑

i=1

E|Yi|3,

where � is the standard normal distribution function.

Proof We will apply the Stein method. Let X be a standard normal random variable and
define

g(w) =

⎧
⎪⎨

⎪⎩

0, for w < x,
w – x, for x ≤ w ≤ x + 1,
1, for w > x + 1.

Let f be the unique bounded solution of the Stein equation

f ′(w) – wf (w) = g(w) – Eg(X). (2.5)
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The solution f is given by

f (w) = ew2/2
∫ w

–∞

{
g(t) – Eg(X)

}
e–t2/2 dt.

It is well known that (see Stein [17])

∣
∣f (w)

∣
∣ ≤ 2,

∣
∣f ′(w)

∣
∣ ≤ 2,

∣
∣f ′′(w)

∣
∣ ≤ 2. (2.6)

Let ζi = Yi/Bn, W =
∑n

i=1 ζi, W (i) = W – ζi,

ζi,1 =

⎧
⎪⎨

⎪⎩

–1, for ζi < –1,
ζi, for –1 ≤ ζi ≤ 1,
1, for ζi > 1,

ζi,2 =

⎧
⎪⎨

⎪⎩

ζi + 1, for ζi < –1,
0, for –1 ≤ ζi ≤ 1,
ζi – 1, for ζi > 1.

Obviously, ζi = ζi,1 + ζi,2. Write

E
(
Wf (W )

)
=

n∑

i=1

E
(
ζif

(
W (i))) +

n∑

i=1

E
{
ζi

[
f (W ) – f

(
W (i))]}

=: R1 + R2 + R3 + R4, (2.7)

where

R1 =
n∑

i=1

E
(
ζif

(
W (i))), R2 =

n∑

i=1

E
{
ζi,2

[
f (W ) – f

(
W (i))]},

R3 =
n∑

i=1

E
{
ζi,1

[
f
(
W (i) + ζi,1 + ζi,2

)
– f

(
W (i) + ζi,1

)]}
,

R4 =
n∑

i=1

E
{
ζi,1

[
f
(
W (i) + ζi,1

)
– f

(
W (i))]}.

By the definition of LNQD, we know ζi and W (i) are NQD, then by (H1) and (2.6) we have

|R1| ≤
n∑

i=1

∣
∣Cov

(
ζi, f

(
W (i)))∣∣ ≤ 2

n∑

i=1

∣
∣Cov

(
ζi, W (i))∣∣ = –2B–2

n

∑

1≤i	=j≤n

E(YiYj).

By (2.6), we obtain

|R2| ≤ 4
n∑

i=1

E|ζi,2| ≤ 4
n∑

i=1

E|ζi|3 = 4B–3
n

n∑

i=1

E|Yi|3,

|R3| ≤ 2
n∑

i=1

E|ζi,1ζi,2| ≤ 2
n∑

i=1

E|ζi,2| ≤ 2B–3
n

n∑

i=1

E|Yi|3.
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To estimate R4, let Ki(t) = E(ζi,1I{0 ≤ t ≤ ζi,1} – ζi,1I{ζi,1 ≤ t < 0}). Rewrite R4 as

R4 =
n∑

i=1

E
{

ζi,1

∫ ζi,1

0
f ′(W (i) + t

)
dt

}

=
n∑

i=1

∫ 1

–1
E
{

f ′(W (i) + t
)[

ζi,1I{0 ≤ t ≤ ζi,1} – ζi,1I{ζi,1 ≤ t < 0}]}dt

=
n∑

i=1

∫ 1

–1
E
{

f ′(W (i) + t
)}

Ki(t) dt +
n∑

i=1

∫ 1

0
Cov

(
f ′(W (i) + t

)
, ζi,1I{0 ≤ t ≤ ζi,1}

)
dt

–
n∑

i=1

∫ 0

–1
Cov

(
f ′(W (i) + t

)
, ζi,1I{ζi,1 ≤ t < 0})dt

=: R4,1 + R4,2 + R4,3.

For fixed 0 < t < 1, xI{0 ≤ t ≤ x} is a nondecreasing functions of x, by the definition of
LNQD and Lemma 2.3, ζi,1I{0 ≤ t ≤ ζi,1} and W (i) are NQD. Then by (H1) and (2.7),

|R4,2| ≤ 2
n∑

i=1

∫ 1

0

∣
∣Cov

(
W (i), ζi,1I{0 ≤ t ≤ ζi,1}

)∣
∣dt

≤ 2
n∑

i=1

∫ 1

0

∣
∣Cov

(
W (i), ζi

)∣
∣dt = 2

n∑

i=1

∣
∣Cov

(
W (i), ζi

)∣
∣ = –2B–2

n

∑

1≤i	=j≤n

E(YiYj).

Similarly,

|R4,3| ≤ –2B–2
n

∑

1≤i	=j≤n

E(YiYj).

Let R5 = |R1| + |R2| + |R3| + |R4,2| + |R4,3|. Observe that

∫ 1

–1
Ki(t) = Eζ 2

i,1 and
∫ 1

–1
|t|Ki(t) =

1
2

E|ζi,1|3.

It follows from (2.6) that

P(Tn ≥ xBn) –
(
1 – �(1 + x)

) ≥ Eg(W ) – Eg(X)

= Ef ′(W ) – EWf (W )

= Ef ′(W ) – R4,1 – R1 – R2 – R3 – R4,2 – R4,3

≥ –R5 + Ef ′(W )

(

1 –
n∑

i=1

Eζ 2
i,1

)

+
n∑

i=1

Eζ 2
i,1Ef ′(W ) – R4,1

= –R5 + Ef ′(W )
n∑

i=1

E
(
ζ 2

i – ζ 2
i,1

)

+
n∑

i=1

E
{∫ 1

–1

{
f ′(W (i) + ζi

)
– f ′(W (i) + t

)}
Ki(t) dt

}
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≥ –R5 – 2
n∑

i=1

Eζ 2
i I

{|ζi| > 1
}

– 2
n∑

i=1

E
{∫ 1

–1

(|ζi| + t
)
Ki(t) dt

}

≥ –R5 – 2
n∑

i=1

E|ζi|3 – 4
n∑

i=1

E|ζi|3

= –R5 – 6B–3
n

n∑

i=1

E|Yi|3.

Finally, by putting the above inequalities together, we complete the proof of Lemma 2.5. �

Proof of Theorem 2.1 It suffices to show that for 0 < ε < 1
30

lim sup
n→∞

|Sn|
(2σ 2n log log n)1/2 ≤ 1 + 8ε a.s. (2.8)

and

lim sup
n→∞

|Sn|
(2σ 2n log log n)1/2 ≥ 1 – 8ε a.s. (2.9)

Let m be an integer such that

σ 2
m =: Eξ 2

1 + 2
m∑

i=2

Eξ1ξi ≤ σ 2(1 + ε). (2.10)

Put ai = εσ (i/ log log i)1/2/m. Define

g1(a, x) = xI
{|x| ≤ a

}
+ aI{x > a} – aI{x < –a},

g2(a, x) = (x – a)I{x > a} + (x + a)I{x < –a},

Yi,l = gl(ai, ξi) – Egl(ai, ξi), Si,l =
i∑

j=1

Yj,l, for l = 1, 2,

ui =
im∑

j=(i–1)m+1

Yj,l and Ui =
i∑

j=1

uj, i = 1, 2, . . . .

It is obvious that Sn = Sn,1 + Sn,2. By the same argument as of equation (2.2) from de Acosta
[18], it is easy to check that

∞∑

i=1

E|ξi|I
{|ξi| > ai

}
/(i log log i)1/2 ≤ CEξ 2

1 < ∞. (2.11)

Hence, by Kronecker’s lemma

n∑

i=1

|ξi|I{|ξi| > ai} + E|ξi|I{|ξi| > ai}
(n log log n)1/2 → 0 a.s.



Zhang Journal of Inequalities and Applications  (2018) 2018:11 Page 7 of 17

and

Sn,2/(n log log n)1/2 → 0 a.s. (2.12)

Observe that

max
1≤i≤n

|Si,1| ≤ max
1≤i≤[n/m]

|Ui| + max
1≤i≤1+[n/m]

min{n,im}∑

j=(i–1)m+1

|Yj,1|

≤ max
1≤i≤[n/m]

|Ui| + man ≤ max
1≤i≤[n/m]

|Ui| + εσ (n log log n)1/2 (2.13)

for every n sufficiently large,

Eu2
i /

(
mσ 2

m
) → 1 as i → ∞

and

[n/m]∑

i=1

Eu2
i /

(
nσ 2

m
) → 1 as n → ∞.

Hence, by (2.10)

[n/m]∑

i=1

Eu2
i ≤ σ 2(1 + 2ε)n (2.14)

provided that n is sufficiently large.
By the definition of LNQD and Lemma 2.3, we know {ui, i ≥ 1} are also LNQD ran-

dom variables with Eui = 0 and |ui| ≤ 2maim for every i. By Lemma 2.4 (with α = 1 – ε,
a = 2man), (2.13) and (2.14), we get

P
(

max
1≤i≤n

|Si,1| ≥ (1 + 8ε)
(
2σ 2n log log n

)1/2
)

≤ P
(

max
1≤i≤[n/m]

|Ui| ≥ (1 + 7ε)
(
2σ 2n log log n

)1/2
)

≤ 2
ε

exp

(

–
(1 – ε)(1 + 7ε)2σ 2n log log n

(1 + 7ε)(2σ 2n log log n)1/22man +
∑[n/m]

i=1 Eu2
i

)

≤ 2
ε

exp

(

–
(1 – ε)(1 + 7ε)2 log log n

4(1 + 7ε)ε + 1 + 2ε

)

≤ 2
ε

exp
(
–(1 + ε) log log n

)
(2.15)

for every sufficiently large n. By using the standard subsequence method, (2.15) yields

lim sup
n→∞

|Sn,1|/
(
2σ 2n log log n

)1/2 ≤ 1 + 8ε a.s. (2.16)

Now (2.8) follows by (2.12) and (2.16).
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To prove (2.9), let

mk =
[
2k1+ε ]

, pk =
[
k–22k1+ε ]

, nk = (mk + pk)k4.

It suffices to show that

∞∑

k=1

P
(
Snk ,1 ≥ (1 – 7ε)

(
2σ 2nk log log nk

)1/2) = ∞. (2.17)

In fact, by Lemma 2.4, similar to the proof of (2.15), we obtain

∞∑

k=1

P
(
Snk–1,1 ≥ ε

(
2σ 2nk log log nk

)1/2) < ∞.

Then by (2.17), we have

∞∑

k=1

P
(
Snk ,1 – Snk–1,1 ≥ (1 – 8ε)

(
2σ 2nk log log nk

)1/2)

≥
∞∑

k=1

P
(
Snk ,1 ≥ (1 – 7ε)

(
2σ 2nk log log nk

)1/2)

–
∞∑

k=1

P
(
Snk–1,1 ≥ ε

(
2σ 2nk log log nk

)1/2)

= ∞. (2.18)

By the definition of LNQD and Lemma 2.3, we see that {Snk ,1 – Snk–1,1, k ≥ 1} is an LNQD
sequence, then, for any x > 0, y > 0, k 	= j,

P(Snk ,1 – Snk–1,1 ≥ x, Snj ,1 – Snj–1,1 ≥ y) ≤ P(Snk ,1 – Snk–1,1 ≥ x)P(Snj ,1 – Snj–1,1 ≥ y).

Hence, by the generalized Borel-Cantelli lemma (see, e.g., Kochen and Stone [19]), (2.18)
yields

lim sup
k→∞

Snk ,1 – Snk–1,1

(2σ 2nk log log nk)1/2 ≥ 1 – 8ε a.s.,

which together with (2.8) and (2.12) gives

lim sup
k→∞

Snk

(2σ 2nk log log nk)1/2 ≥ 1 – 8ε a.s.

and hence (2.9) holds.
To verify (2.17), set

vi,1 =
(i–1)(mk+pk )+mk∑

j=(i–1)(mk +pk )+1

Yj,1, vi,2 =
i(mk +pk )∑

j=(i–1)(mk +pk )+mk +1

Yj,1, 1 ≤ i ≤ k4,

Tk,1 =
k4

∑

i=1

vi,1, Tk,2 =
k4

∑

i=1

vi,2.
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Obviously, Snk ,1 = Tk,1 + Tk,2. Then by Lemma 2.4, similar to the proof of (2.15), we obtain

∞∑

k=1

P
(
Tk,2 ≥ ε

(
2σ 2nk log log nk

)1/2) < ∞.

Thus, we only need to show that

∞∑

k=1

P
(
Tk,1 ≥ (1 – 6ε)

(
2σ 2nk log log nk

)1/2) = ∞. (2.19)

It is easy to see that

B2
k4

nkσ 2 =
k4

∑

i=1

Ev2
i,1

nkσ 2 → 1 as k → ∞.

From Lemma 2.5, we obtain

P
(
Tk,1 ≥ (1 – 6ε)

(
2σ 2nk log log nk

)1/2)

≥ (
1 – �

(
1 + (1 – 5ε)(2 log log nk)1/2)) – Jk,1 – Jk,2, (2.20)

where

Jk,1 = 6B–2
k4

∑

1≤i	=j≤k4

|Evi,1vj,1|, Jk,2 = 12B–3/2
k4

k4
∑

i=1

E|vi,1|3, B2
k4 =

k4
∑

i=1

Ev2
i,1.

Obviously, we have

∞∑

k=1

(
1 – �

(
1 + (1 – 5ε)(2 log log nk)1/2)) = ∞. (2.21)

Noting that {vi,1, 1 ≤ i ≤ k4} is an LNQD sequence and by (H1), we get

Jk,1 ≤ Cn–1
k

∑

2≤j≤k4

k4|Ev1,1vj,1|

≤ Cn–1
k k4

∑

1≤i≤mk

∑

mk +pk≤j≤nk

|Eζiζj|

≤ C
∑

pk≤j≤nk

|Eζiζj|.

By the fact that nk–1 = o(pk), we see that

∞∑

k=1

Jk,1 ≤ C
∞∑

k=1

∑

nk–1≤j≤nk

|Eζiζj| ≤ C. (2.22)
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Finally, we estimate Jk,2. By the Rosenthal type maximal inequality for an LNQD sequence,
which can be proved easily as the proof of Theorem 2 from Shao [16], thus we have

Jk,2 ≤ Cn–3/2
k

k4
∑

i=1

{
(mk)3/2 + mk

(
E|ξ1|3I

{|ξ1| ≤ n1/2
k

})
+ n3/2

k P
(|ξ1| > n1/2

k
)}

≤ C
{

k–2 + n–1/2
k E|ξ1|3I

{|ξ1| ≤ n1/2
k

}
+ nkP

(|ξ1| > n1/2
k

)}
.

Observe that with n0 = 0

∞∑

k=1

n–1/2
k E|ξ1|3I

{|ξ1| ≤ n1/2
k

}
=

∞∑

k=1

n–1/2
k

k∑

j=1

E|ξ1|3I
{

n1/2
j–1 < |ξ1| ≤ n1/2

j
}

=
∞∑

j=1

∞∑

k=j

n–1/2
k E|ξ1|3I

{
n1/2

j–1 < |ξ1| ≤ n1/2
j

}

≤ C
∞∑

j=1

n–1/2
j E|ξ1|3I

{
n1/2

j–1 < |ξ1| ≤ n1/2
j

}

≤ C
∞∑

j=1

E|ξ1|2I
{

n1/2
j–1 < |ξ1| ≤ n1/2

j
} ≤ CE|ξ1|2 < ∞.

Similarly,

∞∑

k=1

nkP
(|ξ1| > n1/2

k
)

< ∞.

Putting the above inequalities together yields

∞∑

k=1

Jk,2 < ∞. (2.23)

This proves (2.19), by combining the above inequalities (2.20)-(2.23). �

3 The LIL for linear processes generated by LNQD sequence
In this section, we will discuss the law of iterated logarithm (LIL, for short) for linear
processes generated by LNQD sequence with finite variance.

The linear processes are of special importance in time series analysis and they arise in
wide variety of concepts (see, e.g., Hannan [20], Chapter 6). Applications to economics,
engineering, and physical science are extremely broad and a vast amount of literature is
devoted to the study of the theorems for linear processes under various conditions. For the
linear processes, Fakhre-Zakeri and Farshidi [21] established CLT under the i.i.d. assump-
tions and Fakhre-Zakeri and Lee [22] proved a FCLT under the strong mixing conditions.
Kim and Baek [23] obtained a central limit theorem for stationary linear processes gener-
ated by linearly positively quadrant dependent process. Peligrad and Utev [24] established
the central limit theorem for linear processes with dependent innovations including mar-
tingales and mixingale. Qiu and Lin [25] discussed the functional central limit theorem for
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linear processes with strong near-epoch dependent innovations. Dedecker et al. [26] pro-
vided the invariance principles for linear processes generated by dependent innovations.
We will prove the following theorem.

Theorem 3.1 Let {ξi, i ∈ Z} be a strictly stationary LNQD sequence with Eξi = 0, Eξ 2
i < ∞

and σ 2 = Eξ 2
1 + 2

∑∞
i=2 Eξ1ξi > 0. {aj, j ∈ Z} be a sequence of real numbers with

∑∞
j=–∞ |aj| <

∞. Define the linear processes Xt =
∑∞

i=–∞ aiξt–i. Then

lim sup
n→∞

|∑n
t=1 Xt|

(2σ 2n log log n)1/2 =

∣
∣
∣
∣
∣

∞∑

j=–∞
aj

∣
∣
∣
∣
∣

a.s. (3.1)

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.2 Let {ξi, i ∈ Z} be a strictly sequence of random variables, {an, n ≥ 1} be a mono-
tone decreasing sequence of nonnegative real numbers. Then ∀j ∈ Z,

sup
n≥1

∣
∣
∣
∣
∣
an

n∑

i=1

ξi–j

∣
∣
∣
∣
∣

d= sup
n≥1

∣
∣
∣
∣
∣
an

n∑

i=1

ξi

∣
∣
∣
∣
∣
.

Proof Let Yj = supn≥1 |an
∑n

i=1 ξi–j|, Y = supn≥1 |an
∑n

i=1 ξi|. Obviously

P(Yj ≤ x) = P

( ∞⋂

k=1

(

max
1≤t≤k

∣
∣
∣
∣
∣
at

t∑

i=1

ξi–j

∣
∣
∣
∣
∣
≤ x

))

= lim
k→∞

P

(

max
1≤t≤k

∣
∣
∣
∣
∣
at

t∑

i=1

ξi–j

∣
∣
∣
∣
∣
≤ x

)

,

similarly,

P(Y ≤ x) = lim
k→∞

P

(

max
1≤t≤k

∣
∣
∣
∣
∣
at

t∑

i=1

ξi

∣
∣
∣
∣
∣
≤ x

)

.

By the strictly stationarity, we know (ξ1–j, ξ2–j, . . . , ξt–j)
d= (ξ1, ξ2, . . . , ξt), then, for every Borel

set D ∈R
t ,

P
{

(ξ1–j, ξ2–j, . . . , ξt–j) ∈ D
}

= P
{

(ξ1, ξ2, . . . , ξt) ∈ D
}

.

In particular, if we take D = {(x1, x2, . . . , xn) : max1≤t≤k |at
∑t

i=1 ξi| ≤ x}, then the result of
Lemma 3.2 can be obtained by the above statements. �

Lemma 3.3 Let {ξi, i ∈ Z} be a strictly stationary LNQD sequence of random variables
with Eξ1 = 0, Eξ1

2 < ∞, σ 2 = Eξ1
2 + 2

∑∞
i=2 Eξ1ξi > 0. Then

E sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

k=1

ξk

∣
∣
∣
∣
∣

< ∞. (3.2)
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Proof Let bn = (2n log log n) 1
2 , b2k /b2k+1 →

√
2

2 (k → ∞), then there exists C1 > 0, such that
for all k ≥ 0, b2k /b2k+1 ≥ C1. Let m, σ 2

m, ai, gl(ai, ξi), Yi,l , Si,l , ui, Ui be defined as in the proof
of Theorem 2.1. Note that

∑n
k=1 ξk = Sn,1 + Sn,2. Then

E sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

k=1

ξk

∣
∣
∣
∣
∣

≤ sup
n

(2n log log n)– 1
2 |Sn,1| + E sup

n
(2n log log n)– 1

2 |Sn,2|. (3.3)

In order to prove (3.2), it is sufficient to prove

E sup
n

(2n log log n)– 1
2 |Sn,1| < ∞, (3.4)

E sup
n

(2n log log n)– 1
2 |Sn,2| < ∞. (3.5)

Note that

E sup
n

(2n log log n)– 1
2 |Sn,2|

= E sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

k=1

(
g2(ak , ξk) – Eg2(ak , ξk)

)
∣
∣
∣
∣
∣

≤ E
∞∑

k=1

|g2(ak , ξk) – Eg2(ak , ξk)|
(2k log log k) 1

2
≤ 4

∞∑

k=1

E|ξk|I{|ξk| > ak}
(2k log log k) 1

2

≤ CEξ 2
1 < ∞. (3.6)

The last inequalities can be induced by the same argument as in (2.11).
Finally, in order to prove (3.2), it remains to check that (3.4) holds by combining the

above inequalities. We have

E sup
n

(2n log log n)– 1
2 |Sn,1|

= E sup
k≥0

max
2k≤n<2k+1

|Sn,1|
(2n log log n) 1

2

=
∫

0

∞
P
{

sup
k≥0

max
2k≤n<2k+1

|Sn,1|
(2n log log n) 1

2
> x

}

dx

≤ B +
∫

B

∞
P
{

sup
k≥0

max
2k≤n<2k+1

|Sn,1|
(2n log log n) 1

2
> x

}

dx, (3.7)

where B will be given later. Noting the choice of C1, we have

∫

B

∞
P
{

sup
k≥0

max
2k≤n<2k+1

|Sn,1|
(2n log log n) 1

2
> x

}

dx

≤
∫

B

∞ ∞∑

k=0

P
{

max
2k≤n<2k+1

|Sn,1|
(2n log log n) 1

2
> x

}

dx
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≤
∞∑

k=0

∫

B

∞
P
{

max
2k≤n<2k+1

|Sn,1| > x
(
2 · 2k · log log 2k) 1

2
}

dx

≤
∞∑

k=0

∫

B

∞
P
{

max
1≤n≤2k+1

|Sn,1| > xC1
(
2 · 2k+1 · log log 2k+1) 1

2
}

dx. (3.8)

It is easy to check that

max
n≤2k+1

|Sn,1| ≤ max
1≤i≤[2k+1/m]

|Ui| + max
1≤i≤[2k+1/m]

min(2k+1,im)∑

j=(i–1)m+1

|Yj,1|

≤ max
1≤i≤[2k+1/m]

|Ui| + 2ma2k+1

≤ max
1≤i≤[2k+1/m]

|Ui| + 2εσ
(
2k+1 · log log 2k+1) 1

2 . (3.9)

By the same argument as of (2.14), there exists k0, such that, for every k ≥ k0,

[2k+1/m]∑

i=1

Eui
2 ≤ σ 2 · (1 + 2ε) · 2k+1. (3.10)

By the definition of LNQD and Lemma 2.3, we know {ui, i ≥ 1} are also LNQD ran-
dom variables with Eui = 0 and |ui| ≤ 2maim for every i. By Lemma 2.4 (with α = 1 – ε,
a = 2ma2k+1 ), then by (3.9) and (3.10), observing that 0 < ε <

√
2C1
2σ

, we have

∞∑

k=0

∫

B

∞
P
{

max
1≤n≤2k+1

|Sn,1| > xC1
(
2 · 2k+1 · log log 2k+1) 1

2
}

dx

≤
∞∑

k=0

∫

B

∞
P
{

max
1≤i≤[2k+1/m]

|Ui| > (xC1
√

2 – 2εσ )
(
2k+1 · log log 2k+1) 1

2
}

dx

≤
∞∑

k=0

∫

B

∞
P
{

max
1≤i≤[2k+1/m]

|Ui| > (C1
√

2 – 2εσ )x
(
2k+1 · log log 2k+1) 1

2
}

dx

≤ 2
ε

∞∑

k=0

∫

B

∞
exp

(

–
(C1

√
2 – 2εσ )2(1 – ε)(2k+1 · log log 2k+1)x2

4εσ · 2k+1(C1
√

2 – 2εσ )x + 2
∑[2k+1/m]

i=1 Eui2

)

dx

≤ 2
ε

k0∑

k=0

∫

B

∞
e–Ak x dx +

2
ε

∞∑

k=k0+1

∫

B

∞
e–D·(log log 2k+1)·x dx

=
2
ε

k0∑

k=0

∫

B

∞
e–Ak x dx +

2
εD

∞∑

k=k0+1

1
log ((k + 1) log 2)((k + 1) log 2)BD < ∞, (3.11)

where

Ak =
(C1

√
2 – 2εσ )2(1 – ε)(2k+1 · log log 2k+1)

4εσ · 2k+1(C1
√

2 – 2εσ ) + 2
∑[2k+1/m]

i=1 Eui2
> 0,

D =
(C1

√
2 – 2εσ )2(1 – ε)

4εσ (C1
√

2 – 2εσ ) + 2σ 2 · (1 + 2ε)
> 0,



Zhang Journal of Inequalities and Applications  (2018) 2018:11 Page 14 of 17

and choose B sufficiently large such that BD > 1. Thus (3.4) holds by combining the above
inequalities together. �

Proof of Theorem 3.1 By a Beveridge and Nelson decomposition for a linear process, for
m, n, t ∈N, let

Ym,n = (2n log log n)– 1
2

n∑

t=1

m∑

j=–m

ajξt–j,

ãm = 0, ãj =
m∑

i=j+1

ai, j = 0, 1, . . . , m – 1,

˜̃a–m = 0, ˜̃aj =
j–1∑

i=–m

ai, j = –m + 1, –m + 2, . . . , 0,

ξ̃t =
m∑

j=0

ãjξt–j, ˜̃ξ t =
0∑

j=–m

˜̃ajξt–j.

Obviously

Ym,n =

( m∑

j=–m

aj

)

(2n log log n)– 1
2

( n∑

t=1

ξt

)

+ (2n log log n)– 1
2 (̃ξ0 – ξ̃n +˜̃ξn+1 –˜̃ξ 1), (3.12)

(2n log log n)– 1
2

n∑

t=1

Xt = Ym,n + (2n log log n)– 1
2

( n∑

t=1

∑

|j|>m

ajξt–j

)

. (3.13)

By the strictly stationarity, for every ε > 0, we have

∞∑

n=1

P
{|ξn–j|/(2n log log n)

1
2 > ε

} ≤
∞∑

n=1

P
{|ξ0|2 > 2ε2n log log n

} ≤ CE|ξ0|2 < ∞. (3.14)

Then by the Borel-Cantelli lemma, for any j ≥ 0,

(2n log log n)– 1
2 ξn–j → 0 a.s. n → ∞.

Therefore

(2n log log n)– 1
2 · ξ̃n = (2n log log n)– 1

2

m∑

j=0

ãjξn–j → 0 a.s. n → ∞.

Similarly, we obtain

(2n log log n)– 1
2 · ξ̃0 → 0 a.s. n → ∞,

(2n log log n)– 1
2 ·˜̃ξ 1 → 0 a.s. n → ∞,

(2n log log n)– 1
2 ·˜̃ξn+1 → 0 a.s. n → ∞.
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By the above statement, we have

(2n log log n)– 1
2 (̃ξ0 – ξ̃n +˜̃ξn+1 –˜̃ξ 1) → 0 a.s. n → ∞. (3.15)

By Theorem 2.1

lim sup
n→∞

(2n log log n)– 1
2

n∑

t=1

ξt = σ a.s.

From the definition of LNQD and Lemma 2.3, it is easy to check that {–ξi; i ∈ Z} is an
LNQD sequence of random variables. Then, by Theorem 2.1,

lim sup
n→∞

(2n log log n)– 1
2

n∑

t=1

(–ξ t) = σ a.s.

Thus

lim sup
n→∞

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt

∣
∣
∣
∣
∣

= σ a.s. (3.16)

Let Sn =
∑n

t=1 Xt , combining (3.12)-(3.16), then

lim sup
n→∞

(2n log log n)– 1
2 |Sn|

= lim sup
n→∞

∣
∣
∣
∣
∣
Ym,n +

∑

|j|>m

aj(2n log log n)– 1
2

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

≤ lim sup
n→∞

∣
∣
∣
∣
∣

m∑

j=–m

aj

∣
∣
∣
∣
∣
(2n log log n)– 1

2

∣
∣
∣
∣
∣

n∑

t=1

ξt

∣
∣
∣
∣
∣

+ lim sup
n→∞

∑

|j|>m

|aj|(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

j=–m

aj

∣
∣
∣
∣
∣
σ +

∑

|j|>m

|aj| sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

a.s. (3.17)

Then by the strictly stationarity, Lemma 3.2 and Lemma 3.3, we know

E sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

= E sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt

∣
∣
∣
∣
∣

< ∞. (3.18)

Then, by (3.18),

sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

< ∞ a.s. (3.19)
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By (3.19), letting m → ∞ in (3.17), we have

lim sup
n→∞

(2n log log n)– 1
2 |Sn| ≤ 4

∣
∣
∣
∣
∣

∞∑

j=–∞
aj

∣
∣
∣
∣
∣
σ a.s. (3.20)

On the other hand, by (3.13), (3.15) and (3.16), we obtain

lim sup
n→∞

(2n log log n)– 1
2 |Sn|

≥ lim sup
n→∞

∣
∣
∣
∣
∣

m∑

j=–m

aj

∣
∣
∣
∣
∣
(2n log log n)– 1

2

∣
∣
∣
∣
∣

n∑

t=1

ξt

∣
∣
∣
∣
∣

– lim
n→∞(2n log log n)– 1

2 |̃ξ0 – ξ̃n +˜̃ξn+1 –˜̃ξ 1|

–
∑

|j|>m

|aj| sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

j=–m

aj

∣
∣
∣
∣
∣
σ –

∑

|j|>m

|aj| sup
n

(2n log log n)– 1
2

∣
∣
∣
∣
∣

n∑

t=1

ξt–j

∣
∣
∣
∣
∣

a.s. (3.21)

Then, letting m → ∞,

lim sup
n→∞

(2n log log n)– 1
2 |Sn| ≥

∣
∣
∣
∣
∣

∞∑

j=–∞
aj

∣
∣
∣
∣
∣
σ a.s. (3.22)

Hence from (3.20) and (3.22) the desired conclusion (3.1) follows. �

4 Conclusions
In this paper, using the Kolmogorov type maximal inequality and Stein’s method, the law of
the iterated logarithm for LNQD sequence is established with less restriction of moment
conditions, this improves the results of Choi [11] from E|ξ1|2+δ < ∞ to E|ξ1|2 < ∞. We also
prove the law of the iterated logarithm for a linear process generated by LNQD sequence
with the coefficients satisfying

∑∞
i=–∞ |ai| < ∞ by the Beveridge and Nelson decomposi-

tion, this extends the law of iterated logarithm for a linear process with the innovations
from i.i.d. and NA cases to LNQD random variables.
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