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1 Introduction
The Schur convexity of functions relating to special means is a very significant research
subject and has attracted the interest of many mathematicians. There are numerous ar-
ticles written on this topic in recent years; see [1, 2] and the references therein. As sup-
plements to the Schur convexity of functions, the Schur geometrically convex functions
and Schur harmonically convex functions were investigated by Zhang and Yang [3], Chu,
Zhang and Wang [4], Chu and Xia [5], Chu, Wang and Zhang [6], Shi and Zhang [7, 8],
Meng, Chu and Tang [9], Zheng, Zhang and Zhang [10]. These properties of functions
have been found to be useful in discovering and proving the inequalities for special means
(see [11–14]).

Recently, it has come to our attention that a type of means which is symmetrical on n
variables x1, x2, . . . , xn and involves two parameters, it was initially proposed by Bonferroni
[15], as follows:

Bp,q(x) =

(
1

n(n – 1)

n∑
i,j=1,i�=j

xp
i xq

j

) 1
p+q

, (1)

where x = (x1, x2, . . . , xn), xi ≥ 0, i = 1, 2, . . . , n, p, q ≥ 0 and p + q �= 0.
Bp,q(x) is called the Bonferroni mean. It has important application in multi criteria

decision-making (see [16–21]).
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Beliakov, James and Mordelová et al. [22] generalized the Bonferroni mean by introduc-
ing three parameters p, q, r, i.e.,

Bp,q,r(x) =

(
1

n(n – 1)(n – 2)

n∑
i,j.k=1,i�=j �=k

xp
i xq

j xr
k

) 1
p+q+r

, (2)

where x = (x1, x2, . . . , xn), xi ≥ 0, i = 1, 2, . . . , n, p, q, r ≥ 0 and p + q + r �= 0.
Motivated by the Bonferroni mean Bp,q(x) and the geometric mean G(x) =

∏n
i=1(xi)

1
n ,

Xia, Xu and Zhu [23] introduced a new mean which is called the geometric Bonferroni
mean, as follows:

GBp,q(x) =
1

p + q

n∏
i,j=1,i�=j

(pxi + qxj)
1

n(n–1) , (3)

where x = (x1, x2, . . . , xn), xi > 0, i = 1, 2, . . . , n, p, q ≥ 0 and p + q �= 0.
An extension of the geometric Bonferroni mean was given by Park and Kim in [19],

which is called the generalized geometric Bonferroni mean, i.e.,

GBp,q,r(x) =
1

p + q + r

n∏
i,j,k=1,i�=j �=k

(pxi + qxj + rxk)
1

n(n–1)(n–2) , (4)

where x = (x1, x2, . . . , xn), xi > 0, i = 1, 2, . . . , n, p, q, r ≥ 0 and p + q + r �= 0.

Remark 1 For r = 0, it is easy to observe that

GBp,q,0(x) =
1

p + q + 0

n∏
i,j=1,i�=j

[ n∏
k=1,i�=j �=k

(pxi + qxj + 0 × xk)

] 1
n(n–1)(n–2)

=
1

p + q

n∏
i,j=1,i�=j

[
(pxi + qxj)(n–2)] 1

n(n–1)(n–2)

=
1

p + q

n∏
i,j=1,i�=j

(pxi + qxj)
1

n(n–1)

= GBp,q(x).

Remark 2 If q = 0, r = 0, then the generalized geometric Bonferroni mean reduces to the
geometric mean, i.e.,

GBp,0,0(x) = GBp,0(x) =
1
p

n∏
i,j=1,i�=j

(pxi)
1

n(n–1) =
n∏

i=1

(xi)
1
n = G(x).

Remark 3 If x = (x, x, . . . , x), then

GBp,q,r(x) = GBp,q,r(x, x, . . . , x) = x.
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For convenience, throughout the paper R denotes the set of real numbers, x = (x1, x2,
. . . , xn) denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

R
n =

{
x = (x1, x2, . . . , xn) : xi ∈R, i = 1, 2, . . . , n

}
,

R
n
+ =

{
x = (x1, x2, . . . , xn) : xi ≥ 0, i = 1, 2, . . . , n

}
,

R
n
++ =

{
x = (x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n

}
.

In a recent paper [24], Shi and Wu investigated the Schur m-power convexity of the
geometric Bonferroni mean GBp,q(x). The definition of Schur m-power convex function
is as follows:

Let f : R++ → R be a function defined by

f (x) =

⎧⎨
⎩

xm–1
m , m �= 0,

ln x, m = 0.

Then a function ϕ : � ⊂R
n
++ →R is said to be Schur m-power convex on � if

(
f (x1), f (x2), . . . , f (xn)

) ≺ (
f (y1), f (y2), . . . , f (yn)

)
for all (x1, x2, . . . , xn) ∈ � and (y1, y2, . . . , yn) ∈ � implies φ(x) ≤ φ(y).

If –ϕ is Schur m-power convex, then we say that ϕ is Schur m-power concave.
Shi and Wu [24] obtained the following result.

Proposition 1 For fixed positive real numbers p, q, (i) if m < 0 or m = 0, then GBp,q(x)
is Schur m-power convex on R

n
++; (ii) if m = 1 or m ≥ 2, then GBp,q(x) is Schur m-power

concave on R
n
++.

In this paper we discuss the Schur convexity, Schur geometric convexity and Schur har-
monic convexity of the generalized geometric Bonferroni mean GBp,q,r(x). Our main re-
sults are as follows.

Theorem 1 For fixed non-negative real numbers p, q, r with p + q + r �= 0, if x =
(x1, x2, . . . , xn), n ≥ 3, then GBp,q,r(x) is Schur concave, Schur geometric convex and Schur
harmonic convex on R

n
++.

Corollary 1 For fixed non-negative real numbers p, q with p + q �= 0, if x = (x1, x2, . . . , xn),
n ≥ 3, then GBp,q(x) is Schur concave, Schur geometric convex and Schur harmonic convex
on R

n
++.

2 Preliminaries
We introduce some definitions, lemmas and propositions, which will be used in the proofs
of the main results in subsequent sections.

Definition 1 (see [1]) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈R
n.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for

k = 1, 2, . . . , n – 1 and
∑n

i=1 xi =
∑n

i=1 yi, where x[1] ≥ x[2] ≥ · · · ≥ x[n] and
y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.
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(ii) Let � ⊂R
n,the function ϕ: � →R is said to be Schur convex on � if x ≺ y on �

implies ϕ(x) ≤ ϕ(y). ϕ is said to be Schur concave function on � if and only if –ϕ is
Schur convex function on �.

Definition 2 (see [1]) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ R
n. � ⊂ R

n is said to
be a convex set if x, y ∈ � and 0 ≤ α ≤ 1 imply

αx + (1 – α)y =
(
αx1 + (1 – α)y1,αx2 + (1 – α)y2, . . . ,αxn + (1 – α)yn

) ∈ �.

Definition 3 (see [1]) (i) A set � ⊂ R
n is called symmetric, if x ∈ � implies xP ∈ � for

every n × n permutation matrix P.
(ii) A function ϕ : � → R is called symmetric if for every permutation matrix P and

ϕ(xP) = ϕ(x) for all x ∈ �.

The following proposition is called Schur’s condition. It provides an approach for testing
whether a vector valued function is Schur convex or not.

Proposition 2 (see [1]) Let � ⊂ R
n be symmetric and have a nonempty interior convex

set. �0 is the interior of �. ϕ : � → R is continuous on � and differentiable in �0. Then
ϕ is the Schur convex function (Schur concave function) if and only if ϕ is symmetric on �

and

(x1 – x2)
[
∂ϕ(x)
∂x1

–
∂ϕ(x)
∂x2

]
≥ 0 (≤ 0) (5)

holds for any x ∈ �0.

Definition 4 (see [25]) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ R
n
+.

(i) � ⊂R
n
+ is called a geometrically convex set if (xα

1 yβ
1 , xα

2 yβ
2 , . . . , xα

nyβ
n ) ∈ � for all x,

y ∈ � and α, β ∈ [0, 1] such that α + β = 1.
(ii) Let � ⊂R

n
+. The function ϕ: � →R+ is said to be Schur geometrically convex

function on � if (log x1, log x2, . . . , log xn) ≺ (log y1, log y2, . . . , log yn) on � implies
ϕ(x) ≤ ϕ(y). The function ϕ is said to be a Schur geometrically concave function on
� if and only if –ϕ is Schur geometrically convex function.

Proposition 3 (see [25]) Let � ⊂ R
n
+ be a symmetric and geometrically convex set with a

nonempty interior �0. Let ϕ : � → R+ be continuous on � and differentiable in �0. If ϕ is
symmetric on � and

(log x1 – log x2)
[

x1
∂ϕ(x)
∂x1

– x2
∂ϕ(x)
∂x2

]
≥ 0 (≤ 0) (6)

holds for any x ∈ �0, then ϕ is a Schur geometrically convex (Schur geometrically concave)
function.

Definition 5 (see [26]) Let � ⊂R
n
+.
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(i) A set � is said to be harmonically convex if xy
λx+(1–λ)y ∈ � for every x, y ∈ � and

λ ∈ [0, 1], where xy = (x1y1, x2y2, . . . , xnyn) and

1
λx + (1 – λ)y

=
(

1
λx1 + (1 – λ)y1

,
1

λx2 + (1 – λ)y2
, . . . ,

1
λxn + (1 – λ)yn

)
.

(ii) A function ϕ : � →R+ is said to be Schur harmonically convex on � if 1
x ≺ 1

y
implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur harmonically concave
function on � if and only if –ϕ is a Schur harmonically convex function.

Proposition 4 (see [26]) Let � ⊂ R
n
+ be a symmetric and harmonically convex set with

inner points, and let ϕ : � → R+ be a continuously symmetric function which is differen-
tiable on �0. Then ϕ is Schur harmonically convex (Schur harmonically concave) on � if
and only if

(x1 – x2)
[

x2
1
∂ϕ(x)
∂x1

– x2
2
∂ϕ(x)
∂x2

]
≥ 0 (≤ 0) (7)

holds for any x ∈ �0.

Remark 4 Propositions 3 and 4 provide analogous Schur’s conditions for determining
Schur geometrically convex functions and Schur harmonically convex functions, respec-
tively.

Lemma 1 (see [1]) Let x = (x1, x2, . . . , xn) ∈R
n
+ and An(x) = 1

n
∑n

i=1 xi. Then

(
An(x), An(x), . . . , An(x)︸ ︷︷ ︸

n

) ≺ (x1, x2, . . . , xn). (8)

Lemma 2 (see [1]) If xi > 0, i = 1, 2, . . . , n, then, for any non-negative constant c satisfying
0 ≤ c < 1

n
∑n

i=1 xi, one has

(
x1∑n
i=1 xi

, . . . ,
xn∑n
i=1 xi

)
≺

(
x1 – c∑n

i=1(xi – c)
, . . . ,

xn – c∑n
i=1(xi – c)

)
. (9)

3 Proof of main result

Proof of Theorem 1 Note that the generalized geometric Bonferroni mean is defined by

GBp,q,r(x) =
1

p + q + r

n∏
i,j,k=1,i�=j �=k

(pxi + qxj + rxk)
1

n(n–1)(n–2) ,

taking the natural logarithm gives

log GBp,q,r(x) = log
1

p + q + r
+

1
n(n – 1)(n – 2)

Q,

where

Q =
n∑

j,k=3,j �=k

[
log(px1 + qxj + rxk) + log(px2 + qxj + rxk)

]
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+
n∑

i,k=3,i�=k

[
log(pxi + qx1 + rxk) + log(pxi + qx2 + rxk)

]

+
n∑

i,j=3,i�=j

[
log(pxi + qxj + rx1) + log(pxi + qxj + rx2)

]

+
n∑

k=3

[
log(px1 + qx2 + rxk) + log(px2 + qx1 + rxk)

]

+
n∑

j=3

[
log(px1 + qxj + rx2) + log(px2 + qxj + rx1)

]

+
n∑

i=3

[
log(pxi + qx1 + rx2) + log(pxi + qx2 + rx1)

]

+
n∑

i,j,k=3,i�=j �=k

log(pxi + qxj + rxk).

Differentiating GBp,q,r(x) with respect to x1 and x2, respectively, we have

∂ GBp,q,r(x)
∂x1

=
GBp,q,r(x)

n(n – 1)(n – 2)
· ∂Q
∂x1

=
GBp,q,r(x)

n(n – 1)(n – 2)

[ n∑
j,k=3,j �=k

p
px1 + qxj + rxk

+
n∑

i,k=3,i�=k

q
pxi + qx1 + rxk

+
n∑

i,j=3,i�=j

r
pxi + qxj + rx1

+
n∑

k=3

(
p

px1 + qx2 + rxk
+

q
px2 + qx1 + rxk

)

+
n∑

j=3

(
p

px1 + qxj + rx2
+

r
px2 + qxj + rx1

)

+
n∑

i=3

(
q

pxi + qx1 + rx2
+

r
pxi + qx2 + rx1

)]
,

∂ GBp,q,r(x)
∂x2

=
GBp,q,r(x)

n(n – 1)(n – 2)
· ∂Q
∂x2

=
GBp,q,r(x)

n(n – 1)(n – 2)

[ n∑
j,k=3,j �=k

p
px2 + qxj + rxk

+
n∑

i,k=3,i�=k

q
pxi + qx2 + rxk

+
n∑

i,j=3,i�=j

r
pxi + qxj + rx2

+
n∑

k=3

(
q

px1 + qx2 + rxk
+

p
px2 + qx1 + rxk

)

+
n∑

j=3

(
r

px1 + qxj + rx2
+

p
px2 + qxj + rx1

)

+
n∑

i=3

(
r

pxi + qx1 + rx2
+

q
pxi + qx2 + rx1

)]
.

It is easy to see that GBp,q,r(x) is symmetric on R
n
++. For n ≥ 3, we have

	1 := (x1 – x2)
[

∂ GBp,q,r(x)
∂x1

–
∂ GBp,q,r(x)

∂x2

]
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=
(x1 – x2) GBp,q,r(x)

n(n – 1)(n – 2)

[
p

n∑
j,k=3,j �=k

(
1

px1 + qxj + rxk
–

1
px2 + qxj + rxk

)

+ q
n∑

i,k=3,i�=k

(
1

pxi + qx1 + rxk
–

1
pxi + qx2 + rxk

)

+ r
n∑

i,j=3,i�=j

(
1

pxi + qxj + rx1
–

1
pxi + qxj + rx2

)

+
n∑

k=3

(
p – q

px1 + qx2 + rxk
+

q – p
px2 + qx1 + rxk

)

+
n∑

j=3

(
p – r

px1 + qxj + rx2
+

r – p
px2 + qxj + rx1

)

+
n∑

i=3

(
q – r

pxi + qx1 + rx2
+

r – q
pxi + qx2 + rx1

)]

= –
(x1 – x2)2 GBp,q,r(x)

n(n – 1)(n – 2)

[ n∑
j,k=3,j �=k

p2

(px1 + qxj + rxk)(px2 + qxj + rxk)

+
n∑

i,k=3,i�=k

q2

(pxi + qx1 + rxk)(pxi + qx2 + rxk)

+
n∑

i,j=3,i�=j

r2

(pxi + qxj + rx1)(pxi + qxj + rx2)

+
n∑

k=3

(p – q)2

(px1 + qx2 + rxk)(px2 + qx1 + rxk)

+
n∑

j=3

(p – r)2

(px1 + qxj + rx2)(px2 + qxj + rx1)

+
n∑

i=3

(q – r)2

(pxi + qx1 + rx2)(pxi + qx2 + rx1)

]
.

This implies that 	1 ≤ 0 for x ∈ R
n
++ (n ≥ 3). By Proposition 2, we conclude that

GBp,q,r(x) is Schur concave on R
n
++.

In view of the discrimination criterion of Schur geometrically convexity, we start with
the following calculations:

	2 := (log x1 – log x2)
[

x1
∂ GBp,q,r(x)

∂x1
– x2

∂ GBp,q,r(x)
∂x2

]

=
(log x1 – log x2) GBp,q,r(x)

n(n – 1)(n – 2)

×
[

p
n∑

j,k=3,j �=k

(
x1

px1 + qxj + rxk
–

x2

px2 + qxj + rxk

)

+ q
n∑

i,k=3,i�=k

(
x1

pxi + qx1 + rxk
–

x2

pxi + qx2 + rxk

)
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+ r
n∑

i,j=3,i�=j

(
x1

pxi + qxj + rx1
–

x2

pxi + qxj + rx2

)

+
n∑

k=3

(
px1 – qx2

px1 + qx2 + rxk
+

qx1 – px2

px2 + qx1 + rxk

)

+
n∑

j=3

(
px1 – rx2

px1 + qxj + rx2
+

rx1 – px2

px2 + qxj + rx1

)

+
n∑

i=3

(
qx1 – rx2

pxi + qx1 + rx2
+

rx1 – qx2

pxi + qx2 + rx1

)]

=
(x1 – x2)(log x1 – log x2) GBp,q,r(x)

n(n – 1)(n – 2)

×
[ n∑

j,k=3,j �=k

qxj + rxk

(px1 + qxj + rxk)(px2 + qxj + rxk)

+
n∑

i,k=3,i�=k

pxi + rxk

(pxi + qx1 + rxk)(pxi + qx2 + rxk)

+
n∑

i,j=3,i�=j

pxi + qxj

(pxi + qxj + rx1)(pxi + qxj + rx2)

+
n∑

k=3

2pq(x1 + x2) + rxk(p + q)
(px1 + qx2 + rxk)(px2 + qx1 + rxk)

+
n∑

j=3

2rp(x1 + x2) + qxj(p + r)
(px1 + qxj + rx2)(px2 + qxj + rx1)

+
n∑

i=3

2qr(x1 + x2) + pxi(q + r)
(pxi + qx1 + rx2)(pxi + qx2 + rx1)

]
.

Thus, we have 	2 ≥ 0 for x ∈ R
n
++ (n ≥ 3). It follows from Proposition 3 that GBp,q,r(x)

is Schur geometric convex on R
n
++.

Finally, we discuss the Schur harmonic convexity of GBp,q,r(x). A direct computation
gives

	3 := (x1 – x2)
(

x2
1
∂ GBp,q,r(x)

∂x1
– x2

2
∂ GBp,q,r(x)

∂x2

)

=
(x1 – x2) GBp,q,r(x)

n(n – 1)(n – 2)

[
p

n∑
j,k=3,j �=k

(
x2

1
px1 + qxj + rxk

–
x2

2
px2 + qxj + rxk

)

+ q
n∑

i,k=3,i�=k

(
x2

1
pxi + qx1 + rxk

–
x2

2
pxi + qx2 + rxk

)

+ r
n∑

i,j=3,i�=j

(
x2

1
pxi + qxj + rx1

–
x2

2
pxi + qxj + rx2

)

+
n∑

k=3

(
px2

1 – qx2
2

px1 + qx2 + rxk
+

qx2
1 – px2

2
px2 + qx1 + rxk

)
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+
n∑

j=3

(
px2

1 – rx2
2

px1 + qxj + rx2
+

rx2
1 – px2

2
px2 + qxj + rx1

)

+
n∑

i=3

(
qx2

1 – rx2
2

pxi + qx1 + rx2
+

rx2
1 – qx2

2
pxi + qx2 + rx1

)]

=
(x1 – x2)2 GBp,q,r(x)

n(n – 1)(n – 2)

[ n∑
j,k=3,j �=k

(x1 + x2)(qxj + rxk) + px1x2

(px1 + qxj + rxk)(px2 + qxj + rxk)

+
n∑

i,k=3,i�=k

(x1 + x2)(pxi + rxk) + qx1x2

(pxi + qx1 + rxk)(pxi + qx2 + rxk)

+
n∑

i,j=3,i�=j

(x1 + x2)(pxi + qxj) + rx1x2

(pxi + qxj + rx1)(pxi + qxj + rx2)

+
n∑

k=3

2pq(x2
1 + x2

2) + rxk(x1 + x2)(p + q) + x1x2(p + q)2

(px1 + qx2 + rxk)(px2 + qx1 + rxk)

+
n∑

j=3

2pr(x2
1 + x2

2) + qxj(x1 + x2)(p + r) + x1x2(p + r)2

(px1 + qxj + rx2)(px2 + qxj + rx1)

+
n∑

i=3

2qr(x2
1 + x2

2) + pxi(x1 + x2)(q + r) + x1x2(q + r)2

(pxi + qx1 + rx2)(pxi + qx2 + rx1)

]
.

Hence, we obtain 	3 ≥ 0 for x ∈ R
n
++ (n ≥ 3). Using Proposition 4 leads to the assertion

that GBp,q,r(x) is Schur harmonic convex on R
n
++.

The proof of Theorem 1 is completed. �

Remark 5 As a direct consequence of Theorem 1, taking r = 0 in Theorem 1 together
with the identity GBp,q,0(x) = GBp,q(x), we arrive at the assertion of Corollary 1.

4 Applications
As an application of Theorem 1, we establish the following interesting inequalities for
generalized geometric Bonferroni mean.

Theorem 2 Let p, q, r be non-negative real numbers with p + q + r �= 0. Then, for arbitrary
x ∈R

n
++ (n ≥ 3),

GBp,q,r(x) ≤ An(x). (10)

Proof It follows from Theorem 1 that GBp,q,r(x) is Schur concave on R
n
++.

Using Lemma 1, one has

(
An(x), An(x), . . . , An(x)︸ ︷︷ ︸

n

) ≺ (x1, x2, . . . , xn).

Thus, we deduce from Definition 1 that

GBp,q,r(An(x), An(x), . . . , An(x)
) ≥ GBp,q,r(x1, x2, . . . , xn),
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which implies that

An(x) ≥ GBp,q,r(x).

Theorem 2 is proved. �

Theorem 3 Let p, q, r be non-negative real numbers with p + q + r �= 0, and let c be a
constant satisfying 0 ≤ c < An(x), (x – c) = (x1 – c, x2 – c, . . . , xn – c). Then, for arbitrary
x ∈R

n
++ (n ≥ 3),

GBp,q,r(x – c) ≤
(

1 –
c

An(x)

)
GBp,q,r(x). (11)

Proof By the majorization relationship given in Lemma 2,

(
x1∑n
i=1 xi

, . . . ,
xn∑n
i=1 xi

)
≺

(
x1 – c∑n

i=1(xi – c)
, . . . ,

xn – c∑n
i=1(xi – c)

)
,

it follows from Theorem 1 that

GBp,q,r
(

x1∑n
i=1 xi

, . . . ,
xn∑n
i=1 xi

)
≥ GBp,q,r

(
x1 – c∑n

i=1(xi – c)
, . . . ,

xn – c∑n
i=1(xi – c)

)
,

that is,

GBp,q,r(x1, x2, . . . , xn)∑n
i=1 xi

≥ GBp,q,r(x1 – c, x2 – c, . . . , xn – c)∑n
i=1(xi – c)

,

which implies that

GBp,q,r(x – c) ≤
(

1 –
c

An(x)

)
GBp,q,r(x).

This completes the proof of Theorem 3. �

5 Conclusion
This paper is a follow-up study of our recent work [24], we generalize the geometric Bon-
ferroni mean by introducing three non-negative parameters p, q, r, under the condition of
p + q + r �= 0, we prove that the generalized geometric Bonferroni mean GBp,q,r(x) is Schur
concave, Schur geometric convex and Schur harmonic convex on R

n
++. As an application

of the Schur convexity, we establish two inequalities for generalized geometric Bonferroni
mean. In fact, there have been a large number inequalities for means which originate from
the Schur convexity of functions. For details, we refer the interested reader to [27–32] and
the references therein.
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