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Abstract

In this paper, the authors investigate the Berry-Esseen bounds of weighted kernel
estimator for a nonparametric regression model based on linear process errors under
a LNQD random variable sequence. The rate of the normal approximation is shown as
O(n~"%) under some appropriate conditions. The results obtained in the article
generalize or improve the corresponding ones for mixing dependent sequences in
some sense.
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1 Introduction
We discuss that the estimation of the fixed design nonparametric regression model in-
volves a regression function g(-) which is defined on a closed interval [0, 1]:

Yi=gt)+e; (1<i<n), (1.1)

where {t;} are known fixed design points, we suppose {t;} to be ordered 0 < < .- <
t, <1, and {¢;} are random errors.

As we all know, model (1.1) has been considered extensively by many authors, e.g.,
Schuster and Yakowitz [1] studied the nonparametric model (1.1) with i.i.d. errors. They
obtained the strong convergence and asymptotic normality of the estimator of g(-), and
Qin [2] obtained the strong consistency of the estimator of g(-). Yang [3-5] studied the
nonparametric model (1.1) with ¢-mixing errors, censored data random errors and neg-
atively associated errors. He obtained the complete convergence, strong consistency and
uniformly asymptotic normality of the estimator of g(-), respectively. Zhou et al. [6] stud-
ied the nonparametric model (1.1) with weakly dependent processes. They obtained the
moment consistency, strong consistency, strong convergence rate and asymptotic nor-

mality of the estimator of g(-), etc. Inspired by the literature above, we are devoted to
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investigating the Berry-Esseen bounds of the estimator for linear process errors in the
nonparametric regression model (1.1).

In the article, we will discuss the Berry-Esseen bounds of the estimator of g(-) in the
model (1.1) with repeated measurements. Here, we recall the weighted kernel estimator

of nonparametric regression functions. A popular nonparametric estimate of g(-) is then

R £t
O =) Yi— 1K<h ) (1.2)
i=1 " "

where K(u) is a Borel measurable function, 0 < /1, — 0 as n — o©.

The weighted kernel estimator was first proposed by Priestley and Chao [7], who dis-
cussed the weak consistency conditions of g(-), and subsequently it has been studied exten-
sively by many authors. For instance, in the independent assumption, Benedetti [8] gave
the sufficient condition for the strong consistency of g(-) under the condition of E¢} < 00.
Schuster and Yakowitz [1] discussed the uniformly strong consistency of g(-). Qin [2] ex-

tended the moment condition to E|g;|**}

< 00 (as § > 0). Under the mixing dependent as-
sumption, Yang [3] and [9] not only comprehensively improved these results under ¢-
mixing and p-mixing, but reduced the condition to sup, E|¢;|" < 0o (as r > 1), weakened
the addition of the kernel function K(-). Pan and Sun [10] extended this discussion to cen-
sored data and gave some sufficient conditions for strong consistency in the independent
and ¢-mixing case. Yang [4] discussed the consistency of weighted kernel estimators of a
nonparametric regression function with censored data and obtained strong consistency
under some more weakly sufficient conditions. But, up to now, there have been few results
related to weighted kernel estimator for model (1.1) with linear process errors.

The Berry-Esseen theorem is the rate of convergence in the central limit theorem. There
is a lot of literature regarding this kind of the Berry-Esseen bounds theorem. For the de-
tails, Cheng [11] established a Berry-Esseen type theorem showing the near-optimal qual-
ity of the normal distribution approximation to the distribution of smooth quantile density
estimators. Wang and Zhang [12] obtained a Berry-Esseen type estimate for NA random
variables with only finite second moment. They also improved the convergence rate result
in the central limit theorem and precise asymptotics in the law of the iterated logarithm
for NA and linearly negative quadrant dependent sequences. Liang and Li [13] derived the
Berry-Esseen type bound based on linear process errors under negatively associated ran-
dom variables. Li et al. [14] established the Berry-Esseen bounds of the wavelet estimator
for a nonparametric regression model with linear process errors generated by ¢-mixing
sequences. Yang et al. [15] investigated the Berry-Esseen bound of sample quantiles for
NA random variables, the rate of normal approximation is shown as O(n~1/°), etc.

In this paper, we shall study the above nonparametric regression problem with linear

process errors generated by a linearly negative quadrant dependent sequence.

Definition 1.1 ([16]) Two random variables X and Y are said to be negative quadrant
dependent (NQD in short) if, for any x,y € R,

P(X <x, Y <y) <PX <x)P(Y <y).
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Definition 1.2 ([17]) A sequence {X,,n > 1} of random variables is said to be linearly
negative quadrant dependent (LNQD in short) if for any disjoint subsets A,B € Z* and
positive /s, 3 ;.o 7iX; and } ;5 1;X; are NQD.

The concept of LNQD sequence was introduced by Newman [17], who investigated the
central limit theorem for a strictly stationary LNQD process, and it subsequently has been
studied by many authors. Wang and Zhang [12] provided the uniform rates of conver-
gence in the central limit theorem for LNQD random variables. Ko et al. [18] established
the Hoeffding-type inequality for a LNQD sequence. Ko et al. [19] discussed the strong
convergence and central limit theorem for weighted sums of LNQD random variables.
Wang et al. [20] presented some exponential inequalities and complete convergence for a
LNQD sequence. Wang and Wu [21] gave some strong laws of large numbers and strong
convergence properties for arrays of rowwise NA and LNQD random variables. Li et al.
[22] established some inequalities and asymptotic normality of the weight function es-
timate of a regression function for a LNQD sequence. Shen et al. [23] investigated the
complete convergence for weighted sums of LNQD random variables based on the expo-
nential bounds and obtained some complete convergence for arrays of rowwise LNQD
random variables, etc.

However, there are very few literature works on Berry-Esseen bounds of weighted ker-
nel estimator for nonparametric regression model (1.1) with linear process errors. So, the
main purpose of the paper is to investigate the Berry-Esseen bounds of weighted kernel
estimator for nonparametric regression model with linear process errors generated by a
LNQD sequence.

In what follows, let C be positive constants which may be different in various places. All
limits are taken as the sample size # tends to 0o, unless specified otherwise.

The structure of the rest of the paper is as follows. In Section 2, we give some basic
assumptions and main results. Some preliminary lemmas are stated in Section 3. Proofs
of the main results are provided in Section 4. Authors’ declaration is given at the end of
the paper.

2 Assumptions and main results
In order to facilitate the process, we write p2 := p2(t) = Var(g,(2)), U, := U,(¢t) = 0,7 {g,(¢) -
Eg.(t)}, V(n) = O(n~=2+9128) 'y (g) = Sup; Zj:\j—ilzq | Cov(es, &), 8, = maxi<j<u(t; —ti1).

First, we make the following basic assumptions:

(A1) {gj}jez has alinear representation ¢; = Y e akek—j, where {ai} is a sequence of
real numbers with > 77 |ax| < 00, {e;} is a strictly stationary and LNQD
sequence with Ee; = 0, E|e;|” < oo for some r > 2, and
V(@)= Sup;-; Zj:lj—ilzl | Cov(e;, &) < o0;

(A2) g(-) satisfies the Lipschitz condition of order « (« > 0) on [0, 1], K(-) satisfies the
Lipschitz condition of order 8 (8>0) on R, /"~ K(u)du =1, [* |K(u)| du < 00,
where K(-) is bounded on R%;

(A3) h, — 0and 8, — 0as n — oo, ﬁ((%)ﬁ +68%) — 0asn— 00, let Z—Z = O0(n?) for
6 >0;

(Ad) max; <, “FELK(52) = O(p}(8) < O(32) = O(n™);

(A5) There exist two positive integers p and g such that p + ¢ < 3n, gp~! — 0, and
Ein — 0(i=1,2,3,4), where &1, = n'qp™, &, = p?, &3, = n(3_ ., l41)?,

Ean = P10,
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Remark 2.1 (Al) is a basic condition of the LNQD sequence, and conditions (A2)-(A3)
are general assumption conditions of the weighted kernel estimator which have been used

by some authors such as Yang [3, 4, 9], Pan and Sun [10].

Remark 2.2 Let K(-) be bounded, suppose that conditions (A2)-(A3) hold true. We

have
() o) o

X — Xi-1 X —Xi X — Xi-1
max K < max

n n n

1<i<n
Thus, (A4) can be assumed.

Remark 2.3 For (A5),&;, — 0,i=1,2,3,4,are easily satisfied, if p, g are chosen reasonable,
which is the same as in Yang [5] and Li et al. [14]. So, (A5) is a standard regularity condition

used commonly in the literature.

Therefore, we can see that conditions (A1)-(A5) in this paper are suitable and reasonable.

Next, we give the main results as follows.

Theorem 2.1 Assume that (A1)-(A5) hold true, then for each t € [0, 1], we can get that
sup|P(U,(0) <) - @0)| < Cl&) + 65,7 + 6,7 + an + VP (@)}
y
Corollary 2.1 Assume that (A1)-(A5) hold true, then for each t € [0, 1], we can get that

sup|P(U, () < y) = D(B)] = o(1).
y

Corollary 2.2 Assume that (A1)-(A5) hold true, 2—2 = O(n?) for some 6 > 0, and

208+60+38+3
sup,-(n jor )me la;| < oo for some § > 0. We can get that

205+60-5-3
O(y[— 18+125 )

sup|P(Uy () < y) - ()|
y

Observe, taking r = 3 and 6 ~ 1 as § — 0, it follows that sup, |P(U,(t) < y) - ()| =
O(Vl_l/G).

Remark 2.4 We develop the weighted kernel estimator methods in the nonparametric
regression model (1.1) which are different from estimation methods of Liang and Li [13],
Li et al. [14]. Our theorem and corollaries improve Theorem 3.1 of Li et al. [22] for the
case of linear process errors generated by LNQD sequences and also generalize the re-
sults of Li et al. [14] from linear process errors generated by LNQD sequences to the ones
generated by ¢-mixing sequences. So, our results obtained in the paper generalize and
improve some corresponding ones for ¢-mixing random variables to the case of LNQD

setting.
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3 Some preliminary lemmas
First, we have by (1.1) and (1.2) that

n
_ ti—tia t—t;
U,=pt) e——"K
n
> <Z ae;_j + Zﬂjei_]) = L[ln + UZm

n
-t [t—t
-1 i i i
= E K
Py - h, ( hy, .

j==n ljl>n

where

2n min{n,l+n} P P f—t

- i —Li1 — 1

Uiy =) p,f( > ﬂi—llhl K( 7 .
n n

I=1-n i=max{1,/-n}

o S

I=1-n

/ 1 " / k 1 k / 17 /
Let Ul” = uln + Uln + Uln’ where uln = Zv:l Znys Uln = Z Z uln = an+1’

v=1“nv’

ky+p—1 ly+q-1 on
7 /
Zyy = § KXis Z, = § Xonis Zokel = § KXis
i=ky i=ly i=k(p+q)-n+1

where

k=[3n/p+q], k=v-1)p+q) -n+1, L=(wv-1)p+q+p-n+1,

v=1,...,k
then
U, = Uy, + U, + U, + Uy,
Next, we give the following main lemmas.

Lemma 3.1 ([3]) Let K(-) satisfy the Lipschitz condition of order B (B > 0) on RY, and
[T Kw)du =1, [77 |K(u)| du < oo, where K(-) is bounded on R'. Assume that h, — 0

and 8, — 0 as n — o0, and ﬁ((%)ﬂ +8,°) — 0 as n — oo, then for any ap > 0,

n
. X —Xi-1
lim E P
n— 00
i=1 n

K(x;nxi>'=/:o]1((u)|du, Vx e [0,1].

Lemma3.2([22]) Let{X;,j > 1} bea LNQD random variable sequence with zero mean and
finite second moment sup;-; E(Xf) < 00. Assume that {a;,j > 1} is a real constant sequence

satisfying a := sup;., |a;| < co. Then, for any r > 1,

r

< Darn}"/Z'

E

n
> aiX;
j-1

Page 5 of 12
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Lemma 3.3 ([22]) If X,...,X,, are LNQD random variables with finite second moments,
let @;(t;) and ¢(t,...,tn) be characteristic functions of X; and (Xi,...,X), respectively,

then for all nonnegative (or nonpositive) real numbers ti,...,t,,

m
ot tw) - [Jo®) =4 D ltatil|cov(Xe, X))).
j=1 1<k<l<m

Lemma 3.4 ([14]) Suppose that {¢,:n > 1}, {n, :n > 1} and {y, : n > 1} are three random
variable sequences, {§, : n > 1} is a positive constant sequence, and &, — 0. If sup, |F, () -
D(y)| < C&,, then for any &1 > 0 and &3 > 0,

SUP|Fp,pnpiyn (0) — @) < C{&x + &1 + 62 + P(Inal = 1) + P(lyul > &2)}.
y

Lemma 3.5 Assume that (A1)-(A5) hold true, we can get that
(1) E(U{,)? < Cé, E(UT)* < Chgy, E(Unn)* < Césps
(2) P(U,| = &%) < CELZ P(UT| = &) < CEL2, P(| Uy = &37) < CE3)%.

n

Proof of Lemma 3.5 By Lemma 3.2 and assumptions (A4)-(A5), we can obtain that

k ly+g-1 min{n,i+n} t—t f— ¢t 2
) -5(3 3 a3 a0
v=1 i=[, Jj=max{1,i-n} n "

2 / min{n,i+n} 2
ti—ti_ t—t;
§qu<p;”h—111<< h 1)) ( Z |aji|>
n n . }

y=max{1,i-n

2
oo
< Ckgn™ ( Z |a,|) <Cn'qp7! = C&y,,
Jj=—00

2n min{n,i+n}

2
ti—ti_ t—t;
E(Ui’;)2:E< IR SR e h))

i=k(p+q)-n+1 j=max{1,i-n}

t—ta (t-t\\" min{m,i+n} )
< Cln-kp+@)( o' =K > lal
n n }

y=max{1l,i-n

00 2
<C[Bn-k(p+q)]n” ( > |a,|) < Cpn™’ = Céa,
Jj=—00

B(3) -

1 - i — til—ll t—t;,
Py Z h, K P Z aj1 €i1-jp

. n .
i1=1 lj1l>n

e by — b wftte
X |Pn Z h, h, Z“/’zeiz—iz

in=1 lfal>n
- t—t\ —
C =t —t
=< CE{Z : 7 = K( A ll) Z Z aji €ir-jp Z Ajy €ir-jy }
i1=1 " 7 iy=1Yji|>n lia|>n
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|

2 : aj, €ir—jy

lf1l>n

2 :ajzeiz—iz

lfal>n

5CE{/+OO|I((u)|du2n:

ip=1

2
5Cn<2|a,-|) = Ctan.

ljl>n

This completes the proof of Lemma 3.5(1). In addition, Lemma 3.5(2) can be derived from
the Markov inequality and Lemma 3.5(1) immediately. O

Lemma 3.6 Assume that (A1)-(A5) hold, write u* = Zle Var(z,,), we can get that
|M _ 1| < C( 1/2 +€1/2 +§1/2 + V(q))

Let {it,, :v=1,...,k} be independent random variables and 1, 2 Zyys V = ., k. Write
H, = Zle - Then we get the following.

ProofofLemma3.6 Let®, =3, _; i Cov(zu,zy), then u? =E(U;,)*-20,.ByE(U,)? =1,
Lemma 3.5(1), the C,-inequality and the Cauchy-Schwarz inequality, it follows that

E(U,)? = E[U, - (U, + U} + Uy,) |
= L+ E(U), + UL+ Us,) = 2E(U, (U], + UL + Uy,)),
E(U], + U, + Us,)* < 2(E(U},)? + E(ULL)? + E(Usn)?) < ClEry + Ean + E3),

E(L[ (u{/n U+ uz,l)) < «/EUS\/E(U{;’ Lup s U2n)2 < ( 12 +$1/2 1/2).

Hence, it has been found that

E(U,)* ~ 1| = [E(UY, + U}, + Us,)* — 2E(U (U, + Uy + Uny)) |

< C(EM2 + 812 + £12). (3.1)

On the other hand, from the basic definition of LNQD sequence, Lemma 3.1, (A1) and
(A4), we can prove that

kj+p—1kj+p-1

1®,] < Z Z Z |C0V(an11Xnt1)|

1<i<j<k si=k; t1 :kj

ki+p-1 k +p=-1 min{n,s;+n}  min{mt1+n}

S5 30 S S S

1<i<j<k si=k; t1=kj w=max{l,s1-n}u=max{1,t1-n}

=t (t=t
o T tumt
h, h,

1 min{n,s]+n}

k=1 ki+p-
SCZI:Z ;
i maxil,s1

tw — tw_1 K t—ty
h, h,
|au—51 dv—tl | }Cov(esl, etl) ’
by = bwt (B2 tw
hy, hn
k  kitp=1 min{nt;+n}

X Z Z Z |au—t1 | COV(eSl ’ etl)

j=i+l t1= k] v=max{1,t; —n}

|dW—Sl |

s1=k; —n}
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i+p—1 min{n,sy+n}

203 3>

by — tw_lK<t— tw)
h, h,

|aW—S1|
i=1 sy=k; w=max{l,s1—-n}
X sup Z Cov(es,,e)|
=iy -s1l2q
k-1 ki+p-1 n ¢
—tw
sV 2 3 Yt e
n

i=1 s1=k; w=1

k-1 kj+p-1
1](( )‘(Z Z |ﬂw—51|)
i=1 s1=k;

+00 k-1 kj+p-1
<CV(g) / |K ()| du (Z > |au_s]|> <CV(g. (3.2)
o0 i=1 s1=k;

Therefore, combining equations (3.1) and (3.2), we can get that
2 -1 < [E(U,) - 1] +210,] < C(E1 + £17 + £12 + V(¢g)). O

Lemma 3.7 Assume that (A1)-(A5) hold true and, applying these in Lemma 3.6, we can
obtain that

Sup|P(Hn/un SJ/) - CI)(y)| = C€4n~
¥
Proof of Lemma 3.7 By using the Berry-Esseen inequality [24], we obtain

k
E r
E’ﬂir'z’“" forr > 2. (3.3)
u

n

sup|P(H,/u, <y) - ®(y)| <C
y

According to Lemma 3.1, Lemma 3.2, (A1), (A4) and (A5), we can get that

ky+p—1 min{n,j+n} r
> X pyla (g,
hy, hy

j=ky i=max{1,j-n}
Bt (Pt
h h,

k
> Elzwl" = ZE
v=1

v=1

k  ky+p—-1 min{nj+n}

r/2 1 —rZ Z Z |al_]|

v=1 j=k, i=max{l,j-n}

min{n,j+n} r-1
ti—tig [t—t
Z aij 2 K 7
i=max{1,j—n} n n
ti—ti
< Cpr/Z—lp;rZ i - i ( )
i=1 "

k ky+p-1
< Cpr/Z—lp;r/ |K(u) du(z Z |ﬂz /|)

v=1 j=ky,

n

(55 )

v=l j=k,

< Cpr/Z 1 (1-r/2)0 E4n (34)

Hence, by Lemma 3.6, combining equations (3.3) and (3.4), we can obtain Lemma 3.7. [J
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Lemma 3.8 Assume that (A1)-(A5) hold, and applying this in Lemma 3.4, we can obtain
that

sup|P(U}, <y) - P(H, < y)| < C(&an + V(q)).
y

Proof of Lemma 3.8 Suppose that x (t) and A(¢) are the characteristic functions of U}, and
H,,. Therefore, it follows from Lemma 3.3, (A1) and (A4) that

k k
’X (t) - )»(t)| = |Eexp (it Z znv> - H Eexp(itz,,)
v=1 v=1
ki+p—1 k/'+17—1

4> > Y Y |Cov(Xoy Xy

1<i<j<k si=k; t =kj

ki+p— 1k+19 1 min{msi+n}  min{nt;+n}

LD ID D D N

1<i<j<k si=k; t1=k; u=max{l,si—n}v=max{l,t;—n}

ty—ty1 t—1t, t,—t,1 t—1t,
X K . K lay_s,a,_
hn ( hn ) hn ( hn >‘ | u—-s1 %v—t

X |C0V(esl,et1)|

< CV(g).

It is easily seen that

I

which implies

dt <CV(q)T? (3.5)

x(t) - ?»(t)‘
¢

P(H, <y)=P(H,/u, < yluy,).
Consequently, from Lemma 3.7, it has been found

sup|P(H, <y +u) - P(H, <y)|
y

= supP|(Hn/un <y+ulu,)—P(H,/u, §y/un)|
y

< sup|P(H,,/un <y+ulu,)-d(y+ u/u,,)| + sup|d>(y+ ulu,) — <I>(y/u,,)|
y y
+ sgp‘P(H,,/un <ylu,) - q’()//un)|

< 2sup|P(H,/u, < ylu,) — ®)| + sup| Dy + ulu,) — ®(y/u,)|

¥ ¥

= C(pr/2—1n(1_r/2)0 + ul /1y ) C( r2-1,(1-r/2)0 |u|)
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Therefore

Tsup/ |P(Hn§y+u)—P(Hn§y)|du
y Ju=cit

< CT Sup/ {pr/z—ln(l—r/2)o9 + |M|}du
y Jul<CIT
< C(pr/z_ln(l_’mg +1/T). (3.6)

Thus, combining equations (3.5) and (3.6), taking T = V~"1/3(g), it suffices to prove that

sup|P(Ul}, <y) - P(H, <y)|
y

T
S/
-T

< C{ V(g)T? + p* 1n1-17120 1/T} = C (&4 + V”S(q)). O

x (@) - @)

dt + Tsup/ |P(H, <y+u)-P(H, <y)|du
y Ju=cir

4 Proofs of the main results
Proof of Theorem 2.1
sup[P(LL}, <) = ©0)|
< sgp|P(U{n <y)-P(H, <y)| + sgp\P(Hn <y) - OW/uy)| + st;pICD(y/un) - ()|
=1y, + 1oy, + I3, (4.1)

According to Lemma 3.8, Lemma 3.7 and Lemma 3.6, it follows that

Ly < Cléu + V'3 (9}, (4.2)

Ly = sup|P(Hy/u, < ylu,) — D(y/uy)| = sup|P(H,/u, < y) — P()| < Cans (4.3)
y y

Ly <Cluj-1| < ClE2 + 62 + &5 + V(@) }. (4.4)

Hence, by (4.1)-(4.4), we have that
sup|P(Uy, <) = ®O)| = Cl&y,” + &5, + &5, + 84 + V(9. (4.5)
y

Thus, by Lemma 3.4, Lemma 3.5(2) and (4.5), it suffices to prove that
3
sup| (U, < y) - D(y)| < C{sup|P(U, <) - DO)| + Y & + (U, | = &17)
Y Y i=1

+P(|Uf] = £,7) + P(1Uanl = &)

= Cle’ + 8,7+ &5, +an + V1P ()} O
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Proof of Corollary 2.1 By (Al) we can easily see that V(g) — 0, therefore Corollary 2.1
holds. =

K _ K— s _ 206+48+3
Proof of Corollary 2.2 Let p = [n*], q = [n*']. Taking k = 2253, 0 < k < 0, we have by
r =3 that

205+60—-6-3

1/3 51/3 ( -‘%“) _ O(W_W),

13 _205+60-5-3 298+69+38+3 _ 206+60-5-3
3% = I8 E |aj] =O(l’l 18+126 ),

lil>n

%- _ O( —(r/2-1)(6-« ) < O(ﬂi%—ﬁ)

TI8+125 ),

205+60-6-3

V13(g) = O((q—(r—z)(r+a>/25)1/3) =0(n 3 )=0(n w0,

( _208+60-8-3
Ok
3

Therefore, the desired result is completed by Corollary 2.1 immediately. O
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