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Abstract
The joint sparse recovery problem is a generalization of the single measurement
vector problem widely studied in compressed sensing. It aims to recover a set of
jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common
location. Meanwhile lp-minimization subject to matrixes is widely used in a large
number of algorithms designed for this problem, i.e., l2,p-minimization

min
X∈Rn×r

‖X‖2,p s.t. AX = B.

Therefore the main contribution in this paper is two theoretical results about this
technique. The first one is proving that in every multiple system of linear equations
there exists a constant p∗ such that the original unique sparse solution also can be
recovered from a minimization in lp quasi-norm subject to matrixes whenever
0 < p < p∗. The other one is showing an analytic expression of such p∗. Finally, we
display the results of one example to confirm the validity of our conclusions, and we
use some numerical experiments to show that we increase the efficiency of these
algorithms designed for l2,p-minimization by using our results.
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1 Introduction
In sparse information processing, one of the central problems is to recover a sparse solu-
tion of an underdetermined linear system, such as visual coding [1], matrix completion [2],
source localization [3], and face recognition [4]. That is, letting A be an underdetermined
matrix of size m × n, and b ∈ R

m is a vector representing some signal, so the single mea-
surement vector (SMV) problem is popularly modeled into the following l0-minimization:

min
x∈Rn

‖x‖0 s.t. Ax = b, (1)

where ‖x‖0 indicates the number of nonzero elements of x.
Furthermore, a natural extension of single measurement vector is the joint sparse re-

covery problem, also known as the multiple measurement vector (MMV) problem, which
arises naturally in source localization [3], neuromagnetic imaging [5], and equalization of
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sparse-communication channels [6]. Instead of a single measurement b, we are given a set
of r measurements,

Ax(k) = b(k), k = 1, . . . , r, (2)

in which the vectors x(k) (k = 1, . . . , r) are joint sparse, i.e., the solution vectors share a
common support and have nonzero entries concentrated at common locations.

For a given vector x, we define a vector function

‖x‖2,0 =

⎧
⎨

⎩

1 ‖x‖2 �= 0,

0 ‖x‖2 = 0.
(3)

Then the MMV problem can be modeled as the following l2,0-minimization problem:

min
X∈Rn×r

‖X‖2,0 =
n∑

i=1

‖Xrow i‖2,0 s.t. AX = B, (4)

where B = [b(1) . . . b(r)] ∈R
m×r and Xrow i is defined as the ith row of X.

In this paper, we define the support of X by support(X) = S = {i : ‖Xrow i‖2 �= 0} and say
that the solution X is k-sparse when |S| ≤ k, and we also say that X can be recovered by
l2,0-minimization if X is the unique solution of an l2,0-minimization problem.

It needs to be emphasized that we cannot regard the solution of multiple measurement
vector (MMV) as a combination of several solutions of single measurement vectors, i.e.,
the solution matrix X to l2,0-minimization is not always composed of the solution vectors
to l0-minimization.

Example 1 We consider an underdetermined system AX = B, where

A =

⎛

⎜
⎜
⎜
⎝

2 0 0 1 0
0 0.5 0 1 0
0 0 1 2 –0.5
0 0 0 –1 0.5

⎞

⎟
⎟
⎟
⎠

and B =

⎛

⎜
⎜
⎜
⎝

1 1
1 1
0 1
0 0

⎞

⎟
⎟
⎟
⎠

.

If we treat the AX = B = [b1 b2] as a combination of two single measurement vectors
Ax = b1 and Ax = b2, it is easy to verify that each sparse solution to these two problems is
x1 = [0.5 2 0 0]T and x2 = [0 0 1 2]T . So let X∗ = [x1 x2], it is easy to check that ‖X∗‖2,0 = 4.
In fact, it is easy to verify that

X =

⎛

⎜
⎜
⎜
⎝

0.5 0.5
2 2
0 1
0 0

⎞

⎟
⎟
⎟
⎠

is the solution to l2,0-minimization since ‖X‖2,0 = 3 < ‖X∗‖2,0 = 4.
With this simple Example 1, we should be aware that the MMV problem wants a jointly

sparse solution, not a solution which is just composed of sparse vectors. Therefore, the
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MMV problem is more complex than the SMV one and needs its own theoretical work.
Be inspired by lp-minimization, a popular approach to find the sparest solution to the
MMV problem, which is to solve the following l2,p-minimization optimization problem:

min
X∈Rn×r

‖X‖2,p s.t. AX = B, (5)

where the mixed norm ‖X‖p
2,p =

∑n
i=1 ‖Xrow i‖p

2.
In [7], l0-minimization has been proved to be NP-hard because of the discrete and dis-

continuous nature of ‖x‖0. Therefore, it is obviously NP-hard to solve l2,0-minimization
too. Due to the fact that ‖X‖2,0 = limp→0 ‖X‖p

2,p, it seems to be more natural to consider
l2,p-minimization instead of an NP-hard optimization l2,0-minimization than others.

1.1 Related work
Many researchers have made a lot of contribution related to the existence, uniqueness, and
other properties of l2,p-minimization (see [8–11]). Eldar [12] gives a sufficient condition
for MMV when p = 1, and Unser [13] analyses some properties of the solution to l2,p-
minimization when p = 1. Fourcart and Gribonval [9] studied the MMV setting when r = 2
and p = 1; they give a sufficient and necessary condition to judge whether a k-sparse matrix
X can be recovered by l2,p-minimization. Furthermore, Lai and Liu [10] consider the MMV
setting when r ≥ 2 and p ∈ [0, 1], they improve the condition in [9] and give a sufficient
and necessary condition when r ≥ 2.

On the other hand, numerous algorithms have been proposed and studied for l2,0-
minimization (e.g., [14, 15]). Orthogonal matching pursuit (OMP) algorithms are ex-
tended to the MMV problem [16], and convex optimization formulations with mixed
norm extend to the corresponding SMV solution [17]. Hyder [15] provides us a robust
algorithm for joint sparse recovery, which shows a clear improvement in both noiseless
and noisy environments. Furthermore, there exists a lot of excellent work (see[18–22])
presenting us algorithms designed for l2,p-minimization. However, it is an important the-
oretical problem whether there exists a general equivalence relationship between l2,p-
minimization and l2,0-minimization.

In the case r = 1, Peng [23] has given a definite answer to this theoretical problem. There
exists a constant p(A, b) > 0 such that every solution to lp-minimization is also the solution
to l0-minimization whenever 0 < p < p(A, b).

However, Peng only proves the conclusion when r = 1, so it is urgent to extend this
conclusion to the MMV problem. Furthermore, Peng just proves the existence of such
p, he does not give us a computable expression of such p. Therefore, the main purpose
of this paper is not only to prove the equivalence relationship between l2,p-minimization
and l2,0-minimization, but also present an analysis expression of such p in Section 2 and
Section 3.

1.2 Main contribution
In this paper, we focus on the equivalence relationship between l2,p-minimization and l2,0-
minimization. Furthermore, it is an application problem that an analytic expression of
such p∗ is needed, especially in designing some algorithms for l2,p-minimization.

In brief, this paper gives answers to two problems which urgently need to be solved:
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(I). There exists a constant p∗ such that every k-sparse X can be recovered by l2,0-
minimization and l2,p-minimization whenever 0 < p < p∗.

(II). We give such an analytic expression of such p∗ based on the restricted isometry
property (RIP).

Our paper is organized as follows. In Section 2, we present some preliminaries which
play a core role in the proof of our main theorem and prove the equivalence relationship
between l2,p-minimization and l2,0-minimization. In Section 3 we focus on proving an-
other main result of this paper. There we present an analytic expression of such p∗. Finally,
we summarize our findings in the last section.

1.3 Notation
For convenience, for x ∈R

n, we define its support by support(x) = {i : xi �= 0} and the cardi-
nality of set S by |S|. Let Ker(A) = {x ∈ R

n : Ax = 0} be the null space of matrix A. We also
use the subscript notation xS to denote a vector that is equal to x on the index set S and
zero everywhere else and use the subscript notation XS to denote a matrix whose rows
are those of the rows of X that are in the set index S and zero everywhere else. Let Xcol i

be the ith column in X, and let Xrow i be the ith row in X, i.e., X = [Xcol 1, Xcol 2, . . . , Xcol r] =
[Xrow 1, Xrow 2, . . . , Xrow m]T for X ∈R

n×r . We use 〈A, B〉 = tr(AT B) and ‖A‖F =
∑

i,j |aij|2.

2 Equivalence relationship between l2,p-minimization and l2,0-minimization
At the beginning of this section, we introduce a very important property of the measure-
ment matrix A.

Definition 1 ([24]) A matrix A is said to have the restricted isometry property of order k
with restricted isometry constant δk ∈ (0, 1) if δk is the smallest constant such that

(1 – δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (6)

for all k-sparse vector x, where a vector x is said to be k-sparse if ‖x‖0 ≤ k.

Next, we will introduce another important concept named M-null space constant, and
this concept is the key to proving the equivalence relationship between l2,0-minimization
and l2,p-minimization.

Definition 2 For 0 ≤ p ≤ 1 and a positive integer k, the M-null space constant h(p, A, r, k)
is the smallest number such that

‖XS‖p
2,p ≤ h(p, A, r, k)‖XSC ‖p

2,p

for any index set S ⊂ {1, 2, . . . , n} with |S| ≤ k and any X ∈ (Ker(A))r \ {(0, 0, . . . , 0)}.

M-NSC provides us a sufficient and necessary condition of the solution to l2,0-minimi-
zation and l2,p-minimization, and it is important for proving the equivalence relationship
between these two models. Furthermore, we emphasize a few important properties of
h(p, A, r, k).

Proposition 1 For a given matrix A, the M-NSC h(p, A, r, k) defined in Definition 2 is
nondecreasing in p ∈ [0, 1].
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Proof The proof is divided into two steps.
Step 1: To prove h(p, A, r, k) ≤ h(1, A, r, k) for any p ∈ [0, 1].
For any X ∈ (N(A))r \{(0, 0, . . . , 0)}, without loss of generality, we assume that ‖Xrow 1‖2 ≥

‖Xrow 2‖2 ≥ · · · ≥ ‖Xrow n‖2.
We define a function θ (p, X, k) as

θ (p, X, k) =
∑k

i=1 ‖Xrow i‖p
2∑n

i=k+1 ‖Xrow i‖p
2

, (7)

then it is easy to get that the definition of h(p, A, r, k) is equivalent to

h(p, A, r, k) = max
|S|≤k

sup
X∈(N(A))r\{(0,0,...,0)}

θ (p, X, k). (8)

For any p ∈ [0, 1], we notice that the function f (t) = tp

t (t > 0) is a nonincreasing function.
For any j ∈ {k + 1, . . . , n} and i ∈ {1, 2, . . . , k}, we have that

‖Xrow j‖p
2

‖Xrow j‖2
≥ ‖Xrow i‖p

2
‖Xrow i‖2

. (9)

We can rewrite inequalities (9) into

‖Xrow i‖p
2

‖Xrow j‖p
2

≤ ‖Xrow i‖2

‖Xrow j‖2
. (10)

Therefore, we can get that

∑k
i=1 ‖Xrow i‖p

2

‖Xrow j‖p
2

≤
∑k

i=1 ‖Xrow i‖2

‖Xrow j‖2
. (11)

We can conclude that
∑n

j=k+1 ‖Xrow j‖p
2

∑k
i=1 ‖Xrow i‖p

2
≥
∑n

j=k+1 ‖Xrow j‖2
∑k

i=1 ‖Xrow i‖2
(12)

such that 1
θ (p,X,k) ≥ 1

θ (1,X,k) , i.e., θ (p, X, k) ≤ θ (1, X, k).
Because h(p, A, r, k) = max|S|≤k supX∈(N(A))r\{(0,0,... )} θ (p, X, k), we can get that h(p, A, r, k) ≤

h(1, A, r, k).
Step 2: To prove h(pq, A, r, k) ≤ h(p, A, r, k) for any p ∈ [0, 1] and q ∈ (0, 1).
According to the definition of θ (p, X, k) in Step 1, we have that

θ (pq, X, k) =
∑k

i=1 ‖Xrow i‖pq
2∑n

j=k+1 ‖Xrow j‖pq
2

=
∑k

i=1(‖Xrow i‖p
2)q

∑n
j=k+1(‖Xrow j‖p

2)q
≤
∑n

i=1 ‖Xrow i‖p
2∑n

j=k+1 ‖Xrow j‖p
2

. (13)

It needs to be pointed out that we have proved the fact in Step 1 that

∑k
i=1 |ui|p

∑n
j=k+1 |uj|p ≤

∑k
i=1 |ui|

∑n
j=k+1 |uj| (14)

for any |u1| ≥ |u2| . . . |un|.
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Therefore, we can get that θ (pq, X, k) ≤ θ (p, X, k); in other words, θ (p1, X, k) ≤ θ (p2, X, k)
as long as p1 ≤ p2.

Because h(p, A, r, k) = max|S|≤k supX∈(N(A))r\{0,0,...,0} θ (p, X, k), so we can get that h(p, A, r, k)
is nondecreasing in p ∈ [0, 1]

The proof is completed. �

Proposition 2 For a given matrix A, the M-NSC h(p, A, r, k) defined in Definition 2 is a
continuous function in p ∈ [0, 1]

Proof As has been proved in Proposition 1, h(p, A, r, k) is nondecreasing in p ∈ [0, 1] such
that there is jump discontinuous if h(p, A, r, k) is discontinuous at a point. Therefore, it is
enough to prove that it is impossible to have jump discontinuous points of h(p, A, r, k).

For convenience, we still use θ (p, X, S) which is defined in the proof of Proposition 1,
and the following proof is divided into three steps.

Step 1. To prove that there exist X ∈ (N(A))r and a set S ⊂ {1, 2, . . . , n} such that
θ (p, X, S) = h(p, A, r, k).

Let V = {X ∈ ((N(A))r) : ‖Xrow i‖2 = 1, i = 1, 2, . . . , n}, and it is easy to get that h(p, A, r, k) =
max|S|≤k supX∈V θ (p, X, S)

It needs to be pointed out that the choice of the set S ⊂ 1, 2, . . . , n with |S| ≤ k is limited,
so there exists a set S′ with |S′| ≤ k such that h(p, A, r, k) = supX∈V θ (p, X, S′).

On the other hand, θ (p, X, S′) is obviously continuous in X on V . Because of the com-
pactness of V , there exists X ′ ∈ V such that h(p, A, r, k) = θ (p, X ′, S′).

Step 2. To prove that limp→p–
0

h(p, A, r, k) = h(p0, A, r, k).
We assume that limp→p–

0
h(p, A, r, k) �= h(p0, A, r, k). According to Proposition 1, h(p, A,

r, k) is nondecreasing in p ∈ [0, 1], therefore, we can get a sequence of {pn} with pn → p–
0

such that

lim
pn→p–

0
h(pn, A, r, k) = M < h(p0, a, r, k). (15)

According to the proof in Step 1, there exist X ′ ∈ (N(A))r and S ⊂ {1, 2, . . . , n} such
that h(p0, A, r, k) = θ (p0, X ′, S′). It is easy to get that limp→p–

0
θ (pn, X, S′) = θ (p, X ′, S′) =

h(p0, A, r, k).
However, according to the definition of θ (p, X, S), it is obvious that

h(pn, A, r, k) ≥ θ
(
pn, X ′, S′); (16)

however, (15) and (16) contradict each other.
Therefore, we have that limp→p–

0
h(p, A, r, k) = h(p0, A, r, k).

Step 3. To prove that limp→p+
0

h(p, A, r, k) = h(p0, A, r, k) for any p0 ∈ [0, 1).
We consider a sequence of {pn} with p0 ≤ pn < 1 and p → p+

0 .
According to Step 1, there exist Xn ∈ V and |Sn| ≤ k such that h(pn, A, r, k) = θ (pn, Xn, Sn).

Since the choice of S ⊂ {1, 2, . . . , n} with |S| ≤ k is limited, there exist two subsequences
{pni} of {pn}, {Xni} of {Xn} and a set S′ such that θ (pni , Xni , S′) = h(pni , A, r, k).

Furthermore, since Xn ∈ V , it is easy to get a subsequence of Xni which is convergent.
Without loss of generality, we assume that Xni → X ′.

Therefore, we can get that h(pni , A, r, k) = θ (pni , Xni , S′) → θ (p0, X ′, S′).
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Figure 1 M-NSC in Example 1.

According to the definition of h(p0, A, r, k), we can get that θ (p0, X ′, S′) ≤ h(p0, A, r, k)
such that limp→p+

0
h(p, A, r, k) = h(p0, A, r, k).

Combining Step 2 and Step 3, we show that it is impossible for h(p, A, r, k) to have jump
discontinuous.

The proof is completed. �

The concept M-NSC is very important in this paper and it will offer tremendous help in
illustrating the performance of l2,0-minimization and l2,p-minimization; however, M-NSC
is difficult to be calculated for a large scale matrix. We show the figure of M-NSC in Exam-
ple 1 in Figure 1. Combining Propositions 1 and 2, we can get the first main theorem which
shows us the equivalence relationship between l2,0-minimization and l2,p-minimization.

Theorem 1 If every k-sparse matrix X can be recovered by l2,0-minimization, then there
exists a constant p∗(A, B, r) such that X also can be recovered by l2,p-minimization whenever
0 < p < p∗(A, B, r).

Proof First of all, we will prove that h(0, A, r, k) < 1 under the assumption. If h(0, A, r, k) ≥ 1
for some fixed r and k, then there exists X ∈ (N(A))r such that ‖XS‖2,0 ≥ ‖XSC ‖2,0 for a
certain set S ⊂ {1, 2, . . . , n} with |S| ≤ k. Let B = AXS , then it is obvious that XSC is a sparser
solution than XS , which contradicts the assumption.

By Propositions 1 and 2, since h(p, A, r, k) is continuous and nondecreasing at the point
p = 0, there exist a constant p∗(A, B, r) and a small enough number δ that h(0, A, r, k) <
h(p, A, r, k) ≤ h(0, A, r, k) + δ < 1 for any p ∈ (0, p∗(A, B, r)).

Therefore, for a given k-sparse matrix X∗ ∈ R
n×r and any 0 < p < p∗(A, B, r), we have that

∥
∥X∗ + H

∥
∥p

2,p =
∥
∥
(
X∗ + H

)

S∗
∥
∥p

2,p + ‖HS∗C ‖p
2,p

≥ ∥∥X∗∥∥p
2,p – ‖HS∗‖p

2,p + ‖HS∗C ‖p
2,p >

∥
∥X∗∥∥p

2,p. (17)

The last inequality is the result from the inequality h(p, A, r, k) < 1, the proof is com-
pleted. �

3 An analysis expression of such p
In Section 2, we have proved the fact that there exists a constant p∗(A, B, r) such that both
l2,p-minimization and l2,0-minimization have the same solution. However, it is also im-
portant to give such an analytic expression of p∗(A, B, r). In Section 3, we focus on giving
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an analytic expression of an upper bound of h(p, A, r, k), and we can get the equivalence
relationship between l2,p-minimization and l2,0-minimization as long as h(p, A, r, k) < 1 is
satisfied. In order to reach our goal, we postpone our main theorems and begin with some
lemmas.

Lemma 1 For any X ∈ R
n×r and p ∈ (0, 1], we have that

‖X‖2,p ≤ ‖X‖
1
p – 1

2
2,0 ‖X‖F .

Proof For any X ∈ R
n×r , without loss of generality, we assume that ‖Xrow i‖2 = 0 for i ∈

{‖X‖2,0 + 1, . . . , n}.
According to Hölder’s inequality, we can show that

‖X‖p
2,p =

‖X‖2,0∑

i=1

‖Xrow i‖p
2 ≤
(‖X‖2,0∑

i=1

(‖Xrow i‖p
2
) 2

p

) p
2
(‖X‖2,0∑

i=1

1

)1– p
2

= ‖X‖1– p
2

2,0 ‖X‖p
F , (18)

that is, ‖X‖2,p ≤ ‖X‖
1
p – 1

2
2,0 ‖X‖F . �

Lemma 2 ([25]) If 0 < p < q and u1 ≥ · · · ≥ uk ≥ uk+1 ≥ · · · ≥ us ≥ us+1 ≥ · · · ≥ uk+t ≥ 0, it
holds that

( k+t∑

i=k+1

uq
i

) 1
q

≤ Cp,q(k, s, t)

( s∑

i=1

up
i

) 1
p

(19)

with Cp,q(k, s, t) = max{ t
p
q
s , ( p

q )
p
q (1 – p

q )1– p
q k

p
q –1} 1

p .

Lemma 3 For p ∈ (0, 1], we have that ( p
2 ) 1

2 ( 1
2–p )

1
2 – 1

p ≥
√

2
2 .

Proof We denote a function f (p) on the interval (0, 1]

f (p) =
(

p
2

) 1
2
(

1
2 – p

) 1
2 – 1

p
, (20)

and we can get that

ln f (p) =
1
2

ln
p
2

–
(

1
2

–
1
p

)

ln(2 – p). (21)

It is easy to get that

h(p) =
f ′(p)
f (p)

=
1

2p
–
(

1
p2 ln(2 – p) –

(
1
2

–
1
p

)
1

2 – p

)

= –
1
p2 ln(2 – p) ≤ 0. (22)

Therefore, f (p) is nondecreasing in p ∈ (0, 1], and we can get f (p) ≥ f (1) =
√

2
2 .

The proof is completed. �
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Lemma 4 For any 0 < p ≤ 1, we have that (1 – p
2 )

1
p – 1

2 ≤ (
√

2
2 – e– 1

2 )p + e– 1
2 .

Proof We define a function ϕ(p) on the interval (0, 1] by ϕ(p) = (1 – p
2 )

1
p – 1

2 , and it is easy
to get that

lnϕ(p) =
(

1
p

–
1
2

)

ln

(

1 –
p
2

)

. (23)

Now, we take the derivative of both sides of inequality (23) with respect to p, it is easy to
get that

ϕ′(p)
ϕ(p)

= –
1
p2 ln

(

1 –
p
2

)

+
(

1
p

–
1
2

)
–1

2 – p

=
1
p

(
1
p

ln
2

2 – p
–

1
2

)

=
1
p

(
1
p

ln

(

1 +
p

2 – p

)

–
1
2

)

≥ 1
p

(
1
p

(
p

2 – p
+

p2

2(2 – p)2

)

–
1
2

)

=
1
p

(
4 – p

2(2 – p)2 –
1
2

)

> 0. (24)

The fourth inequality is due to the fact that ln(1 + x) ≤ x – x2

2 for any x ∈ (0, 1]. The last
inequality is the result from a simple inequality 4 – p – (2 – p)2 = 3p – p2 > 0.

Because limp→0 ϕ(p) = e– 1
2 and ϕ(1) =

√
2

2 , we can get that ϕ(p) is an increasing function
and ϕ(p) ≤

√
2

2 for 0 < p ≤ 1.
In fact, we have got the result ϕ′(p) = ( 1

p2 ln(1 + p
2–p ) – 1

2p ) · ϕ(p), and it is easy to get

ϕ′′(p) =
((

–2
p

+
1
p2

)
(
ln 2 – ln(2 – p)

)
+

1
p2(2 – p)

+
1

2p2 –
1

2p

)

· ϕ(p)

=
1
p

· g(p) · ϕ(p), (25)

where g(p) = 1
p(2–p) + 1

2p – ( 2–p
p2 ln(1 + p

2–p ) + 1
2 ).

Due to the fact ln(1 + x) ≤ x – x2

2 + x3

3 , we have that

ln

(

1 +
p

2 – p

)

+
1
2

≤ p
2 – p

–
p2

2(2 – p)
+

p3

3(2 – p)
+

1
2

,

=
3p3 – p2 – p + 24

6p(2 – p)2 . (26)

Furthermore, it is easy to get that 1
p(2–p) + 1

2p = 24–18p+3p2

6p(2–p)2 and g(p) ≥ 0 since 4 > 3p.
Therefore, ϕ(p) is an increasing convex function in (0, 1]. Furthermore, it is easy to get

that ϕ(0) = e– 1
2 and ϕ(1) =

√
2

2 . By the property of the convex function, we can conclude
that

(

1 –
p
2

) 1
p – 1

2 ≤
(√

2
2

– e– 1
2

)

p + e– 1
2 . (27)

�
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Lemma 5 Given an underdetermined matrix A ∈R
m×n which satisfies RIP of order 2k, we

have that

∣
∣〈AX1, AX2〉

∣
∣≤ δ2k‖X1‖F‖X2‖F (28)

for any k-sparse matrices X1, X2 ∈R
n×r with support(X1) ∩ support(X2) = ∅.

Proof According to the definition of inner product of matrixes, it is easy to get that

∥
∥A(X1 + X2)

∥
∥2

F =
〈
A(X1 + X2), A(X1 + X2)

〉
(29)

and

∥
∥
∥
∥

1
‖X1‖F

X1 +
1

‖X2‖F
X2

∥
∥
∥
∥

2

F
=
∥
∥
∥
∥

1
‖X1‖F

X1 –
1

‖X2‖F
X2

∥
∥
∥
∥

2

F
= 2 (30)

since support(X1) ∩ support(X2) = ∅.
Therefore, we can get that

|〈AX1, AX2〉|
‖X1‖F‖X2‖F

=
∣
∣
∣
∣

〈

A
1

‖X1‖F
X1, A

1
‖X2‖F

X2

〉∣
∣
∣
∣

=
1
4

∣
∣
∣
∣

∥
∥
∥
∥A

1
‖X1‖F

X1 + A
1

‖X2‖F
X2

∥
∥
∥
∥

2

F
–
∥
∥
∥
∥A

1
‖X1‖F

X1 – A
1

‖X2‖F
X2

∥
∥
∥
∥

2

F

∣
∣
∣
∣

≤ 1
4
(
(1 + δ2k) · 2 – (1 – δ2k) · 2

)

= δ2k . (31)

The proof is completed. �

Now, we present another main contribution in this paper.

Theorem 2 Given an underdetermined matrix A ∈ R
m×n which satisfies RIP of order 2k,

for any p ∈ (0, 1], we can get an upper bound of h(p, A, r, k).

h(p, A, r, k) ≤ M(δ2k , p) =
(

(
√

2 + 1)δ2k

1 – δ2k

(
p
2

) 1
2
(

1 –
p
2

) 1
p – 1

2
)p

. (32)

Proof For any X ∈ (N(A))r \ {(0, 0, . . . , 0)}, we define a vector x ∈R
n as

x =
[‖Xrow 1‖2,‖Xrow 2‖2, . . . ,‖Xrow n‖2

]T , (33)

and we consider the index set

S0 = {indices of the largest k values component of x},
S1 = {indices of the largest k1 values component of x except S0},
S2 = {indices of the largest k values component of x except S0 and S1},
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. . .

St = {indices of the rest components of x}.

Since X ∈ (N(A))r , it is obvious that

AX = A(XS0 + XS1 + · · · + XSt ) = (0, 0, . . . , 0), (34)

and it is easy to get that

∥
∥A(XS0 + XS1 )

∥
∥2

F =
〈
A(XS0 + XS1 ), –A(XS2 + XS3 + · · · + XSt )

〉

≤ δ2k
(‖XS0‖F + ‖XS1‖F

) ·
t∑

i=2

‖XSi‖F . (35)

The second inequality uses the result from Lemma 5. Next, we will give an estimate of
∑t

i=2 ‖XSi‖F . On the one hand, by (35), it is obvious that

‖XS0‖2
F + ‖XS1‖2

F = ‖XS0 + XS1‖2
F

≤ 1
1 – δ2k

∥
∥A(XS0 + XS1 )

∥
∥2

F

≤ δ2k

1 – δ2k

(‖XS0‖F + ‖XS1‖F
) ·

t∑

i=2

‖XSi‖F . (36)

On the other hand, we have that

‖XSi‖F + ‖XSi+1‖F + ‖XSi+2‖F + ‖XSi+3‖F ≤ 2 · ‖XSi∪Si+1∪Si+2∪Si+3‖F (37)

for any 2 ≤ i ≤ t. Therefore,

t∑

i=2

‖XSi‖F ≤ 2 ·
∑

i≥0

‖XS4i+2∪S4i+3∪S4i+4∪S4i+5‖F . (38)

By Lemma 2, we can get that

‖XSi∪Si+1∪Si+2∪Si+3‖F ≤ C(p)‖XSi–1∪Si∪Si+1∪Si+2‖2,p, (39)

where

C(p) = max

{

(4k)
1
2 – 1

p ,
(

p
2

) 1
2

(2 – p)
1
p – 1

2 (2k)
1
2 – 1

p

}

.

By Lemma 3, we can conclude that

C(p) =
(

p
2

) 1
2

(2 – p)
1
p – 1

2 (2k)
1
2 – 1

p (40)

since ( p
2 ) 1

2 ( 1
2–p )

1
2 – 1

p ≥
√

2
2 .
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Therefore, we can get that

t∑

i=2

‖XSi‖F ≤ 2
∑

i≥0

‖XS4i+2∪S4i+3∪S4i+4∪S4i+5‖F

≤ 2 ·
(

p
2

) 1
2

(2 – p)
1
p – 1

2 (2k)
1
2 – 1

p
∑

i≥0

‖XS4i+1∪S4i+2∪S4i+3∪S4i+4‖2,p

≤ 2 ·
(

p
2

) 1
2

(2 – p)
1
p – 1

2 (2k)
1
2 – 1

p ‖XSC
0
‖2,p. (41)

Therefore, we have that

‖XS0‖2
F + ‖XS1‖2

F ≤ δ2k

1 – δ2k

(‖XS0‖F + ‖XS1‖F
)
( t∑

i=2

‖XSi‖F

)

≤ � · (‖XS0‖F + ‖XS1‖F
)
, (42)

where � = 2δ2k
1–δ2k

( p
2 ) 1

2 (2 – p)
1
p – 1

2 (2k)
1
2 – 1

p ‖XSC
0
‖2,p.

By (42), it is easy to get that

(

‖XS0‖F –
�

2

)2

+
(

‖XS1‖F –
�

2

)2

≤ �2

2
. (43)

Therefore, we can get that

‖XS0‖F ≤
√

2 + 1
2

�. (44)

By Lemma 1,

‖XS0‖2,p ≤ k
1
p – 1

2 ‖XS0‖F ≤ k
1
p – 1

2

√
2 + 1
2

�. (45)

By the definition of M-NSC, we can conclude that

h(p, A, r, k) ≤ M(δ2k , p) =
(

(
√

2 + 1)δ2k

1 – δ2k

(
p
2

) 1
2
(

1 –
p
2

) 1
p – 1

2
)p

. (46)�

Theorem 3 Given a matrix A ∈ Rm×n with m ≤ n, every k-sparse X∗ can also be recovered
by l2,p-minimization, for any 0 < p ≤ p∗(A), where

p∗(A) =
(

3

√
√
√
√–

w2

2
+

√

w2
2

4
+

w3
1

27
+

3

√
√
√
√–

w2

2
–

√

w2
2

4
+

w3
1

27

)2

, (47)

and w1 = e– 1
2√

2
2 –e– 1

2
and w2 = – (1–δ2k )2

(2+
√

2)(
√

2
2 –e– 1

2 )δ2k
.
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Proof According to Theorem 2, we can get the equivalence between l2,0-minimization and
l2,p-minimization as soon as M(δ2k , p) < 1, where M(δ2k , p) is defined in Theorem 2.

(
√

2 + 1)δ2k

1 – δ2k

(
p
2

) 1
2
(

1 –
p
2

) 1
p – 1

2
< 1. (48)

However, we realize the inequality M(δ2k , p) < 1 is difficult to solve, so we need to change
this equality into another form. By Lemma 4, it is easy to get that

M(δ2k , p) ≤ (
√

2 + 2)δ2k

2(1 – δ2k)
√

p
((√

2
2

– e– 1
2

)

p + e– 1
2

)

. (49)

Let √p = η, and we consider the following inequality:

η3 + w1η + w2 < 0, (50)

where w1 = e– 1
2√

2
2 –e– 1

2
and w2 = – (1–δ2k )2

(2+
√

2)δ2k (
√

2
2 –e– 1

2 )
. This cubic inequality is easy to be solved.

We can get the solution of this inequality by Cardano’s formula, and we can conclude
M(δ2k , p) < 1 when 0 < p < p∗(A), where

p < p∗(A) =
(

3

√
√
√
√–

w2

2
+

√

w2
2

4
+

w3
1

27
+

3

√
√
√
√–

w2

2
–

√

w2
2

4
+

w3
1

27

)2

. (51)

Therefore, for a given k-sparse matrix X∗ ∈R
n×r and any 0 < p < p∗, we have that

∥
∥X∗ + H

∥
∥p

2,p =
∥
∥
(
X∗ + H

)

S∗
∥
∥p

2,p + ‖HS∗C ‖p
2,p

≥ ∥∥X∗∥∥p
2,p – ‖HS∗‖p

2,p + ‖HS∗C ‖p
2,p >

∥
∥X∗∥∥p

2,p. (52)

The last inequality is the result from the fact M(δ2k , p) < 1.
The proof is completed. �

Now, we present one example to demonstrate the validation of our main contribution
in this paper.

Example 2 We consider an underdetermined system AX = B, where A ∈R
12×13

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0.3
0 1 . . . 0 0.3

0
. . . . . .

... 0.3
0 0 . . . 1 0.3

⎞

⎟
⎟
⎟
⎟
⎠

and B =

⎛

⎜
⎜
⎜
⎜
⎝

1 1
1 –1
...

...
0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

It is easy to verify that the unique sparse solution to l2,0-minimization is

X∗ =

⎛

⎜
⎜
⎜
⎜
⎝

1 1
1 –1
...

...
0 0

⎞

⎟
⎟
⎟
⎟
⎠

(53)

and N(A) = {ax : a ∈R, x = [1, 1, . . . , 1, 10/3]T }.
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Figure 2 The norm of the solution in Example 2 when p=0.6989, the left one shows the
three-dimensional figure and the right one shows the corresponding top view.

Figure 3 The norm of the solution in Example 2 when p = 0.3, the left one shows the
three-dimensional figure and the right one shows the corresponding top view.

So the solution to AX = B can be expressed as the following form:

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + s 1 + t
1 + s –1 + t

s t
...

...
10
3 s 10

3 t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (54)

where s, t ∈ R such that

‖X‖p
2,p =

(√
(1 + s)2 + (1 + t)2

)p +
(√

(1 + s)2 + (–1 + t)2
)p +

40
3
(√

s2 + t2
)p.

Then we will verify the result in Theorem 3. It is easy to get that p∗ = 0.6989 since δ4 =
0.5612, and we show the cases when p = 0.6989 and p = 0.3 in Figures 2 and 3.

It is obvious that ‖X‖2,p has the minimum point at s = t = 0, which is the original solution
to l2,0-minimization.

4 Numerical experiment
Although l2,p-minimization is difficult to be solved, there are a lot algorithms designed for
this problem. In this section, we adopt two excellent algorithms presented in [18] and [21].
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Algorithm 1 [21]
Input: Given A ∈R

m×n and B ∈R
m×r .

1: For k = 1, 2, . . . r
2: Solve l1-minimization problem,

xk = arg minx∈Rn ‖x‖0 s.t. Ax = bcol,k .
Sk = support(xk).

3: |Sk| < m
2

4: X = arg minsupport(X)⊂S ‖X‖F s.t. AX = B.
5: ASX = B
6: X∗ = X.
7: Else
8: Return fail.
9: Else

10: Return fail.
11: Return solution X∗.

Algorithm 2 [18]
Input: Given A ∈R

m×n, B ∈R
m×r and p ∈ (0, 1].

1: Set D1 = In.
2: For k = 1, 2, . . . until convergence

Xk+1 = D–1
k AT (AD–1

k AT )–1B.
Update D–1

k+1 with diagonal entries: ‖(Xk+1)row i‖2–p
2 , i = 1, 2, . . . , n.

Algorithm 3 [18]
Input: Given A ∈R

m×n, B ∈R
m×r and p ∈ (0, 1].

1: QR decompose AT = Q1R, where Q1 ∈ R
n×m and R ∈R

m×m.
2: P = In – Q1QT

1 and X1 = Q1(R–1)T B.
3: For k = 1, 2, . . . until convergence

Dk = diag{‖(Xk)row 1‖p–2
2 ,‖(Xk)row 2‖p–2

2 , . . . ,‖(Xk)row n‖p–2
2 }.

Sk = –PDkXk .
αk = – Tr(ST

k Dk Xk )
Tr(ST

k Dk Sk )
.

Xk+1 = Xk + αkSk .

The main reason why we choose these algorithms is not only their efficient performance
and theoretical results but also the feature that any p ∈ (0, 1) can be applied in these two
algorithms. The details of these algorithms are presented in Algorithms 1, 2 and 3. How-
ever, we need to underline the choice of the parameters in Algorithms 2 and 3, not the
smaller the better, a reasonable p has a key role in these algorithms. Therefore, it is urgent
for us to see whether these algorithms can do better by using our result.

In order to set reference standards for these l2,p-minimization algorithms, we will con-
sider l2,1-minimization

min
X∈Rn×r

‖X‖2,1 =
n∑

i=1

‖Xrow i‖2 s.t. AX = B. (55)



Wang and Peng Journal of Inequalities and Applications  (2018) 2018:17 Page 16 of 18

Figure 4 The result by using Algorithm 2 with different p, the left one is the situation when r = 15, the
right one is the situation when r = 10.

Figure 5 The result by using Algorithm 3 with different p, the left one is the situation when r = 15, the
right one is the situation when r = 10.

Different to other p ∈ (0, 1), l2,1-minimization is a convex optimization problem which
can be solved efficiently; especially, this problem can be transformed into a linear pro-
gramming problem when r = 1. In this section, we will adopt Algorithm 1 designed for
l2,1-minimization, and we will adopt a 256 × 1024 measurement A with δ100 = 0.8646, and
we can get p∗(A) = 0.1507 by our result.

Firstly, we look at the relations between sparsity and recovery success ratio. As shown
in Figures 4 and 5, the performance of p = 0.1507 is better than the choice p = 0.2 and l2,1-
minimization in both of these two algorithms. The results show us that our result helps
these algorithms to increase the efficiency.

Secondly, we look at the relations between the relative error (RE) and sparsity. We define
the relative error by

RE =
‖X∗ – Xsol‖F

‖X∗‖F
.

As shown in Figure 6, our result performs better than a larger choice. However, we need
to emphasize the fact that our result may not be the optimal choice, only a little larger
is permitted. In our experiments, the choice of p = 0.16 is still good, but its performance
begins to get worse when p = 0.19.
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Figure 6 The performance of Algorithm 2 and Algorithm 3, Algorithm 2 is the left one and Algorithm
3 is the right one.

5 Conclusion
In this paper we have studied the equivalence relationship between l2,0-minimization and
l2,p-minimization, and we have given an analysis expression of such p∗.

Furthermore, it needs to be pointed out that the conclusion in Theorems 2 and 3 is valid
in a single measurement vector problem, i.e., lp-minimization also can recover the original
unique solution to l0-minimization when 0 < p < p∗.

However, the analysis expression of such p∗ in Theorem 3 may not be the optimal result.
In this paper, we have considered all the underdetermined matrices A ∈ R

m×n and B ∈
R

m×r from a theoretical point of view. So the result can be improved with a particular
structure of the matrices A and B. The authors think the answer to this problem will be an
important improvement of the application of l2,p-minimization. In conclusion, the authors
hope that in publishing this paper a brick will be thrown out and be replaced with a gem.
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