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Abstract
In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers
and the relationships between them. We also deduce some formulas on the sums,
divisibility properties, perfect squares, Pythagorean triples involving these numbers.
Moreover, we obtain the set of positive integer solutions of some specific Pell
equations in terms of the integer sequences mentioned in the text.
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1 Introduction and preliminaries
Let p and q be two integers such that d = p2 – 4q �= 0 (to exclude a degenerate case). We
set two integer sequences Un and Vn by

Un = Un(p, q) = pUn–1 – qUn–2 and Vn = Vn(p, q) = pVn–1 – qVn–2 (1)

for n ≥ 2 with initial values U0 = 0, U1 = 1 and V0 = 2, V1 = p. The characteristic equation
of (1) is x2 – px + q = 0, and hence its roots are

α =
p +

√
d

2
and β =

p –
√

d
2

. (2)

Their Binet formulas are

Un =
αn – βn

α – β
and Vn = αn + βn (3)

for n ≥ 0.
Note that, in (1), Un(1, –1) = Fn, Fibonacci numbers (sequence A000045 in OEIS),

Vn(1, –1) = Ln, Lucas numbers (sequence A000032 in OEIS), Un(2, –1) = Pn, Pell numbers
(sequence A000129 in OEIS), and Vn(2, –1) = Qn, Pell-Lucas numbers (sequence A002203
in OEIS) (for further details, see [1–6]).

Balancing numbers have been defined in [7] and [8]. A positive integer n is called a
balancing number if the Diophantine equation

1 + 2 + · · · + (n – 1) = (n + 1) + (n + 2) + · · · + (n + r) (4)
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holds for some positive integer r, which is called a cobalancing number. From (4) we have
(n–1)n

2 = rn + r(r+1)
2 , and so

r =
–(2n + 1) +

√
8n2 + 1

2
and n =

2r + 1 +
√

8r2 + 8r + 1
2

. (5)

Let Bn denote the nth balancing number, and let bn denote the nth cobalancing num-
ber. Then by (5) Bn is a balancing number if and only if 8B2

n + 1 is a perfect square,
and bn is a cobalancing number if and only if 8b2

n + 8bn + 1 is a perfect square. So
Cn =

√
8B2

n + 1 and cn =
√

8b2
n + 8bn + 1 are integers, called the nth Lucas-balancing and

nth Lucas-cobalancing number, respectively. The Binet formulas for balancing numbers
are Bn = α2n–β2n

4
√

2 , bn = α2n–1–β2n–1

4
√

2 – 1
2 , Cn = α2n+β2n

2 , and cn = α2n–1+β2n–1

2 , respectively, where
α = 1 +

√
2 and β = 1 –

√
2 (for further details, see [9–12]).

Later balancing numbers were generalized to the t-balancing numbers (see [13]) for an
integer t ≥ 2. A positive integer n is called a t-balancing number if

1 + 2 + · · · + n = (n + 1 + t) + (n + 2 + t) + · · · + (n + r + t) (6)

for some positive integer r, which is called a t-cobalancing number. From (6) we observe
that

r =
–(2n + 2t + 1) +

√
8n2 + 8n(1 + t) + (2t + 1)2

2
,

n =
(2r – 1) +

√
8r2 + 8tr + 1
2

.

(7)

Let Bt
n denote the nth t-balancing number, and let bt

n denote the nth t-cobalancing
number. Then from (7) we see that Bt

n is a t-balancing number if and only if 8(Bt
n)2 +

8Bt
n(1 + t) + (2t + 1)2 is a perfect square and that bt

n is a t-cobalancing number if and only
if 8(bt

n)2 + 8tbt
n + 1 is a perfect square. So

Ct
n =

√
8
(
Bt

n
)2 + 8Bt

n(1 + t) + (2t + 1)2 and ct
n =

√
8
(
bt

n
)2 + 8tbt

n + 1 (8)

are integers, which are called the nth Lucas t-balancing and the nth Lucas t-cobalancing
number (for further details, see [14]).

Santana and Diaz-Barrero [15], setting a sequence in Lemma 2 as

an = P2n + P2n+1, (9)

proved that it was a generalized Fibonacci sequence given by an+1 = 6an – an–1 for n ≥ 1,
with initial values a0 = 1 and a1 = 7. Since Pn = αn–βn

α–β
for α = 1 +

√
2 and β = 1 –

√
2, we

get

an =
α2n+1 + β2n+1

2
(10)

for n ≥ 0. We can easily see that the sum of the first n nonzero terms of an is

n∑

i=1

ai =
5an – an–1 – 6

4
. (11)
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It is proved in [15, Thm. 1] that the sum of the first 4n + 1 nonzero terms of Pell numbers
is

4n+1∑

i=1

Pi =
(

α2n+1 + β2n+1

2

)2

.

We conclude that the sum of the first 4n + 1 nonzero terms of Pell numbers is

4n+1∑

i=1

Pi = a2
n.

Moreover, Santana and Diaz-Barrero [15] proved that the sum of the first 4n + 1 nonzero
terms of Pell numbers is a perfect square:

4n+1∑

i=1

Pi =

( n∑

r=0

(
2n + 1

2r

)

2r

)2

.

Later, Tekcan and Tayat [16] proved that the sum of the first 2n + 1 nonzero terms of Pell
numbers is a perfect square if n is even or half of a perfect square if n is odd. They proved
that the sum of the first 2n + 1 nonzero terms of Pell numbers is

2n+1∑

i=1

Pi =

⎧
⎪⎨

⎪⎩

( αn+1+βn+1

2 )2 for even n ≥ 2,
( αn+1–βn+1√

2
)2

2 for odd n ≥ 1,
(12)

where α = 1 +
√

2 and β = 1 –
√

2. Considering (12) and setting two integer sequences

Xn =
αn+1 + βn+1

2
and Yn =

αn+1 – βn+1
√

2
(13)

for n ≥ 0, they proved that the sum of the first 4n + 1 nonzero terms of Pell numbers is

4n+1∑

i=1

Pi =
[
2X2

n – 2XnYn–1 + (–1)n+1]2

for n ≥ 1.
In this paper, we give several results on the sequences an, Xn, Yn, Bn, bn, Qn, including

sums, divisibility properties, perfect squares, and integer solutions of some specific Pell
equations.

2 Results and discussion
In this section, we derive our main results.

2.1 Sums and divisibility properties
In this subsection, we deal with the sums and divisibility properties of numbers men-
tioned. First, we reformulate (11) in terms of Pell and Pell-Lucas numbers as follows.
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Theorem 1 The sum of the first n nonzero terms of an is

n∑

i=1

ai =

⎧
⎨

⎩

17P2n–1+7P2n–2–3
2 ,

5Q2n+2Q2n–1–6
4 .

Proof Since a1 + a2 + · · · + an = 5an–an–1–6
4 by (11) and since an = P2n + P2n+1 by (9), we

deduce that

n∑

i=1

ai =
5an – an–1 – 6

4

=
5(P2n + P2n+1) – (P2n–2 + P2n–1) – 6

4

=
5P2n + 5(2P2n + P2n–1) – P2n–2 – P2n–1 – 6

4

=
15(2P2n–1 + P2n–2) + 4P2n–1 – P2n–2 – 6

4

=
17P2n–1 + 7P2n–2 – 3

2
.

The second result can be proved similarly. �

Theorem 2 For the sequences an, Xn, Yn, Bn, bn, Qn, and Pn, we have:
(1) Xn = Pn+1 + Pn for n ≥ 0, and the sum of the first n nonzero terms of Xn is

n∑

i=1

Xi = Pn + 2Pn+1 – 2.

Moreover, Yn = Pn+2 – Pn for n ≥ 0, and the sum of the first n nonzero terms of Yn is

n∑

i=1

Yi = Pn + 3Pn+1 – 3.

(2) an = X2n for n ≥ 0 or an = X2n–1 + Y2n–1 for n ≥ 1; Qn+1 = 2Xn and Qn+2 – Qn+1 = 2Yn

for n ≥ 0; an = Q2n+1
2 and Bn = PnQn

2 for n ≥ 0, and bn = PnQn–1+Pn–1Qn–2
4 for n ≥ 1.

Proof (1) Let

Xn = T1α
n + T2β

n (14)

for some T1 and T2. If we take n = 0 and n = 1, then we have the system of equations
T1 + T2 = 1 and T1α + T2β = 3. This system of equations has the solution T1 = α+1

α–β
and
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T2 = –β–1
α–β

. So (14) becomes

Xn = T1α
n + T2β

n

=
(

α + 1
α – β

)
αn +

(
–β – 1
α – β

)
βn

=
(α + 1)αn – (β + 1)βn

α – β

=
αn+1 – βn+1

α – β
+

αn – βn

α – β

= Pn+1 + Pn,

as we wanted. Since Xn = Pn + Pn+1 and P1 + P2 + · · · + Pn = Pn+Pn+1–1
2 , we easily deduce that

n∑

i=1

Xi =
n∑

i=1

(Pi + Pi+1) = Pn + 2Pn+1 – 2.

Similarly, it can be shown that Yn = Pn+2 –Pn for n ≥ 0 and Y1 +Y2 + · · ·+Yn = Pn +3Pn+1 –3.
(2) Since an = α2n+1+β2n+1

2 and Xn = αn+1+βn+1

2 , we get

X2n =
α2n+1 + β2n+1

2
= an.

Similarly, since Xn = Pn+1 + Pn and Yn = Pn+2 – Pn, we get Xn + Yn = Pn+1 + Pn+2, and hence

X2n–1 + Y2n–1 = P2n + P2n+1 = an.

The remaining cases can be proved similarly. �

Theorem 3 Let Pn denote the nth Pell number.
(1) If n ≥ 2 is even, then

1 +
2n–1∑

i=1

Pi =

⎧
⎨

⎩
( Qn

2 )2,

(2B n
2

+ 2b n
2

+ 1)2,

and if n ≥ 1 is odd, then

2n–1∑

i=1

Pi =

⎧
⎨

⎩
( Qn

2 )2,

(b n+3
2

– B n+1
2

– B n–1
2

– b n–1
2

)2.

(2) If n ≥ 2 is even, then

4n+1∑

i=1

Pi =
(
2P2

n+1 – 2P2
n – 1

)2,
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and if n ≥ 1 is odd, then

4n+1∑

i=1

Pi =
(
2P2

n+1 – 2P2
n + 1

)2.

Proof (1) Let n be even, say n = 2k for some positive integer k. Since P1 + P2 + · · · + Pn =
Pn+Pn+1–1

2 , we easily get

1 +
2n–1∑

i=1

Pi = 1 +
P2n–1 + P2n – 1

2

=
P2n–1 + P2n + 1

2

=
α4k–1–β4k–1+α4k –β4k

2
√

2 + 1

2

=
α4k(α–1 + 1) + β4k(–β–1 – 1) + 2

√
2

4
√

2

=
α4k + β4k + 2(αβ)2k

4

=
(

α2k + β2k

2

)2

=
(

Qn

2

)2

.

The other cases can be proved similarly. �

Theorem 4 For the sequences mentioned, we have

2n+1∑

i=1

ai = anan+1,
2n∑

i=1

ai = 4Bn+1P2n,

2n+1∑

i=1

Bi = anBn+1,
2n∑

i=0

Y2i+1 = 2anP2n+2,

2n+1∑

i=1

Qi = 2(P2n+2 – 1),
2n+1∑

i=1

Pi =

⎧
⎨

⎩
(a n

2
)2, n even,

YnPn+1, n odd,

2n∑

i=1

P2i = anP2n,
2n∑

i=1

Pi =

⎧
⎨

⎩
2PnPn+1, n even,

a n–1
2

Xn, n odd,

2n∑

i=1

X2i = 8XnPn+1Bn,
2n∑

i=1

Bi = anBn,

2n∑

i=1

Qi = 4bn+1,
2n∑

i=1

B2i = P2nP2n+1X2nCn,

2n∑

i=1

Y2i–1 = 2anP2n,
2n∑

i=1

a2i–1 = a2nP2nX2n–1,
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2n∑

i=0

P2i+1 = anP2n+1,
2n∑

i=1

X2i–1 = P2n+1Y2n–1,

2n∑

i=1

P2i–1 = X2n–1P2n,
2n∑

i=0

a2i+1 = anP2n+1X4n+2,

2n∑

i=1

a2i = B2na2n+1,
2n∑

i=1

Q2i = 2P2n+1Y2n–1.

Proof Since
∑2n+1

i=1 ai = 29a2n–5a2n–1–6
4 by (11), we get

2n+1∑

i=1

ai =
29( α4n+1+β4n+1

2 ) – 5( α4n–1+β4n–1

2 ) – 6
4

=
α4n(29α – 5α–1) + β4n(29β – 5β–1) – 12

8

=
α4n(17 + 12

√
2) + β4n(17 – 12

√
2) – 6

4

=
α4n+4 + β4n+4 – 6

4

=
α4n+4 + β4n+4 – (αβ)2n+1(β2 + α2)

4

=
(

α2n+1 + β2n+1

2

)(
α2n+3 + β2n+3

2

)

= anan+1.

The other cases can be proved similarly. �

From Theorem 4 we have the following result.

Theorem 5 For the divisibility properties, we have
(1) If n is even, then a n

2
|∑2n+1

i=1 Pi, Pn|∑2n
i=1 Pi, and Pn+1|∑2n

i=1 Pi, and if n is odd, then
Yn|∑2n+1

i=1 Pi, Pn+1|∑2n+1
i=1 Pi, a n–1

2
|∑2n

i=1 Pi, and Xn|∑2n
i=1 Pi.

(2) For every n ≥ 1,

an

∣∣∣∣∣

2n∑

i=0

a2i+1, P2n+1

∣∣∣∣∣

2n∑

i=0

a2i+1, X4n+2

∣∣∣∣∣

2n∑

i=0

a2i+1, a2n

∣∣∣∣∣

2n∑

i=1

a2i–1,

an

∣∣∣∣∣

2n+1∑

i=1

ai, an+1

∣∣∣∣∣

2n+1∑

i=1

ai, an

∣∣∣∣∣

2n+1∑

i=1

Bi, Bn+1

∣∣∣∣∣

2n+1∑

i=1

Bi,

an

∣∣∣∣∣

2n∑

i=1

Bi, Bn+1

∣∣∣∣∣

2n∑

i=1

ai, P2n

∣∣∣∣∣

2n∑

i=1

ai, Bn

∣∣∣∣∣

2n∑

i=1

Bi,

a2n+1

∣∣∣∣∣

2n∑

i=1

a2i, bn+1

∣∣∣∣∣

2n∑

i=1

Qi, an

∣∣∣∣∣

2n∑

i=0

X2i+1, P2n

∣∣∣∣∣

2n∑

i=1

a2i–1,

X2n–1

∣∣∣∣∣

2n∑

i=1

a2i–1, an

∣∣∣∣∣

2n∑

i=1

P2i, P2n

∣∣∣∣∣

2n∑

i=1

P2i, B2n

∣∣∣∣∣

2n∑

i=1

a2i,
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P2n

∣∣∣∣∣

2n∑

i=1

Q2i–1, an

∣∣∣∣∣

2n∑

i=0

Q2i+1, P2n+1

∣∣∣∣∣

2n∑

i=1

X2i–1, Pn

∣∣∣∣∣

2n∑

i=1

B2i–1,

Y2n–1

∣∣∣∣∣

2n∑

i=1

X2i–1, an

∣∣∣∣∣

2n∑

i=0

Y2i+1, P2n+2

∣∣∣∣∣

2n∑

i=0

Y2i+1, an

∣∣∣∣∣

2n∑

i=1

Y2i–1,

P2n

∣∣∣∣∣

2n∑

i=1

Y2i–1, P2n+1

∣∣∣∣∣

2n∑

i=0

B2i+1, an

∣∣∣∣∣

2n∑

i=0

B2i+1, Xn–1

∣∣∣∣∣

2n∑

i=1

B2i–1,

P2n+1

∣∣∣∣∣

2n∑

i=1

B2i, P2n+1

∣∣∣∣∣

2n∑

i=1

Q2i, Y2n–1

∣∣∣∣∣

2n∑

i=1

Q2i, P2n

∣∣∣∣∣

2n∑

i=1

B2i,

Xn

∣∣∣∣∣

2n∑

i=1

X2i, Pn+1

∣∣∣∣∣

2n∑

i=1

X2i, Bn

∣∣∣∣∣

2n∑

i=1

X2i, X2n

∣∣∣∣∣

2n∑

i=1

B2i.

Finally, we give the following result.

Theorem 6 For the sequences an, Xn, Yn, Bn, Qn, and Pn, we have

∑2n
i=0 a2i+1

∑2n
i=0 P2i+1

= X4n+2,
∑2n

i=1 a2i–1
∑2n

i=1 P2i–1
= a2n,

∑2n
i=0 B2i+1

∑2n
i=0 Q2i+1

=
P2

2n+1
2

,

∑2n
i=1 Q2i

∑2n
i=1 X2i–1

= 2,
∑2n

i=1 Y2i–1
∑2n

i=1 P2i
= 2.

2.2 Perfect squares
We see in (5) that Bn is a balancing number if and only if 8B2

n + 1 is a perfect square and
that bn is a cobalancing number if and only if 8b2

n + 8bn + 1 is a perfect square. Similarly,
we can give the following result.

Theorem 7 For every n ≥ 1,
(1) Q4n+2–2

4 is a perfect square and
√

Q4n+2–2
4 = an;

(2) 2P2
2n–1 – 1 is a perfect square, and

√
2P2

2n–1 – 1 = an–1;

(3) 2P2
2n + 1 is a perfect square, and

√
2P2

2n + 1 = Cn;

(4) P2
2n+1 + P2nP2n+2 is a perfect square, and

√
P2

2n+1 + P2nP2n+2 = X2n;

(5) P2
2n + P2

2n–1 + P4n – 1 is a perfect square, and
√

P2
2n + P2

2n–1 + P4n – 1 = Y2n–1.

Proof (1) Applying the Binet formulas, we deduce that

√
Q4n+2 – 2

4
=

√
α4n+2 + β4n+2 – 2

4
=

√
α4n+2 + β4n+2 + 2(αβ)2n+1

4

=

√(
α2n+1 + β2n+1

2

)2

=
α2n+1 + β2n+1

2
= an,

as claimed. The other cases can be proved similarly. �

As in Theorem 7, we can give the following result.
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Theorem 8 For the sequences an, Xn, Bn, bn, Qn, and Pn, we have

√√√√
2n∑

i=0

B2i+1 = anP2n+1,

√√√√
2n∑

i=1

B2i–1 = 2CnXn–1Pn,

√∑2n
i=0 Q2i+1

2
= an,

√√√√
2n∑

i=1

Q2i–1 = 2P2n.

Proof Since Bn = α2n–β2n

4
√

2 , Pn = αn–βn

2
√

2 , and an = α2n+1+β2n+1

2 , we get

√√√√
2n∑

i=0

B2i+1 =
√

B1 + B3 + · · · + B4n+1

=

√
α2 – β2

4
√

2
+

α6 – β6

4
√

2
+ · · · +

α8n+2 – β8n+2

4
√

2

=

√
1

4
√

2

(
α8n+6 – α2

α4 – 1
–

β8n+6 – β2

β4 – 1

)

=
√

α8n+4 – 1
32

+
β8n+4 – 1

32

=

√(
α4n+2 + β4n+2 – 2(αβ)2n+1

8

)(
α4n+2 + β4n+2 + 2(αβ)2n+1

4

)

=

√(
α2n+1 + β2n+1

2

)2(
α2n+1 – β2n+1

2
√

2

)2

= anP2n+1.

The other cases can be proved similarly. �

2.3 Continued fraction expansion
Theorem 9 The continued fraction expansion of an+1

an
is

an+1

an
=

[
5; (1, 4)n–1, 1, 6

]

for n ≥ 1 (here (x)k means that there are k successive terms ‘x’).

Proof Let n = 1. Then

a2

a1
=

41
7

= 5 +
1

1 + 1
6

= [5; 1, 6].
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Let us assume that it is satisfied for n – 1, that is, an
an–1

= [5; (1, 4)n–2, 1, 6]. Then we get

an+1

an
=

[
5; (1, 4)n–1, 1, 6

]
= 5 +

1
1 + 1

4+ 1

1+
· · ·

1 + 1
6

= 5 +
1

1 + 1
–1+5+ 1

1+
· · ·

1 + 1
6

= 5 +
1

1 + 1
–1+ an

an–1

= 5 +
1

1 + an–1
an–an–1

= 5 +
an – an–1

an
=

6an – an–1

an
.

So it is true for all n ≥ 1 since an+1 = 6an – an–1. �

2.4 Companion matrix
The companion matrix for Pell numbers is

[ 2 1
1 0

]
. It is known that

[
Pn+1 Pn

Pn Pn–1

]

=

[
2 1
1 0

]n

. (15)

So Pn+1Pn–1 – P2
n = (–1)n, which known as the Cassini identity, is an immediate conse-

quence of the matrix formula [17]. If we take the nth power of the matrix in the left side
of (15), then we can give the following theorem, which can be proved by induction on n.

Theorem 10 For the Pell numbers Pn, we have

[
Pn+1 Pn

Pn Pn–1

]n

=

[
Pn2+1 Pn2

Pn2 Pn2–1

]

for n ≥ 1.

2.5 Pythagorean triples
It is known that the Pell numbers Pn have a close connection with square triangular num-
bers, that is,

(
(Pk–1 + Pk)Pk

)2 =
(Pk–1 + Pk)2((Pk–1 + Pk)2 – (–1)k)

2
. (16)

Note that the left side of (16) describes a square number, whereas the right side describes
a triangular number, so the result is a square triangular number (see [18]). Notice that if a
right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theo-
rem a2 + b2 = c2), then (a, b, c) is known as a Pythagorean triple. As Martin [19] described,
Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart,
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corresponding to right triangles that are nearly isosceles. For instance,

(
2PnPn+1, P2

n+1 – P2
n, P2

n+1 + P2
n
)

is a Pythagorean triple. Now we can give the following theorem related to Pythagorean
triples.

Theorem 11
√

2B2n, P2n–1 + P2n, and B2n + b2n + 1 form a Pythagorean triple, that is,

(
√

2B2n)2 + (P2n–1 + P2n)2 = (B2n + b2n + 1)2,

and (PnQn + 2bn + 1)2 – 8B2
n,

√
2P2n, and X2n–1 form a Pythagorean triple, that is,

[
(PnQn + 2bn + 1)2 – 8B2

n
]2 + (

√
2P2n)2 = X2

2n–1.

Proof Applying the Binet formulas, we deduce that

(
√

2B2n)2 + (P2n–1 + P2n)2

=
[√

2
(

α4n – β4n

4
√

2

)]2

+
(

α2n–1 – β2n–1

2
√

2
+

α2n – β2n

2
√

2

)2

=
α8n – 2(αβ)2n + β8n

16
+

2α4n + 4(αβ)2n + 2β4n

8

=
(α4n + β4n)2 + 4(α4n + β4n) + 4

16

=
(

α4n(1 + α–1) – β4n(1 + β–1)
4
√

2
+

1
2

)2

=
(

α4n – β4n

4
√

2
+

α4n–1 – β4n–1

4
√

2
–

1
2

+ 1
)2

= (B2n + b2n + 1)2.

The other case can be proved similarly. �

2.6 The Pell equation
Let d be any positive nonsquare integer, and let N be any fixed integer. Then the equation

x2 – dy2 = ±N (17)

is known as a Pell-type equation; x2 – dy2 = N is the positive Pell-type equation, and
x2 – dy2 = –N is the negative Pell-type equation. It is named after John Pell (1611-1685), a
mathematician who searched for integer solutions to equations of this type in the seven-
teenth century. Ironically, Pell was not the first to work on this problem, nor did he con-
tribute to our knowledge for solving it. Euler (1707-1783), who brought us the ψ-function,
accidentally named the equation after Pell, and the name stuck.

For N = 1, the Pell equation x2 – dy2 = ±1 is known as the classical Pell equation. The
Pell equation x2 – dy2 = 1 was first studied by Brahmagupta (598-670) and Bhaskara (1114-
1185). Its complete theory was worked out by Lagrange (1736-1813), not Pell. It is often
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said that Euler (1707-1783) mistakenly attributed Brouncker’s (1620-1684) work on this
equation to Pell. However, the equation appears in a book by Rahn (1622-1676), which
was certainly written with Pell’s help: some say that it is entirely written by Pell. Perhaps
Euler knew what he was doing in naming the equation. In 1657, Fermat stated (without
giving proof ) that the positive Pell equation x2 – dy2 = 1 has an infinite number of solu-
tions. If (m, n) is a solution, that is, m2 – dn2 = 1, then (m2 + dn2, 2mn) is also a solution
since

(
m2 + dn2)2 – d(2mn)2 =

(
m2 – dn2)2 = 1.

So the Pell equation x2 – dy2 = 1 has infinitely many integer solutions. Later, in 1766, La-
grange proved that the Pell equation x2 – dy2 = 1 has an infinite number of solutions if
d is positive and nonsquare. The first nontrivial solution (x1, y1) �= (±1, 0) of this equa-
tion is called the fundamental solution from which all others are easily computed since
xn + yn

√
d = (x1 + y1

√
d)n for n ≥ 1 can be found using, for example, the cyclic method

[20], known in India in the 12th century, or using the slightly less efficient but more reg-
ular English method [20] (17th century). There are other methods to compute this so-
called fundamental solution, some of which are based on a continued fraction expansion
of the square root of d given as follows. Let

√
d = [m0; m1, m2, . . . , ml] denote the contin-

ued fraction expansion of period length l. Set A–2 = 0, A–1 = 1, Ak = mkAk–1 + Ak–2 and
B–2 = 1, B–1 = 0, Bk = mkBk–1 + Bk–2 for nonnegative integers k. Then Ck = Ak

Bk
is the kth

convergent of
√

d, and the fundamental solution of x2 – dy2 = 1 is (x1, y1) = (Al–1, Bl–1)
if l is even or (A2l–1, B2l–1) if l is odd. Also, if l is odd, then the the fundamental solu-
tion of x2 – dy2 = –1 is (x1, y1) = (Al–1, Bl–1) (for further details on Pell equations, see [21–
23]).

It is known that there is a connection between integer sequences and Pell equations. For
instance, Olajas [9] gave the integer solutions to x2 – 5y2 = ±4 as follows.

Theorem 12 ([9, Thm. 2.17]) The only solutions of the equation x2 – 5y2 = ±4 are x = ±Lm

and y = ±Fm, where Lm and Fm are the mth terms of the Lucas and Fibonacci sequences,
respectively.

For integers A and B such that A2 – 4B �= 0 (to exclude a degenerate case), R = {Ri}∞i=0 =
R(A, B, R0, R1) is a second-order linear recurrence if the recurrence relation for i ≥ 2

Ri = ARi–1 – BRi–2 (18)

holds for its terms and R0, R1 are fixed integers. For the Pell equation x2 – 8y2 = 1, Liptai
[24] proved the following:

Theorem 13 ([24, Thm. 1]) The terms of the second-order linear recurrence R(6, –1, 1, 6)
are the solutions of the equation z2 – 8y2 = 1 for some integer z.

Now we can return to our main problem. We consider the integer solutions of the Pell
equations

x2 – 8y2 = 1, x2 – 2y2 = ±4, and x2 – 8y2 = ±4.



Karadeniz Gözeri Journal of Inequalities and Applications  (2018) 2018:3 Page 13 of 16

Theorem 14
(1) For the positive Pell equation x2 – 8y2 = 1, we have:

(a) The integer solutions are (xn, yn) = ( Q2n
2 , P2n

2 ) for n ≥ 1.
(b) The integer solutions satisfy the recurrence relation

xn =
5(Q2n–2 + Q2n–4) – Q2n–6

2
and yn =

5(P2n–2 + P2n–4) – P2n–6

2

for n ≥ 3.
(2) The negative Pell equation x2 – 8y2 = –1 has no integer solutions.
(3) For the positive Pell equation x2 – 2y2 = 4, we have:

(a) The integer solutions are (xn, yn) = (Q2n, Y2n–1) for n ≥ 1.
(b) The integer solutions (xn, yn) satisfy the recurrence relation

xn = 5(Q2n–2 + Q2n–4) – Q2n–6 and yn = 5(Y2n–3 + Y2n–5) – Y2n–7

for n ≥ 4.
(4) For the negative Pell equation x2 – 2y2 = –4, we have:

(a) The integer solutions are (xn, yn) = (Q2n–1, Y2n–2) for n ≥ 1.
(b) The integer solutions (xn, yn) satisfy the recurrence relation

xn = 5(Q2n–3 + Q2n–5) – Q2n–7 and yn = 5(Y2n–4 + Y2n–6) – Y2n–8

for n ≥ 4.
(5) For the positive Pell equation x2 – 8y2 = 4, we have:

(a) The integer solutions are (xn, yn) = (Q2n, P2n) for n ≥ 1.
(b) The integer solutions (xn, yn) satisfy the recurrence relation

xn = 5(Q2n–2 + Q2n–4) – Q2n–6 and yn = 5(P2n–2 + P2n–4) – P2n–6

for n ≥ 3.
(6) For the negative Pell equation x2 – 8y2 = –4, we have:

(a) The integer solutions are (xn, yn) = (Q2n–1, P2n–1) for n ≥ 1.
(b) The integer solutions (xn, yn) satisfy the recurrence relation

xn = 5(Q2n–3 + Q2n–5) – Q2n–7 and yn = 5(P2n–3 + P2n–5) – P2n–7

for n ≥ 4.

Proof (1a) Notice that Qn = αn + βn and Pn = αn–βn

2
√

2 . So

x2 – 8y2 =
(

Q2n

2

)2

– 8
(

P2n

2

)2

=
(α2n + β2n)2 – 8( α2n–β2n

2
√

2 )2

4

=
α4n + 2(αβ)2n + β4n – (α4n – 2(αβ)2n + β4n)

4



Karadeniz Gözeri Journal of Inequalities and Applications  (2018) 2018:3 Page 14 of 16

=
4(αβ)2n

4

= 1

since αβ = –1.
(1b)

5(Q2n–2 + Q2n–4) – Q2n–6

2
=

5Q2n–2 + 5Q2n–4 – (2Q2n–5 + Q2n–6) + 2Q2n–5

2

=
5Q2n–2 + 2(2Q2n–4 + Q2n–5)

2

=
2Q2n–1 + Q2n–2

2

=
Q2n

2
= xn.

Similarly, it can be shown that yn = 5(P2n–2+P2n–4)–P2n–6
2 .

(2) The negative Pell equation x2 – 8y2 = –1 has no integer solutions since
√

8 = [2; 1, 4],
that is, the length of 2, which is even.

(3a) Notice that Qn = αn + βn and Yn = αn+1–βn+1√
2 . So

x2 – 2y2 = Q2
2n – 2Y 2

2n–1 =
(
α2n + β2n)2 – 2

(
α2n – β2n

√
2

)2

= α4n + 2(αβ)2n + β4n –
(
α4n – 2(αβ)2n + β4n)

= 4(αβ)2n

= 4.

(3b) Similarly, we get

5(Q2n–2 + Q2n–4) – Q2n–6 = 5Q2n–2 + 5Q2n–4 – (2Q2n–5 + Q2n–6) + 2Q2n–5

= 5Q2n–2 + 2(2Q2n–4 + Q2n–5)

= 4Q2n–2 + Q2n–2 + 2Q2n–3

= 2(2Q2n–2 + Q2n–3) + Q2n–2

= 2Q2n–1 + Q2n–2

= Q2n

= xn

The other cases can be proved similarly. �

It is known that there are a number of applications of Pell and Fibonacci sequences on
the theory of numbers. For instance, Sellers proved in [25, Thm. 2.1] that the number of
domino tilings of the graph W4 × Pn–1 equals the product of the nth Fibonacci and Pell
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numbers for all n ≥ 2. Also, there has been a connection between Diophantine quadruples
and Fibonacci numbers. Recall that a set of m positive integers {a1, a2, . . . , am} is called a
Diophantine m-tuble if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m and is called a D(n)-
m-tuble (or a Diophantine m-tuble with the property D(n)) if aiaj + n is a perfect square
for all 1 ≤ i < j ≤ m.

Cassini’s identity for Fibonacci number is FnFn+2 + (–1)n = F2
n+1 and is the basis for the

construction of so-called Hoggatt-Bergum’s quadruple. Hoggatt and Bergum [26] proved
that, for any positive integer k, the set

{F2k , F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}

is a Diophantine quadruple. Later Morgado [27] and Horadam [28] generalized this result.
The identity

Fk–3Fk–2Fk–1Fk+1Fk+2Fk+3 + L2
k =

[
Fk

(
2Fk–1Fk+1 – F2

k
)]2

is known as the Morgado identity.
Using Fibonacci numbers, Dujella [29] defined the elliptic curve (see [30])

Ek : y2 = (F2kx + 1)(F2k+2x + 1)(F2k+4x + 1)

and determined the integer points on it by terms of Fibonacci numbers when the rank of
Ek(Q) is 1.

It is known that there are several identities on Fibonacci and Lucas numbers. Some of
them can be given as 4Fk–1Fk+1 + F2

k = L2
k and 4Fk–1F2

k Fk+1 + 1 = (F2
k + Fk–1Fk+1)2. Using

these, Dujella [31] obtained some quantities on D(F2
k )-quadruples

{
2Fk–1, 2Fk+1, 2F3

k Fk+1Fk+2, 2Fk+1Fk+2Fk+3
(
2F2

k+1 – F2
k
)}

,
{

Fk–1, 4Fk+1, Fk–2Fk–1Fk+1
(
2F2

k – F2
k–1

)
, F3

k Fk+2Fk+3
}

, (19)
{

4Fk–1, Fk+1, Fk–2F2k–2F2k–1, F3
k LkLk+1

}
.

As in (19), the set

{
Fk–3Fk–2Fk+1, Fk–1Fk+2Fk+3, FkL2

k , 4F2
k–1FkF2

k+1
(
2Fk–1Fk+1 – F2

k
)}

is a D(L2
k)-quadruple.

Dujella and Ramasamy [32] considered the Fibonacci numbers and D(4)-quadruple.
They proved that the set

{F2k , 5F2k , 4F2k+2, 4L2kF4k+2}

is a D(4)-quadruple. Also, they considered integer solutions of the Pell equations by using
a D(4)-quadruple.

In the future work, we are planing to study D(n)-quadruples for the sequences men-
tioned for some n.
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3 Conclusion
In this work, we deduced some new results on Pell, Pell-Lucas, and balancing numbers
including sums, divisibility properties, perfect squares, and integer solutions of some spe-
cific Pell equations.
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