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Abstract
Let G = (V(G), E(G)) be a graph. A set D ⊆ V(G) is a distance k-dominating set of G if for
every vertex u ∈ V(G) \ D, dG(u, v) ≤ k for some vertex v ∈ D, where k is a positive
integer. The distance k-domination number γk(G) of G is the minimum cardinality
among all distance k-dominating sets of G. The first Zagreb index of G is defined as
M1 =

∑
u∈V(G) d2(u) and the second Zagreb index of G isM2 =

∑
uv∈E(G) d(u)d(v). In this

paper, we obtain the upper bounds for the Zagreb indices of n-vertex trees with
given distance k-domination number and characterize the extremal trees, which
generalize the results of Borovićanin and Furtula (Appl. Math. Comput. 276:208–218,
2016). What is worth mentioning, for an n-vertex tree T , is that a sharp upper bound
on the distance k-domination number γk(T ) is determined.
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1 Introduction
Throughout this paper, all graphs considered are simple, undirected and connected. Let
G = (V , E) be a simple and connected graph, where V = V (G) is the vertex set and E = E(G)
is the edge set of G. The eccentricity of v is defined as εG(v) = max{dG(u, v) | u ∈ V (G)}. The
diameter of G is diam(G) = max{εG(v) | v ∈ V (G)}. A path P is called a diameter path of
G if the length of P is diam(G). Denote by Ni

G(v) the set of vertices with distance i from v
in G, that is, Ni

G(v) = {u ∈ V (G) | d(u, v) = i}. In particular, N0
G(v) = {v} and N1

G(v) = NG(v).
A vertex v ∈ V (G) is called a private k-neighbor of u with respect to D if

⋃k
i=0 Ni

G(v) ∩ D =
{u}. That is, dG(v, u) ≤ k and dG(v, x) ≥ k + 1 for any vertex x ∈ D \ {u}. The pendent vertex
is the vertex of degree 1.

A chemical molecule can be viewed as a graph. In a molecular graph, the vertices repre-
sent the atoms of the molecule and the edges are chemical bonds. A topological index of a
molecular graph is a mathematical parameter which is used for studying various properties
of this molecule. The distance-based topological indices, such as the Wiener index [2, 3]
and the Balaban index [4], have been extensively researched for many decades. Meanwhile
the spectrum-based indices developed rapidly, such as the Estrada index [5], the Kirchhoff
index [6] and matching energy [7]. The eccentricity-based topological indices, such as the
eccentric distance sum [8], the connective eccentricity index [9] and the adjacent eccen-
tric distance sum [10], were proposed and studied recently. The degree-based topological
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indices, such as the Randić index [11–13], the general sum-connectivity index [14, 15], the
Zagreb indices [16], the multiplicative Zagreb indices [17, 18] and the augmented Zagreb
index [19], where the Zagreb indices include the first Zagreb index M1 =

∑
u∈V (G) d2(u)

and the second Zagreb index M2 =
∑

uv∈E(G) d(u)d(v), represent one kind of the most fa-
mous topological indices. In this paper, we continue the work on Zagreb indices. Further
study about the Zagreb indices can be found in [20–25]. Many researchers are interested in
establishing the bounds for the Zagreb indices of graphs and characterizing the extremal
graphs [1, 26–40].

A set D ⊆ V (G) is a dominating set of G if, for any vertex u ∈ V (G) \ D, NG(u) ∩ D �= ∅.
The domination number γ (G) of G is the minimum cardinality of dominating sets of G. For
k ∈ N+, a set D ⊆ V (G) is a distance k-dominating set of G if, for every vertex u ∈ V (G)\D,
dG(u, v) ≤ k for some vertex v ∈ D. The distance k-domination number γk(G) of G is the
minimum cardinality among all distance k-dominating sets of G [41, 42]. Every vertex in a
minimum distance k-dominating set has a private k-neighbor. The domination number is
the special case of the distance k-domination number for k = 1. Two famous books [43, 44]
written by Haynes et al. show us a comprehensive study of domination. The topological
indices of graphs with given domination number or domination variations have attracted
much attention of researchers [1, 45–47].

Borovićanin [1] showed the sharp upper bounds on the Zagreb indices of n-vertex trees
with domination number γ and characterized the extremal trees. Motivated by [1], we
describe the upper bounds for the Zagreb indices of n-vertex trees with given distance
k-domination number and find the extremal trees. Furthermore, a sharp upper bound, in
terms of n, k and �, on the distance k-domination number γk(T) for an n-vertex tree T is
obtained in this paper.

2 Lemmas
In this section, we give some lemmas which are helpful to our results.

Lemma 2.1 ([24, 48]) If T is an n-vertex tree, different from the star Sn, then Mi(T) <
Mi(Sn) for i = 1, 2.

In what follows, we present two graph transformations that increase the Zagreb indices.

Transformation I ([49]) Let T be an n-vertex tree (n > 3) and e = uv ∈ E(T) be a non-
pendent edge. Assume that T – uv = T1 ∪ T2 with vertex u ∈ V (T1) and v ∈ V (T2). Let T ′

be the tree obtained by identifying the vertex u of T1 with vertex v of T2 and attaching
a pendent vertex w to the u (= v) (see Figure 1). For the sake of convenience, we denote
T ′ = τ (T , uv).

Lemma 2.2 Let T be a tree of order n (≥ 3) and T ′ = τ (T , uv). Then Mi(T ′) > Mi(T),
i = 1, 2.

Figure 1 T and T ′ in Transformation I.



Pei and Pan Journal of Inequalities and Applications  (2018) 2018:16 Page 3 of 17

Proof It is obvious that dT ′ (u) = dT (u) + dT (v) – 1 and

M1
(
T ′) – M1(T) =

(
dT (u) + dT (v) – 1

)2 + 1 – d2
T (u) – d2

T (v)

= 2
(
dT (u) – 1

)(
dT (v) – 1

)

> 0.

Let x ∈ V (T) be a vertex different from u and v. Then

M2
(
T ′) – M2(T) =

(
dT (u) + dT (v) – 1

)
( ∑

xu∈E(T1)

dT (x) +
∑

xv∈E(T2)

dT (x) + 1
)

– dT (u)
∑

xu∈E(T1)

dT (x) – dT (v)
∑

xv∈E(T2)

dT (x) – dT (u)dT (v)

=
(
dT (v) – 1

) ∑

xu∈E(T1)

dT (x) +
(
dT (u) – 1

) ∑

xv∈E(T2)

dT (x)

+ dT (u) + dT (v) – 1 – dT (u)dT (v)

≥ 2
(
dT (v) – 1

)(
dT (u) – 1

)
+ dT (u) + dT (v) – 1 – dT (u)dT (v)

=
(
dT (v) – 1

)(
dT (u) – 1

)

> 0.

This completes the proof. �

Lemma 2.3 ([50]) Let u and v be two distinct vertices in G. u1, u2, . . . , ur are the pendent
vertices adjacent to u and v1, v2, . . . , vt are the pendent vertices adjacent to v. Define G′ = G–
{vv1, vv2, . . . , vvt} + {uv1, uv2, . . . , uvt} and G′′ = G – {uu1, uu2, . . . , uur} + {vu1, vu2, . . . , vur},
as shown in Figure 2. Then either Mi(G′) > Mi(G) or Mi(G′′) > Mi(G), i = 1, 2.

Lemma 2.4 ([51]) For a connected graph G of order n with n ≥ k + 1, γk(G) ≤ � n
k+1�.

Let G be a connected graph of order n. If γk(G) ≥ 2, then n ≥ k + 1. Otherwise, γk(G) = 1,
a contradiction. Hence, by Lemma 2.4, we have γk(G) ≤ � n

k+1� and n ≥ (k + 1)γk for any
connected graph G of order n if γk(G) ≥ 2.

Lemma 2.5 Let T be an n-vertex tree with distance k-domination number γk ≥ 2. Then

 ≤ n – kγk .

Proof Suppose that 
 ≥ n – kγk + 1. Let v ∈ V (T) be the vertex such that d(v) = 
 and
N(v) = {v1, . . . , v
}. Denote by Ti the component of T – v containing the vertex vi, i =

Figure 2 G, G′ and G′′ in Lemma 2.3.
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1, . . . ,
. Let D be a minimum distance k-dominating set of T ,

S1 =
{

i | i ∈ {1, 2, . . . ,
}, 0 ≤ εTi (vi) ≤ k – 1
}

and

S2 =
{

i | i ∈ {1, 2, . . . ,
}, εTi (vi) ≥ k
}

.

Clearly, |S2| ≥ 1. If not, {v} is a distance k-dominating set of T , which contradicts γk ≥ 2.
If |S1| = 0, then εTi (vi) ≥ k for i = 1, . . . ,
, so |V (Ti) ∩ D| ≥ 1. Therefore, γk ≥ 
 ≥
n – kγk + 1, which implies that γk ≥ n+1

k+1 . Since γk ≥ 2, γk ≤ � n
k+1� by Lemma 2.4, a con-

tradiction. Thus, |S1| ≥ 1. Let i1 ∈ S1 and

εTi1 (vi1 ) = max
{
εTi (vi) | i ∈ S1

}
= λ.

Then 0 ≤ λ ≤ k – 1, so |S2| ≤ � n–
–1–λ

k � ≤ � kγk –2
k � ≤ γk – 1.

If V (Ti) ∩ D = D1 �= ∅ for some i ∈ S1, then D – D1 + {v} is a distance k-dominating set
according to the definition of S1. Thus, we assume that V (Ti) ∩ D = ∅ for each i ∈ S1.
Similarly, suppose that D′ ∩ V (Ti1 ) = ∅ where D′ is a minimum distance k-dominating set
of the tree T ′ = T –

⋃
i∈S1\{i1} V (Ti).

We claim that D′ is a distance k-dominating set of T . Let y ∈ V (Ti1 ) be the vertex
such that d(vi1 , y) = λ and y′ ∈ D′

1 =
⋃k

i=0 Ni
T ′ (y) ∩ D′. Then y′ ∈ V (T ′) \ V (Ti1 ) and

d(y, y′) = d(y, v)+d(v, y′) ≤ k, so, for x ∈ ⋃
i∈S1\{i1} V (Ti), we have d(x, y′) = d(x, v)+d(v, y′) ≤

d(y, v) + d(v, y′) ≤ k. Hence, all the vertices in
⋃

i∈S1\{i1} V (Ti) can be dominated by y′ ∈ D′.
Therefore, D′ is a distance k-dominating set of T , so the claim is true.

In view of

k + 1 < (k + 1)|S2| + λ + 2 ≤ ∣
∣V

(
T ′)∣∣ ≤ n – |S1| + 1 = n – 
 + |S2| + 1,

one has

γk ≤ ∣
∣D′∣∣

≤
⌊

n – 
 + |S2| + 1
k + 1

⌋

(by Lemma 2.4)

≤
⌊

(k + 1)γk – 1
k + 1

⌋
(
since 
 ≥ n – kγk + 1, |S2| ≤ γk – 1

)

< γk ,

a contradiction as desired. �

Determining the bound on the distance k-domination number of a connected graph is
an attractive problem. In Lemma 2.5, an upper bound for the distance k-domination num-
ber of a tree is characterized. Namely, if T is an n-vertex tree with distance k-domination
number γk ≥ 2, then γk(T) ≤ n–�(T)

k .
Let Tn,k,γk be the set of all n-vertex trees with distance k-domination number γk and

Sn–kγk+1 be the star of order n – kγk + 1 with pendent vertices v1, v2, . . . , vn–kγk . Denote by
Tn,k,γk the tree formed from Sn–kγk by attaching a path Pk–1 to v1 and attaching a path
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Figure 3 Tn,k,γk .

Pk to vi for each i ∈ {2, . . . ,γk}, as shown in Figure 3. Then Tn,k,γk ∈ Tn,k,γk . Even more
noteworthy is the notion that γk(Tn,k,γk ) = γk =

n–�(Tn,k,γk )
k . It implies that the upper bound

on the distance k-domination number mentioned in the above paragraph is sharp.
The Zagreb indices of Tn,k,γk are computed as

M1(Tn,k,γk ) = (n – kγk)(n – kγk + 1) + 4(kγk – 1)

and

M2(Tn,k,γk ) =

⎧
⎨

⎩

(n – kγk)[n – (k – 1)γk] + (4k – 2)γk – 4 if k ≥ 2,

2(n – γ + 1)(γ – 1) + (n – γ )(n – 2γ + 1) if k = 1.

For k = 1, the distance k-domination number γ1(G) is the domination number γ (G). Fur-
thermore, the upper bounds on the Zagreb indices of an n-vertex tree with domination
number were studied in [1], so we only consider k ≥ 2 in the following.

Lemma 2.6 ([52]) T be a tree on (k + 1)n vertices. Then γk(T) = n if and only if at least one
of the following conditions holds:

(1) T is any tree on k + 1 vertices;
(2) T = R ◦ k for some tree R on n ≥ 1 vertices, where R ◦ k is the graph obtained by

taking one copy of R and |V (R)| copies of the path Pk–1 of length k – 1 and then
joining the ith vertex of R to exactly one end vertex in the ith copy of Pk–1.

Lemma 2.7 Let T be an n-vertex tree with distance k-domination number γk(T) ≥ 3. If
n = (k + 1)γk , then

M1(T) ≤ γk(γk + 1) + 4(kγk – 1)

and

M2(T) ≤ 2γ 2
k + (4k – 2)γk – 4,

with equality if and only if T ∼= Tn,k,γk .

Proof When n = (k + 1)γk , T = R ◦ k for some tree R on γk vertices by Lemma 2.6. Assume
that V (R) = {v1, . . . , vγk }. Then dR(vi) = dT (vi) – 1. It is well known that

∑n
i=1 d(ui) = 2(n – 1)

for any n-vertex tree with vertex set {u1, . . . , un}. Hence,
∑γk

i=1 dR(vi) = 2(γk – 1). By the
definition of the first Zagreb index, we have

M1(T) =
γk∑

i=1

d2
T (vi) +

∑

x∈V (T)\V (R)

d2
T (x)

=
γk∑

i=1

(
dT (vi) – 1

)2 +
∑

x∈V (T)\V (R)

d2
T (x) + 2

γk∑

i=1

(
dT (vi) – 1

)
+ γk
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= M1(R) + 4(k – 1)γk + γk + 2
γk∑

i=1

dR(vi) + γk

≤ M1(Sγk ) + 4(k – 1)γk + 2γk + 4(γk – 1)

= γk(γk + 1) + 4(kγk – 1).

The equality holds if and only if R ∼= Sγk , that is, T ∼= Tn,k,γk . We have

M2(T) =
∑

xy∈E(R)

dT (x)dT (y) +
∑

xy∈E(T)\E(R)

dT (x)dT (y)

=
∑

xy∈E(R)

(
dT (x) – 1

)(
dT (y) – 1

)
+

∑

xy∈E(R)

(
dT (x) + dT (y) – 1

)

+
∑

xy∈E(T)\E(R)

dT (x)dT (y)

= M2(R) +
∑

x∈V (R)

dT (x)
(
dT (x) – 1

)
– (γk – 1)

+
∑

x∈V (R)

2dT (x) + 4(k – 2)γk + 2γk

= M2(R) +
∑

x∈V (R)

(
dT (x) – 1

)2 + 3
∑

x∈V (R)

(
dT (x) – 1

)
+ 4kγk – 5γk – 1

= M2(R) + M1(R) + 6(γk – 1) + 4kγk – 5γk + 1

≤ M2(Sγk ) + M1(Sγk ) + 4kγk + γk – 5

= 2γ 2
k + (4k – 2)γk – 4.

The equality holds if and only if R ∼= Sγk . As a consequence, T ∼= Tn,k,γk . �

Lemma 2.8 Let G be a graph which has a maximum value of the Zagreb indices among
all n-vertex connected graphs with distance k-domination number and SG = {v ∈ V (G) |
dG(v) = 1,γk(G – v) = γk(G)}. If SG �= ∅, then |NG(SG)| = 1.

Proof Suppose that |NG(SG)| ≥ 2 and u and v are two distinct vertices in NG(SG).
x1, x2, . . . , xr are the pendent vertices adjacent to u and y1, y2, . . . , yt are the pendent vertices
adjacent to v, where r ≥ 1 and t ≥ 1. Let D be a minimum distance k-dominating set of G. If
xi ∈ D for some i ∈ {1, . . . , r}, then D – xi + u is a distance k-dominating set of T . Hence, we
assume that xi /∈ D, i = 1, . . . , r. Similarly, yi /∈ D for 1 ≤ i ≤ t. Define G1 = G – {vy1} + {uy1}
and G2 = G – {ux1} + {vx1}. Then γk(G1) = γk(G2) = γk(G). In addition, we have either
Mi(G1) > Mi(G) or Mi(G2) > Mi(G), i = 1, 2, by a similar proof of Lemma 2.3 and thus
omitted here (for reference, see the Appendix). It follows a contradiction, as desired. �

3 Main results
In this section, we give upper bounds on the Zagreb indices of a tree with given order n and
distance k-domination number γk . If P = v0v1 · · · vd is a diameter path of an n-vertex tree
T , then denote by Ti the component of T – {vi–1vi, vivi+1} containing vi, i = 1, 2, . . . , d – 1.
By Lemma 2.1, we obtain Theorem 3.1 directly.
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Theorem 3.1 Let T be an n-vertex tree and γk(T) = 1. Then M1(T) ≤ n(n – 1) and
M2(T) ≤ (n – 1)2. The equality holds if and only if T ∼= Sn.

Let Ti
n,k,2 be the tree obtained from the path P2k+2 = v0 · · · v2k+1 by joining n – 2(k + 1)

pendent vertices to vi, where i ∈ {1, . . . , 2k}.

Theorem 3.2 If T is an n-vertex tree with distance k-domination number γk(T) = 2, then

M1(T) ≤ (n – 2k)(n – 2k + 1) + 4(2k – 1),

with equality if and only if T ∼= Ti
n,k,2, where i ∈ {1, . . . , k}. Also,

M2(T) ≤ (n – 2k)(n – 2k + 2) + 8k – 8,

with equality if and only if T ∼= Ti
n,k,2, where i ∈ {2, . . . , k}.

Proof Assume that T ∈ Tn,k,2 is the tree that maximizes the Zagreb indices and P =
v0v1 · · · vd is a diameter path of T . If d ≤ 2k, then {v� d

2 �} is a distance k-dominating set of T ,
a contradiction to γk(T) = 2. If d ≥ 2k + 2, define T ′ = τ (T , vivi+1), where i ∈ {1, . . . , d – 2}.
Then T ′ ∈ Tn,k,2. By Lemma 2.2, we have Mi(T ′) > Mi(T), i = 1, 2, a contradiction. Hence,
d = 2k + 1.

If Ti is not a star for some i ∈ {1, 2, . . . , d – 1}, then there exists an n-vertex tree T ′ in Tn,k,2

such that Mi(T ′) > Mi(T) for i = 1, 2 by Lemma 2.2, a contradiction. Besides, T ∼= Ti
n,k,2 for

some i ∈ {1, . . . , d – 1} by Lemma 2.3.
Since M1(Ti

n,k,2) = M1(Tj
n,k,2) for 1 ≤ i �= j ≤ d – 1 and Ti

n,k,2
∼= Td–i

n,k,2 for k + 1 ≤ i ≤ d – 1,
we get T ∼= Ti

n,k,2, i ∈ {1, . . . , k}. By direct computation, one has M1(T) = M1(Ti
n,k,2) =

(n – 2k)(n – 2k + 1) + 4(2k – 1), i ∈ {1, . . . , k}. In addition, M2(T1
n,k,2) = M2(Td–1

n,k,2) <
M2(T2

n,k,2) = · · · = M2(Td–2
n,k,2) and Ti

n,k,2
∼= Td–i

n,k,2 for i ∈ {k + 1, . . . , d – 2}. Hence, T ∼= Ti
n,k,2,

where i ∈ {2, . . . , k}. Moreover, M2(T) = M2(Ti
n,k,2) = (n – 2k)(n – 2k + 2) + 8k – 8. This

completes the proof. �

Lemma 3.3 Let tree T ∈ Tn,k,3. Then

M1(T) ≤ (n – 3k)(n – 3k + 1) + 4(3k – 1)

and

M2(T) ≤ (n – 3k)(n – 3k + 3) + 12k – 10,

with equality if and only if T ∼= Tn,k,3.

Proof Assume that T ∈ Tn,k,3. We complete the proof by induction on n. By Lemma 2.4,
we have n ≥ (k + 1)γk . This lemma is true for n = (k + 1)γk by Lemma 2.7. Suppose that
n > 3(k + 1) and the statement holds for n – 1 in the following.

Let D be a minimum distance k-dominating set of T and P = v0v1 · · · vd be a diameter
path of T . Then d ≥ 2k + 2. Otherwise, {vk , vk+1} is a distance k-dominating set, a con-
tradiction. Note that

⋃k
i=0 Ni

T (v0) ∩ D �= ∅ and
⋃k

i=0 Ni
T (v0) ⊆ (

⋃k–1
i=0 V (Ti) ∪ {vk}). Hence,
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(
⋃k–1

i=0 V (Ti) ∪ {vk}) ∩ D �= ∅. However,
⋃k

i=0 Ni
T (x) ⊆ ⋃k

i=0 Ni
T (vk) for x ∈ ⋃k

i=0 V (Ti) \ {vk},
so we assume that vk ∈ D and (

⋃k
i=0 V (Ti) \ {vk}) ∩ D = ∅. Similarly, vd–k ∈ D and

(
⋃d

i=d–k V (Ti) \ {vd–k}) ∩ D = ∅. Suppose that v0 = u1, vd = u2, . . . , um are the pendent ver-
tices of T and ST = {ui | 1 ≤ i ≤ m,γk(T – ui) = γk(T)}. We have the following claim.

Claim 1 ST �= ∅.

Proof Assume that ST = ∅. Namely, γk(T – ui) = γk(T) – 1 for each i ∈ {1, . . . , m}. If D\ {wi}
is a minimum distance k-dominating set of the tree T – ui, where wi ∈ D, then wi �= wj

for 1 ≤ i �= j ≤ m. Otherwise, γk(T – ui) = γk(T) or γk(T – uj) = γk(T), a contradiction. It
follows that m ≤ γk .

If dT (vi) ≥ 3 for some i ∈ {2, . . . , k, d – k, . . . , d – 1}, then V (Ti) ∩ {u3, . . . , um} �= ∅. In view
of {vk , vd–k} ⊆ D, we have γk(T – x) = γk(T) for x ∈ V (Ti) ∩ {u3, . . . , um}, a contradiction.
Hence, dT (vi) = 2 for i ∈ {2, . . . , k, d – k, . . . , d – 1}.

Since γk(T – v0) = γk(T) – 1, v1 must be dominated by the vertices in D \ {vk}. Bearing
in mind that (

⋃k
i=0 V (Ti) \ {vk}) ∩ D = ∅, one has vk+1 ∈ D. The same applies to vd–k–1.

Hence, {vk , vk+1, vd–k–1, vd–k} ⊆ D. If d > 2k + 2, then the vertices vk , vk+1, vd–k–1 and vd–k

are different from each other, a contradiction to γk(T) = 3. As a consequence, d = 2k + 2
and thus D = {vk , vk+1, vd–k}.

If dT (vk+1) = 2, then T ∼= P2k+3 and {vk , vd–k} is a distance k-dominating set, a contradic-
tion. It follows that dT (vk+1) ≥ 3. Hence, m ≥ 3 = γk . Recalling that m ≤ γk = 3, we have
m = 3, which implies that Tk+1 is a path with end vertices vk+1 and u3. If d(vk+1, u3) > k,
then u3 cannot be dominated by the vertices in D. If d(vk+1, u3) < k, then D \ {vk+1} is a
distance k-dominating set, a contradiction. Therefore, d(vk+1, u3) = k. We conclude that
|V (T)| = 3(k + 1), which contradicts n > 3(k + 1), so Claim 1 is true. �

Considering ST �= ∅ for T ∈ Tn,k,3, the tree among Tn,k,3 that maximizes the Zagreb in-
dices must be in the set {T∗ ∈ Tn,k,3 | |NT∗ (ST∗ )| = 1} by Lemma 2.8. To determine the
extremal trees among Tn,k,3, we assume that T ∈ {T∗ ∈ Tn,k,3 | |NT∗ (ST∗ )| = 1} in what fol-
lows.

Let ui be a pendent vertex such that γk(T –ui) = γk(T) and s be the unique vertex adjacent
to ui. By Lemma 2.5, dT (s) ≤ 
 ≤ n – kγk . Define A = {x ∈ V (T) | dT (x) = 1, xs /∈ E(T)}
and B = {x ∈ V (T) | dT (x) ≥ 2, xs /∈ E(T)}. Then γk(T – x) = γk(T) – 1 for all x ∈ A. As a
consequence, |A| ≤ γk from the proof of Claim 1. By the induction hypothesis,

M1(T) = M1(T – ui) + 2d(s)

≤ (n – 1 – kγk)(n – 1 – kγk + 1) + 4(kγk – 1) + 2(n – kγk)

= (n – kγk)(n – kγk + 1) + 4(kγk – 1).

The equality holds if and only if T – ui ∼= Tn–1,k,γk and dT (s) = 
 = n – kγk , i.e.,
T ∼= Tn,k,γk .

Note that |A| + |B| = n – 1 – dT (s) and |A| ≤ γk . Therefore, |B| = n – 1 – dT (s) – |A| ≥
n – 1 – dT (s) – γk and

∑

xs /∈E(T)

d(x) ≥ |A| + 2|B| =
(|A| + |B|) + |B| ≥ 2

(
n – 1 – dT (s)

)
– γk .
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By the above inequality and the definition of M2, we have

M2(T) = M2(T – ui) +
∑

v∈V (T)

dT (v) –
∑

xs /∈E(T)

dT (x) – 1

≤ M2(T – ui) + 2(n – 1) – 2
(
n – 1 – dT (s)

)
+ γk – 1 (1)

≤ (n – 1 – kγk)
[
n – 1 – (k – 1)γk

]
+ (4k – 2)γk – 4

+ 2(n – kγk) + γk – 1
(
since dT (s) ≤ 
 ≤ n – kγk

)
(2)

= (n – kγk)
[
n – (k – 1)γk

]
+ (4k – 2)γk – 4.

The equality (1) holds if and only if |A| = γk , |B| = n – 1 – dT (s) – γk and dT (x) = 2 for
x ∈ B. The equality (2) holds if and only if T – ui ∼= Tn–1,k,γk and dT (s) = 
 = n – kγk .
Hence, M2(T) ≤ (n – kγk)[n – (k – 1)γk] + (4k – 2)γk – 4 with equality if and only if
T ∼= Tn,k,γk . �

Theorem 3.4 Let T be a tree of order n with distance k-domination number γk (≥ 3). Then

M1(T) ≤ (n – kγk)(n – kγk + 1) + 4(kγk – 1)

and

M2(T) ≤ (n – kγk)
[
n – (k – 1)γk

]
+ (4k – 2)γk – 4,

with equality if and only if T ∼= Tn,k,γk .

Proof Let T ∈ Tn,k,γk and P = v0v1 · · · vd be a diameter path of T . Define ST = {u ∈ V (T) |
dT (u) = 1,γk(T – u) = γk(T)}. If ST = ∅, then γk(T – vi) = γk(T) – 1 for i = 0, d. If ST �= ∅,
then we suppose that T ∈ {T∗ ∈ Tn,k,γk | |NT∗ (ST∗ )| = 1} by Lemma 2.8 for establishing the
maximum Zagreb indices of trees among Tn,k,γk . If vd ∈ ST �= ∅, then γk(T – v0) = γk(T) – 1,
which implies that γk(T – v0) = γk(T) – 1 or γk(T – vd) = γk(T) – 1. Assume that γk(T –
v0) = γk(T) – 1. Then there is a minimum distance k-dominating set D of T such that
{vk , vk+1, vd–k} ⊆ D from the proof of Lemma 3.3.

Let T ′ be the tree obtained from T by applying Transformation I on Ti repeatedly for i =
1, . . . , k such that T ′

i
∼= S|V (T ′

i )|, where T ′
i is the component of T ′ – {vi–1vi, vivi+1} containing

vi, i = 1, . . . , k (see Figure 4). Then T ′ ∈ Tn,k,γk . By Lemma 2.2, we have Mi(T) ≤ Mi(T ′),
i = 1, 2, with equality if and only if T ∼= T ′.

By Lemma 2.3, for some i0, i1 ∈ {1, . . . , k}, define

T ′′ = T ′ –
⋃

i∈{1,...,k}\{i0}

{
vix | x ∈ NT ′ (vi) \ {vi–1, vi+1}

}

+
⋃

i∈{1,...,k}\{i0}

{
vi0 x | x ∈ NT ′ (vi) \ {vi–1, vi+1}

}
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Figure 4 T , T ′ , T ′′ and T ′′′ .

and

T̃ ′′ = T ′ –
⋃

i∈{1,...,k}\{i1}

{
vix | x ∈ NT ′ (vi) \ {vi–1, vi+1}

}

+
⋃

i∈{1,...,k}\{i1}

{
vi1 x | x ∈ NT ′ (vi) \ {vi–1, vi+1}

}
.

Then one has M1(T ′) ≤ M1(T ′′) with equality if and only if T ′ ∼= T ′′ and M2(T ′) ≤ M2(T̃ ′′)
with equality if and only if T ′ ∼= T̃ ′′.

Suppose that |NT ′′ (vi0 ) \ {vi0–1, vi0+1}| = |NT̃ ′′ \ {vi1–1, vi1+1}| = m, m ≥ 0. Let

T ′′′ = T ′′ –
{

vi0 x | x ∈ NT ′′ (vi0 ) \ {vi0–1, vi0+1}
}

+
{

vk+1x | x ∈ NT ′′ (vi0 ) \ {vi0–1, vi0+1}
}

= T̃ ′′ –
{

vi1 x | x ∈ NT̃ ′′ (vi1 ) \ {vi1–1, vi1+1}
}

+
{

vk+1x | x ∈ NT̃ ′′ (vi1 ) \ {vi1–1, vi1+1}
}

.

Then D is a minimum distance k-dominating set of T ′′′ and dT ′′′ (vi) = 2 for i = 1, . . . , k.
Assume that PNk,D(x) is the set of all private k-neighbors of x with respect to D in T ′′′. It
is clear that the vertices in

⋃k
i=0 Ni

T ′′′ (vk) \ {v0, . . . , vk} can be dominated by vk+1 ∈ D. Thus,
D \ {vk} is a distance k-dominating set of tree T ′′′ – {v0, . . . , vk}. In addition, PNk,D(vk+1) ⊆
V (T ′′′) \ {v0, . . . , vk}, which means that D \ {vk} is a minimum distance k-dominating set
of T ′′′ – {v0, . . . , vk}. So γk(T ′′′ – {v0, . . . , vk}) = γk – 1. Analogously, γk(T ′′′ – {v0, . . . , vk–1}) =
γk – 1.

By the definition of the first Zagreb index, we get

M1
(
T ′′′) – M1

(
T ′′) = 4 +

(
dT ′′ (vk+1) + m

)2 – (2 + m)2 – d2
T ′′ (vk+1)

= 2m
(
dT ′′ (vk+1) – 2

)

≥ 0,

so M1(T ′′′) – M1(T ′′) = 0 if and only if at least one of the following conditions holds:
(1) m = 0, which implies that T ′′ ∼= T ′′′;
(2) dT ′′ (vk+1) = 2.
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If i1 = 1, then

M2
(
T ′′′) – M2

(
T̃ ′′) = 6 +

(
dT̃ ′′ (vk+1) + m

)
(

m +
∑

x∈NT̃ ′′ (vk+1)

dT̃ ′′ (x)
)

– (m + 2)(m + 3) – dT̃ ′′ (vk+1)
∑

x∈NT̃ ′′ (vk+1)

dT̃ ′′ (x)

= m
[

dT̃ ′′ (vk+1) +
∑

x∈NT̃ ′′ (vk+1)

dT̃ ′′ (x) – 5
]

≥ 0,

with equality if and only if m = 0, that is, T̃ ′′ ∼= T ′′′. If i1 �= 1 and i1 �= k, then

M2
(
T ′′′) – M2

(
T̃ ′′) = 8 +

(
dT̃ ′′ (vk+1) + m

)
(

m +
∑

x∈NT̃ ′′ (vk+1)

dT̃ ′′ (x)
)

– (m + 2)(m + 4) – dT̃ ′′ (vk+1)
∑

x∈NT̃ ′′ (vk+1)

dT̃ ′′ (x)

= m
[

dT̃ ′′ (vk+1) +
∑

x∈NT̃ ′′ (vk+1)

dT̃ ′′ (x) – 6
]

≥ 0.

Also, M2(T ′′′) – M2(T̃ ′′) = 0 if and only if at least one of the following conditions holds:
(1) m = 0, namely, T̃ ′′ ∼= T ′′′;
(2) dT̃ ′′ (vk) = dT̃ ′′ (vk+1) = dT̃ ′′ (vk+2) = 2.
If i1 �= 1 and i1 = k, then

M2
(
T ′′′) – M2

(
T̃ ′′) = 4 +

(
dT̃ ′′ (vk+1) + m

)
(

m + 2 +
∑

x∈NT̃ ′′ (vk+1)\{vk }
dT̃ ′′ (x)

)

– (m + 2)(m + 2) – dT̃ ′′ (vk+1)
( ∑

x∈NT̃ ′′ (vk+1)\{vk }
dT̃ ′′ (x) + m + 2

)

= m
( ∑

x∈NT̃ ′′ (vk+1)\{vk }
dT̃ ′′ (x) – 2

)

≥ 0.

As a result, M2(T ′′′) – M2(T̃ ′′) = 0 if and only if at least one of the following conditions
holds:

(1) m = 0, which implies that T̃ ′′ ∼= T ′′′;
(2) dT̃ ′′ (vk+1) = dT̃ ′′ (vk+2) = 2.
In what follows, we prove M1(T ′′′) ≤ (n – kγk)(n – kγk + 1) + 4(kγk – 1) and M2(T ′′′) ≤

(n – kγk)[n – (k – 1)γk] + (4k – 2)γk – 4 with equality if and only if T ′′′ ∼= Tn,k,γk by induction
on γk . The statement is true for γk = 3 and n ≥ (k +1)γk by Lemma 3.3. Assume that γk ≥ 4,
the statement holds for γk – 1 and all the n ≥ (k + 1)(γk – 1).
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In view of γk(T ′′′ – {v0, v1, . . . , vk}) = γk – 1 and |V (T ′′′ – {v0, v1, . . . , vk})| = n – k – 1 ≥
(k + 1)(γk – 1), by the induction hypothesis, we get

M1
(
T ′′′) = M1

(
T ′′′ – {v0, v1, . . . , vk}

)
+ 2dT ′′′ (vk+1) – 1 +

k∑

i=0

d2
T ′′′ (vi)

≤ M1(Tn–k–1,k,γk–1) + 2(n – kγk) + 4k

= (n – kγk)(n – kγk + 1) + 4(kγk – 1).

The equality holds if and only if T ′′′ – {v0, v1, . . . , vk} ∼= Tn–k–1,k,γk–1 and dT ′′′ (vk+1) = 
 =
n – kγk . Recalling that dT ′′′ (vi) = 2 for i = 1, . . . , k, we have M1(T ′′′) = (n – kγk)(n – kγk + 1) +
4(kγk – 1) if and only if T ′′′ ∼= Tn,k,γk .

Thus, M1(T) ≤ M1(T ′) ≤ M1(T ′′) ≤ M1(T ′′′) ≤ (n – kγk)(n – kγk + 1) + 4(kγk – 1) and
M1(T) = (n – kγk)(n – kγk + 1) + 4(kγk – 1) if and only if at least one of the following con-
ditions holds:

(1) T ∼= T ′ ∼= T ′′ ∼= T ′′′ ∼= Tn,k,γk ;
(2) T ∼= T ′ ∼= T ′′, where dT ′′ (vk+1) = 2. Besides, T ′′′ ∼= Tn,k,γk .
However, the second condition is impossible. If T ′′′ ∼= Tn,k,γk , then dT ′′′ (vk+1) = n – kγk

and the number of the pendent vertices in NT ′′′ (vk+1) is n – (k + 1)γk . By the definition of
T ′′′, we have

n – (k + 1)γk ≥ ∣
∣NT ′′ (vi0 ) \ {vi0–1, vi0+1}

∣
∣.

Hence,

dT ′′ (vk+1) = dT ′′′ (vk+1) – |NT ′′ (vi0 ) \ {vi0–1, vi0+1}|
≥ dT ′′′ (vk+1) –

[
n – (k + 1)γk

]

= γk ≥ 3,

a contradiction to dT ′′ (vk+1) = 2. Therefore,

M1(T) ≤ (n – kγk)(n – kγk + 1) + 4(kγk – 1)

with equality if and only if T ∼= Tn,k,γk .
Note that γk(T ′′′ – {v0, . . . , vk–1}) = γk – 1 and |V (T ′′′ – {v0, . . . , vk–1})| > (k + 1)(γk – 1).

Then

M2
(
T ′′′) = M2

(
T ′′′ – {v0, v1, . . . , vk–1}

)
+ dT ′′′ (vk+1) + 4(k – 1) + 2

≤ M2(Tn–k,k,γk–1) + n – kγk + 4(k – 1) + 2

= (n – kγk)
[
n – (k – 1)γk

]
+ (4k – 2)γk – 4.

The equality holds if and only if T ′′′ –{v0, . . . , vk–1} ∼= Tn–k,k,γk–1 and dT ′′′ (vk+1) = 
 = n–kγk .
In consideration of dT ′′′ (vi) = 2 for i = 1, . . . , k, the equality holds if and only if T ′′′ ∼= Tn,k,γk .

Hence, if i1 �= 1, then M2(T) ≤ M2(T ′) ≤ M2(T̃ ′′) ≤ M2(T ′′′) ≤ (n – kγk)[n – (k – 1)γk] +
(4k – 2)γk – 4, with equality if and only if at least one of the following conditions holds:
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(1) T ∼= T ′ ∼= T̃ ′′ ∼= T ′′′ ∼= Tn,k,γk ;
(2) T ∼= T ′ ∼= T̃ ′′, where dT̃ ′′ (vk) = dT̃ ′′ (vk+1) = dT̃ ′′ (vk+2) = 2 and T̃ ′′′ ∼= Tn,k,γk .
Analogous to the analysis of the first Zagreb index, the second condition above is im-

possible. Thus,

M2(T) ≤ (n – kγk)
[
n – (k – 1)γk

]
+ (4k – 2)γk – 4

and the equality holds if and only if T ∼= Tn,k,γk .
Besides, if i = 1, then M2(T) ≤ (n – kγk)[n – (k – 1)γk] + (4k – 2)γk – 4 with equality if

and only if T ∼= Tn,k,γk immediately. This completes the proof. �

Remark 3.5 Borovićanin and Furtula [1] proved

M1(T) ≤ (n – γ )(n – γ + 1) + 4(γ – 1)

and

M2(T) ≤ 2(n – γ + 1)(γ – 1) + (n – γ )(n – 2γ + 1),

with equality if and only if T ∼= Tn,γ , where Tn,γ is the tree obtained from the star K1,n–γ

by attaching a pendent edge to its γ – 1 pendent vertices. In this paper, we determine the
extremal values on the Zagreb indices of trees with distance k-domination number for
k ≥ 2. Note that the domination number is the special case of the distance k-domination
number for k = 1 and Tn,k,γk

∼= Tn,γ , Ti
n,k,2

∼= Tn,γ , i ∈ {1, . . . , k}, when k = 1. Let T be an
n-vertex tree with distance k-domination number γk . Then, by using Theorems 3.1, 3.2
and 3.4 and the results in [1], we have

M1(T) ≤
⎧
⎨

⎩

n(n – 1) if γk = 1,

(n – kγk)(n – kγk + 1) + 4(kγk – 1) if γk ≥ 2,

with equality if and only if T ∼= Sn when γk = 1, T ∼= Ti
n,k,2, i ∈ {1, . . . , k}, when γk = 2, or

T ∼= Tn,k,γk when γk ≥ 3. Moreover,

M2(T) ≤

⎧
⎪⎪⎨

⎪⎪⎩

2(n – γk + 1)(γk – 1) + (n – γk)(n – 2γk + 1) if k = 1,

(n – 1)2 if k ≥ 2,γk = 1,

(n – kγk)[n – (k – 1)γk] + (4k – 2)γk – 4 if k ≥ 2,γk ≥ 2,

with equality if and only if T ∼= Sn when k ≥ 2 and γk = 1, T ∼= Ti
n,k,2, i ∈ {2, . . . , k}, when

k ≥ 2 and γk = 2, or T ∼= Tn,k,γk otherwise.

Appendix

Proof Either Mi(G1) > Mi(G) or Mi(G2) > Mi(G), i = 1, 2, in Lemma 2.8, where G1 = G –
{vy1} + {uy1} and G2 = G – {ux1} + {vx1}, as shown in the following figure.
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Let G∗ = G – {x1, . . . , xr , y1, . . . , yt}, dG∗ (u) = a and dG∗ (v) = b. Then

M1(G1) – M1(G) = (a + r + 1)2 + (b + t – 1)2 – (a + r)2 – (b + t)2

= 2(a + r – b – t + 1)

and

M1(G2) – M1(G) = (a + r – 1)2 + (b + t + 1)2 – (a + r)2 – (b + t)2

= 2(b + t – a – r + 1)

by the definition of the first Zagreb index. Suppose that M1(G1) – M1(G) ≤ 0. Then a + r ≤
b + t – 1. It follows that M1(G2) – M1(G) > 0.

If u /∈ NG(v), then

M2(G1) – M2(G) = (a + r + 1)
( ∑

x∈NG∗ (u)

dG(x) + r + 1
)

+ (b + t – 1)
( ∑

x∈NG∗ (v)

dG(x) + t – 1
)

– (a + r)
( ∑

x∈NG∗ (u)

dG(x) + r
)

– (b + t)
( ∑

x∈NG∗ (v)

dG(x) + t
)

=
∑

x∈NG∗ (u)

dG(x) –
∑

x∈NG∗ (v)

dG(x) + 2r – 2t + a – b + 2

and

M2(G2) – M2(G) = (a + r – 1)
( ∑

x∈NG∗ (u)

dG(x) + r – 1
)

+ (b + t + 1)
( ∑

x∈NG∗ (v)

dG(x) + t + 1
)

– (a + r)
( ∑

x∈NG∗ (u)

dG(x) + r
)

– (b + t)
( ∑

x∈NG∗ (v)

dG(x) + t
)

=
∑

x∈NG∗ (v)

dG(x) –
∑

x∈NG∗ (u)

dG(x) + 2t – 2r + b – a + 2.

If M2(G1) – M2(G) ≤ 0, then M2(G2) – M2(G) > 0.
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If u ∈ NG(v), then

M2(G1) – M2(G)

= (a + r + 1)
( ∑

x∈NG∗ (u)\{v}
dG(x) + r + 1

)

+ (b + t – 1)
( ∑

x∈NG∗ (u)\{v}
dG(x) + t – 1

)

+ (a + r + 1)(b + t – 1) – (a + r)
( ∑

x∈NG∗ (u)\{v}
dG(x) + r

)

– (b + t)
( ∑

x∈NG∗ (u)\{v}
dG(x) + t

)

– (a + r)(b + t)

=
∑

x∈NG∗ (u)\{v}
dG(x) –

∑

x∈NG∗ (v)\{u}
dG(x) + r – t + 1

and

M2(G2) – M2(G)

= (a + r – 1)
( ∑

x∈NG∗ (u)\{v}
dG(x) + r – 1

)

+ (b + t + 1)
( ∑

x∈NG∗ (u)\{v}
dG(x) + t + 1

)

+ (a + r – 1)(b + t + 1) – (a + r)
( ∑

x∈NG∗ (u)\{v}
dG(x) + r

)

– (b + t)
( ∑

x∈NG∗ (u)\{v}
dG(x) + t

)

– (a + r)(b + t)

=
∑

x∈NG∗ (v)\{u}
dG(x) –

∑

x∈NG∗ (u)\{v}
dG(x) + t – r + 1.

Assume that M2(G1) – M2(G) ≤ 0. Then M2(G2) – M2(G) > 0. Therefore, either Mi(G1) >
Mi(G) or Mi(G2) > Mi(G), i = 1, 2. �
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