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Abstract
In this paper, by using the monotonicity rule for the ratio of two Laplace transforms,
we prove that the function

x �→ 1

24x(ln�(x + 1/2) – x ln x + x – ln
√
2π ) + 1

–
120
7

x2

is strictly increasing from (0,∞) onto (1, 1860/343). This not only yields some known
and new inequalities for the gamma function, but also gives some completely
monotonic functions related to the gamma function.
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1 Introduction
Stirling’s formula

n! ∼
√

2πnnne–n (1.1)

has important applications in statistical physics, probability theory and number theory.
Due to its practical importance, it has attracted much interest of many mathematicians
and have motivated a large number of research papers concerning various generalizations
and improvements.

Burnside’s formula [1]

n! ∼
√

2π

(
n + 1/2

e

)n+1/2

:= bn (1.2)

slightly improves (1.1). Gosper [2] replaced
√

2πn by
√

2π (n + 1/6) in (1.1) to get

n! ∼

√
2π

(
n +

1
6

)(
n
e

)n

:= gn, (1.3)
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which is better than (1.1) and (1.2). Batir [3] obtained an asymptotic formula similar to
(1.3):

n! ∼
nn+1e–n√2π√

n – 1/6
:= b′

n, (1.4)

which is stronger than (1.1) and (1.2). A more accurate approximation for the factorial
function

n! ∼
√

2π

(
n2 + n + 1/6

e2

)n/2+1/4

:= mn (1.5)

was presented in [4] by Mortici.
The gamma function �(x) =

∫ ∞
0 tx–1e–t dt for x > 0 is closely related to Stirling’s formula

since �(n + 1) = n! for all n ∈N. This inspires some authors to also pay attention to finding
various better approximations for the gamma function. Here we list some more accurate
approximations:

(i) Ramanujan’s [5, p. 339] approximation formula as x → ∞

�(x + 1) ∼
√

π

(
x
e

)x(
8x3 + 4x2 + x +

1
30

)1/6

:= R(x); (1.6)

(ii) Windschitl’s (see [6, Eq. (42)]) approximation formula

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2

:= W (x); (1.7)

(iii) Smith’s [6, Eq. (42)] approximation formula

�

(
x +

1
2

)
∼

√
2π

(
x
e

)x(
2x tanh

1
2x

)x/2

:= S(x); (1.8)

(iv) Nemes’ formula ([7, Corollary 4.1]) states that

�(x + 1) ∼
√

2πx
(

x
e

)x(
1 +

1
12x2 – 1/10

)x

:= N(x); (1.9)

(v) Chen’s [8] presented a new approximation

�(x + 1) ∼
√

2πx
(

x
e

)x(
1 +

1
12x3 + 24x/7 – 1/2

)x2+53/210

= C(x). (1.10)

Remark 1 Let A(x) be an approximation for �(x + 1) as x → ∞. If there is m > 0 such that

lim
x→∞

ln�(x + 1) – ln A(x)
x–m = c �= 0,±∞, (1.11)

then we say that the rate of A(x) converging to �(x + 1) is like x–m as x → ∞. Evidently,
the larger m is, the higher the accuracy of A(x) approximating for �(x + 1) is. Since (x –
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1)/ ln x → 1 as x → 1, the limit relation can be equivalently written as

lim
x→∞

�(x + 1)/A(x) – 1
x–m = c �= 0,±∞,

or

�(x + 1)
A(x)

= 1 + O
(
x–m)

as x → ∞.

Remark 2 It is easy to check that as n → ∞ or x → ∞,

n! =
nn+1e–n√2π√

n – 1/6
(
1 + O

(
n–2)),

n! =
√

2π

(
n2 + n + 1/6

e2

)n/2+1/4(
1 + O

(
n–3)),

�

(
x +

1
2

)
=

√
2π

(
x
e

)x(
2x tanh

1
2x

)x/2(
1 + O

(
x–5)).

These together with those shown in [8, (3.5)-(3.10)] indicate that Chen’s one C(x) is the
best among approximation formulas listed above.

More results involving the approximation formulas for the factorial or gamma function
can be found in [9–28] and the references cited therein.

It is worth mentioning that Yang and Chu [9] proposed a new approach to construct
asymptotic formulas by bivariate means. As applications, they offered in [9, Propositions
4 and 5] two asymptotic formulas: as x → ∞,

�(x + 1) ∼
√

2π

(
x + 1/2

e

)x+1/2

exp

(
–

1
24

x + 1/2
x2 + x + 37/120

)
:= Y1(x),

�(x + 1) ∼
√

2π

(
x + 1/2

e

)x+1/2

exp

(
–

1517
44,640

1
x + 1/2

–
343

44,640
x + 1/2

x2 + x + 111/196

)

:= Y2(x),

which satisfy

�(x + 1) = Y1(x)
(
1 + O

(
x–5)) and �(x + 1) = Y2(x)

(
1 + O

(
x–7)),

and proved that the functions (replace x by x – 1/2)

f4

(
x –

1
2

)
= ln�

(
x +

1
2

)
–

1
2

ln 2π – x ln x + x +
1

24
x

x2 + 7/120
,

f5

(
x –

1
2

)
= ln�

(
x +

1
2

)
–

1
2

ln 2π – x ln x +
1

1440
5880x2 + 1517
x(98x2 + 31)

are increasingly concave and decreasingly convex on (0,∞), respectively. Clearly, both
Y1(x) and Y2(x) are accurate and simpler approximation formulas for the gamma function.
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According to these inequalities given in [9, Corollary 7], it is natural to ask: What are
the best α and β such that the double inequality

exp

[
–

1
24x

120x2 + 7(α – 1)
120x2 + 7α

]
<

�(x + 1/2)√
2π (x/e)x

< exp

[
–

1
24x

120x2 + 7(β – 1)
120x2 + 7β

]
(1.12)

holds for all x > 0? This problem is equivalent to determining the monotonicity of the
function

f (x) =
1

24x(ln�(x + 1/2) – x ln x + x – ln
√

2π ) + 1
–

120
7

x2 (1.13)

on (0,∞).
The aim of this paper is to answer this problem. Our main result is the following theo-

rem.

Theorem 1 The function f defined by (1.13) is strictly increasing from (0,∞) onto
(1, 1860/343).

As a consequence of the above theorem, the following corollary is immediate.

Corollary 1 For x > x0 ≥ 0, the double inequality (1.12) holds if and only if α ≥ f (∞) =
1860/343 and 1 ≤ β ≤ f (x0). In particular, we have

exp

[
–

1
1440

5880x2 + 1517
x(98x2 + 31)

]
<

�(x + 1/2)√
2π (x/e)x

< exp

(
–

5x
120x2 + 7

)

holds for x > 0.

Replacing x by n + 1/2, then putting x0 = 1 in Corollary 1, and noting that

β1 := f
(

3
2

)
=

1
36 ln 2 – 54 ln 3 – 18 lnπ + 55

–
270

7
≈ 4.7243, (1.14)

we deduce the following statement.

Corollary 2 The double inequality

exp

[
–

1
24(n + 1/2)

120(n + 1/2)2 + 7(α – 1)
120(n + 1/2)2 + 7α

]

<
n!√

2π ((n + 1/2)/e)n+1/2

< exp

[
–

1
24(n + 1/2)

120(n + 1/2)2 + 7(β1 – 1)
120(n + 1/2)2 + 7β1

]

holds with the best constants β1 ≈ 4.7243 given by (1.14) and α = 1860/343 ≈ 5.4227.
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2 Tools
To prove our main result, we need some lemmas as tools. The first lemma is the convolu-
tion formula of the Laplace transform.

Lemma 1 ([29]) Let fi(t) for i = 1, 2 be piecewise continuous in arbitrary finite intervals
included on (0,∞). If there exist some constants Mi > 0 and ci ≥ 0 such that |fi(t)| ≤ Miecit

for i = 1, 2, then

∫ ∞

0
f1(u)e–su du

∫ ∞

0
f2(v)e–sv dv =

∫ ∞

0

(∫ t

0
f1(u)f2(t – u) du

)
e–st dt. (2.1)

The second one is a special monotonicity rule for the ratio of two power series, which
first appeared in [30, Lemma 6.4] and was proved in [31], also see [32].

Lemma 2 ([31, Corollary 2.3]) Let A(t) =
∑∞

k=0 aktk and B(t) =
∑∞

k=0 bktk be two real power
series converging on R with bk > 0 for all k. If, for certain m ∈ N, the sequence {ak/bk} is
increasing (decreasing) for 0 ≤ k ≤ m and decreasing (increasing) for k ≥ m, then there is
a unique t0 ∈ (0,∞) such that the function A/B is increasing (decreasing) on (0, t0) and
decreasing (increasing) on (t0,∞).

The third lemma is called L’Hospital piecewise monotonicity rule [33].

Lemma 3 ([33, Theorem 8]) Let –∞ ≤ a < b ≤ ∞. Suppose that (i) f and g are differen-
tiable functions on (a, b); (ii) g ′ �= 0 on (a, b); (iii) f (a+) = g(a+) = 0; (iv) there is c ∈ (a, b) such
that f ′/g ′ is increasing (decreasing) on (a, c) and decreasing (increasing) on (c, b). Then

(i) when sgn g ′ sgn Hf ,g(b–) ≥ (≤)0, f /g is increasing (decreasing) on (a, b), where
Hf ,g = (f ′/g ′)g – f ;

(ii) when sgn g ′ sgn Hf ,g(b–) < (>)0, there is a unique number xa ∈ (a, b) such that f /g is
increasing (decreasing) on (a, xa) and decreasing (increasing) on (xa, b).

The last one gives a monotonicity rule for the ratio of two Laplace transforms, which is
crucial to proving our main result (see [34, Remark 3]).

Lemma 4 Let the functions A, B be defined on (0,∞) such that their Laplace transforms
exist with B(t) �= 0 for all t > 0. Then the function

x �→ U(x) =
∫ ∞

0 A(t)e–xt dt∫ ∞
0 B(t)e–xt dt

is decreasing (increasing) on (0,∞) if A/B is increasing (decreasing) on (0,∞).

Proof Differentiation yields

(∫ ∞

0
B(t)e–xt dt

)2

U ′(x)

= –
∫ ∞

0
A(t)e–xt dt

∫ ∞

0
B(t)e–xt dt +

∫ ∞

0
A(t)e–xt dt

∫ ∞

0
tB(t)e–xt dt

=
∫ ∞

0

∫ ∞

0
t
[

A(s)
B(s)

–
A(t)
B(t)

]
B(t)B(s)e–xt–xs ds dt := D.
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Exchanging the integral variables s and t, we have

D =
∫ ∞

0

∫ ∞

0
s
[

A(t)
B(t)

–
A(s)
B(s)

]
B(s)B(t)e–xs–xt dt ds,

then adding gives

2D = –
∫ ∞

0

∫ ∞

0
[t – s]

[
A(t)
B(t)

–
A(s)
B(s)

]
B(s)B(t)e–xt–xs dt ds.

By the assumptions, the desired assertions follow. �

3 Proof of Theorem 1
Before proving Theorem 1, we also need several concrete lemmas.

Lemma 5 ([28, Lemma 4]) Let g0 be defined on (0,∞) by

g0(x) = ln�

(
x +

1
2

)
– x ln x + x –

1
2

ln(2π ). (3.1)

Then g0(x) has the following integral representation:

g0(x) = –
∫ ∞

0
h(t)e–xt dt, (3.2)

where

h(t) =
1
t2 –

1
2t sinh(t/2)

. (3.3)

Lemma 6 Let h(t) be defined on (0,∞) by (3.3). Then we have

x
∫ ∞

0
h(t)e–xt dt =

1
24

+
∫ ∞

0
h′(t)e–xt dt, (3.4)

x
∫ ∞

0
h′(t)e–xt dt =

∫ ∞

0
h′′(t)e–xt dt, (3.5)

x
∫ ∞

0
h′′(t)e–xt dt = –

7
2880

+
∫ ∞

0
h′′′(t)e–xt dt. (3.6)

Proof Integration by parts yields

x
∫ ∞

0
h(t)e–xt dt = –

∫ ∞

0
h(t) de–xt = –

[
h(t)e–xt]t=∞

t=0 +
∫ ∞

0
h′(t)e–xt dt,

which, by a simple computation,

lim
t→0

h(t)e–xt = lim
t→0

(
1
t2 –

1
2t sinh(t/2)

)
e–xt =

1
24

,

lim
t→∞ h(t)e–xt = lim

t→∞

(
1
t2 –

1
2t sinh(t/2)

)
e–xt = 0,

gives (3.4).
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Similarly, integration by parts and limit relations limt→0 h′(t)e–xt = 0 and
limt→∞ h′(t)e–xt = 0 yield (3.5). Integration by parts in combination with limt→0 h′′(t)e–xt =
–7/2880 and limt→∞ h′′(t)e–xt = 0 gives (3.6). �

Lemma 7 Let h(t) be defined by (3.3). Then (i) h′(t) < 0 for t > 0; (ii) there is t0 > 0 such that
the function h′′′/h′ is increasing on (0, t0) and decreasing on (t0,∞). Therefore, we have

–
31
98

<
h′′′(t)
h′(t)

< λ0 ≈ 0.051704,

where λ0 = h′′′(t0)/h′(t0), here t0 is the unique solution of the equation [h′′′(t)/h′(t)]′ = 0 on
(0,∞).

Proof Differentiation yields

h′(t) =
1
4

2 sinh(t/2) + t cosh(t/2)
t2 sinh2(t/2)

–
2
t3 ,

h′′(t) =
6
t4 –

1
16

t2 cosh t + 8 cosh t + 4t sinh t + 3t2 – 8
t3 sinh3(t/2)

,

h′′′(t) = –
24
t5 +

1
64t4 sinh4(t/2)

(
6t2 sinh

3t
2

+ 48 sinh
3t
2

+ t3 cosh
3t
2

+ 24t cosh
3t
2

+ 23t3 cosh
t
2

– 24t cosh
t
2

+ 30t2 sinh
t
2

– 144 sinh
t
2

)
.

Simplifying and expanding in power series yield

–
(

4t3 sinh2 t
2

)
h′(t) = 4 cosh t – t2 cosh

t
2

– 2t sinh
t
2

– 4

=
∞∑

n=3

22n–2 – n2

22n–4(2n)!
t2n > 0,

which proves h′(t) < 0 for t > 0.
Then h′′′(t)/h′(t) can be expressed as

h′′′(t)
h′(t)

=
96 sinh4 s – 3s3 sinh 3s – 6s sinh 3s – s4 cosh 3s – 6s2 cosh 3s

16s2(2 sinh2 s – s sinh s – s2 cosh s) sinh2 s

+
–15s3 sinh s + 18s sinh s – 23s4 cosh s + 6s2 cosh s

16s2(2 sinh2 s – s sinh s – s2 cosh s) sinh2 s
:=

h1(s)
h2(s)

,

where s = 2t. Using ‘product into sum’ formula for hyperbolic functions and expanding in
power series give

h1(s) := 12 cosh 4s – 48 cosh 2s – 3s3 sinh 3s – 6s sinh 3s – s4 cosh 3s – 6s2 cosh 3s

– 15s3 sinh s + 18s sinh s – 23s4 cosh s + 6s2 cosh s + 36

= 12
∞∑

n=0

42n

(2n)!
s2n – 48

∞∑
n=0

22n

(2n)!
s2n – 3

∞∑
n=2

32n–3

(2n – 3)!
s2n
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– 6
∞∑

n=1

32n–1

(2n – 1)!
s2n –

∞∑
n=2

32n–4

(2n – 4)!
s2n – 6

∞∑
n=1

32n–2

(2n – 2)!
s2n – 15

∞∑
n=2

1
(2n – 3)!

s2n

+ 18
∞∑

n=1

1
(2n – 1)!

s2n – 23
∞∑

n=2

1
(2n – 4)!

s2n + 6
∞∑

n=1

1
(2n – 2)!

s2n

:= 4
∞∑

n=2

an

(2n)!
s2n,

where

an = 3 × 42n – 12 × 22n – 2n
(
2n3 + 3n2 + 19n + 30

)
32n–4

– 2n(2n – 3)
(
23n2 – 27n + 10

)
,

h2(s) := 16s2(2 sinh2 s – s sinh s – s2 cosh s
)

sinh2 s

= 4s2(cosh 4s – 4 cosh 2s – s sinh 3s – s2 cosh 3s + s2 cosh s + 3s sinh s + 3
)

= 4s2

( ∞∑
n=1

42n

(2n)!
s2n – 4

∞∑
n=1

22n

(2n)!
s2n –

∞∑
n=1

32n–1

(2n – 1)!
s2n –

∞∑
n=1

32n–2

(2n – 2)!
s2n

+
∞∑

n=1

1
(2n – 2)!

s2n + 3
∞∑

n=1

1
(2n – 1)!

s2n + 3

)
:= 4

∞∑
n=2

bn

(2n)!
s2n,

where

bn = 2n(2n – 1)
(
42n–2 – 22n – 4n(n – 1)32n–4 + 4n(n – 1)

)
.

Thus, if we prove the sequence {an/bn}n≥5 is increasing then decreasing, then by Lemma 2
we deduce that there is t0 such that h′′/h is increasing on (0, t0) and decreasing on (t0,∞),
and the proof is done. To this end, if bn > 0 for n ≥ 5, then it suffices to show that there is
n0 > 5 such that dn = anbn+1 – bnan+1 ≤ 0 for 5 ≤ n ≤ n0 and dn ≥ 0 for n ≥ n0.

Now, it is easy to check that

bn+1

2(n + 1)(2n + 1)
– 16

bn

2n(2n – 1)
= 4n(7n – 25)32n–4 + 12 × 22n – 4n(15n – 17) > 0,

which together with b4 = 0 yields bn > 0 for n ≥ 5. On the other hand, by an elementary
computation, we obtain

dn = anbn+1 – bnan+1 =
∑

k=1,2,3,4,6,8,9,12,16

pk(n)k2n,

where

p16(n) = 6(4n + 1),

p12(n) = –
1

324
n
(
28n5 + 12n4 – 1181n3 + 9678n2 + 3457n + 1830

)
,

p9(n) =
64

243
n2(n + 1)

(
n3 + 8n2 + 20n – 2

)
,



Yang and Tian Journal of Inequalities and Applications  (2017) 2017:317 Page 9 of 15

p8(n) = 6
(
18n2 – 41n – 8

)
,

p6(n) = –
4

81
n
(
20n5 + 132n4 + 185n3 – 678n2 – 997n – 822

)
,

p4(n) = –
1
4
(
1380n6 – 1804n5 + 989n4 – 3134n3 + 1327n2 – 2118n – 384

)
,

p3(n) =
128
27

n2(n + 1)
(
32n5 – 32n4 – 33n3 + 48n2 – 50n + 8

)
,

p2(n) = 4n
(
276n5 – 508n4 – 295n3 + 106n2 + 43n – 150

)
,

p1(n) = 192n2(n + 1)
(
9n3 – 8n2 + 2

)
.

An easy verification yields

d5 = –4,007,555,481,600,

d6 = –3,910,448,396,574,720,

d7 = –1,900,746,298,639,319,040,

d8 = –630,125,315,460,849,991,680,

d9 = –150,180,694,294,194,463,408,128,

d10 = –20,155,436,802,005,011,207,151,616,

and d11 = 3,463,285,943,229,784,738,339,553,280 > 0. It remains to show dn > 0 for n ≥ 11.
To this end, we write dn as

dn =
[
p16(n) × 162n + p12(n) × 122n]
+

[
p9(n) × 92n + p6(n) × 62n] +

[
p8(n) × 82n + p4(n) × 42n]

+
[
p3(n) × 32n + p2(n) × 22n + p1(n)

]
,

and denote the expressions in the square brackets by d′
n, d′′

n , d′′′
n and d′′′′

n , respectively. We
easily get the recurrence relation of d′

n

p16(n)d′
n+1 – 162p16(n + 1)d′

n
122n

= 144p16(n)p12(n + 1) – 162p16(n + 1)p12(n)

=
8

27
(
784n7 – 3724n6 – 51,008n5 + 328,397n4 + 10,762n3

– 1,037,977n2 – 650,802n – 124,416
)

=
8

27
(
784m7 + 23,716m6 + 248,872m5 + 1,086,697m4 + 1,666,702m3

+ 1,160,503m2 + 10,500,078m + 20,928,024
)

> 0,

where m = n – 5 ≥ 6. This in combination with p16(n) > 0 and d′
11 = 245 ×

71,481,197,516,733 > 0 leads us to d′
n > 0 for n ≥ 11.
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Similarly, we have

p9(n)d′′
n+1 – 81p9(n + 1)d′′

n
62n

= 36p9(n)p6(n + 1) – 81p9(n + 1)p6(n)

=
256

2187
n(n + 1)2(100n9 + 1960n8 + 15,413n7 + 55,819n6 + 53,414n5

– 273,428n4 – 1,024,655n3 – 1,559,511n2 – 1,278,612n – 399,492
)

> 0

for n ≥ 3. This together with p9(n) > 0 and d′′
3 = 717,610,752 > 0 yields d′′

n > 0 for n ≥ 3.
Also, we get

p8(n)d′′′
n+1 – 64p8(n + 1)d′′′

n
42n

= 16p8(n)p4(n + 1) – 64p8(n + 1)p4(n)

= 1,788,480n8 – 5,219,424n7 – 367,632n6 + 8,703,096n5 + 13,278,240n4

+ 9,974,760n3 – 7,438,608n2 + 1,718,592n + 423,936,

which can be rewritten as

1,788,480m8 + 23,396,256m7 + 126,870,192m6 + 367,098,936m5 + 619,910,160m4

+ 687,582,120m3 + 676,606,944m2 + 635,328,864m + 311,091,840 > 0,

where m = n – 2 ≥ 9. This in combination with p8(n) > 0 for n ≥ 3 and d′′′
7 = 230 ×

6,089,535 > 0 indicates that d′′′
n > 0 for n ≥ 7.

As far as d′′′′
n > 0 for n ≥ 11, it is clear, since

27
128n2(n + 1)

p3(n) =
(
32n5 – 32n4 – 33n3 + 48n2 – 50n + 8

)

= 32m5 + 288m4 + 991m3 + 1642m2 + 1282m + 348 > 0,

where m = n – 2 > 0,

p2(n)
4n

=
(
276n5 – 508n4 – 295n3 + 106n2 + 43n – 150

)

= 276m5 + 3632m4 + 18,449m3 + 44,539m2 + 49,630m + 18,888 > 0

for m = n–3 > 0, p1(n) = 192n2(n+1)(9n3 –8n2 +2) > 0 for n ≥ 1. This proves the piecewise
monotonicity of h′′′/h′ on (0,∞).

It is easy to verify that

lim
t→0

h′′′(t)
h′(t)

= –
31
98

and lim
t→∞

h′′′(t)
h′(t)

= 0.

Solving the equation [h′′′(t)/h′(t)]′ = 0 yields t = t0 ≈ 10.96011, which gives λ0 = h′′′(t0)/
h′(t0) ≈ 0.051704.
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By the piecewise monotonicity of h′′′/h′ on (0,∞), we conclude that

–
7

120
= min

(
lim
t→0

h′′′(t)
h′(t)

, lim
t→∞

h′′′(t)
h′(t)

)
<

h′′′(t)
h′(t)

<
h′′′(t0)
h′(t0)

= λ0 ≈ 0.051704,

which completes the proof. �

We now are in a position to prove Theorem 1.

Proof of Theorem 1 We first prove that

f (x) = –
1

168

∫ ∞
0 (7 + 2880h′′(t))e–xt dt∫ ∞

0 (
∫ t

0 h′(s) ds)e–xt dt
:= –

1
168

∫ ∞
0 A(t)e–xt dt∫ ∞
0 B(t)e–xt dt

, (3.7)

where

A(t) = 7 + 2880h′′(t) and B(t) =
∫ t

0
h′(s) ds.

In fact, by Lemma 5 and identities (3.4) and (3.5), f (x) can be expressed as

f (x) = –
1

24
∫ ∞

0 h′(t)e–xt dt
–

120
7

x2

= –
7 + 2880x2 ∫ ∞

0 h′(t)e–xt dt
168

∫ ∞
0 h′(t)e–xt dt

= –
1

168
7/x + 2880

∫ ∞
0 h′′(t)e–xt dt

(1/x)
∫ ∞

0 h′(t)e–xt dt
.

Application of the identity

1
xn =

1
�(n)

∫ ∞

0
tn–1e–xt dt for n > 0

and Lemma 1 give (3.7).
Now, to prove f is strictly increasing on (0,∞), it suffices to prove t �→ A(t)/B(t) is in-

creasing on (0,∞) by Lemma 4. Similar to the proof of Theorem 1, we easily see that

lim
t→0

A(t) = lim
t→0

(
7 + 2880h′′(t)

)
= lim

t→0

[
7 + 2880

(
1
t2 –

1
2t sinh(t/2)

)′′]
= 0,

lim
t→0

B(t) = lim
t→0

(∫ t

0
h′(s) ds

)
= 0,

and the function A′/B′ = 2880h′′′/h′ is increasing on (0, t0) and decreasing on (t0,∞) by
Lemma 7. Then by Lemma 3 it is enough to check that sgn B′(t) sgn HA,B(∞) > 0. In fact,
B′(t) = h′(t) < 0 for t > 0 in view of Lemma 7, and

lim
t→∞

A′(t)
B′(t)

= lim
t→∞

2800h′′′(t)
h′(t)

= 0,

lim
t→∞ B(t) = lim

t→∞

∫ t

0
h′(s) ds = h(∞) – h

(
0+)

= –
1

24
,

lim
t→∞ A(t) = lim

t→∞
(
7 + 2880h′′(t)

)
= 7,
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which imply that

HA,B(t) =
A′(t)
B′(t)

B(t) – A(t) → –7 as t → ∞.

This indicates sgn B′(t) sgn HA,B(∞) > 0.
Using the asymptotic formula [35, p. 32, (5)]

ln�

(
x +

1
2

)
= x ln x – x +

1
2

ln(2π ) –
∞∑

k=1

(1 – 21–2k)B2k

2k(2k – 1)
1

x2k–1 (3.8)

as x → ∞, we find that

f (x) ∼
1

24x(– 1
24x + 7

2880x3 – 31
40,320x5 ) + 1

–
120

7
x2

=
3720

7
x2

98x2 – 31
→ 1860

343
as x → ∞.

While f (0+) = 1 is clear. This completes the proof. �

4 Concluding remarks
Remark 3 In this paper, we investigate the monotonicity of the function f (x). In general,
it is difficult to deal with such monotonicity since the gamma function � occurs in denom-
inator. However, by the aid of Lemma 5, f (x) is equivalently changed into the ratio of two
Laplace transformations of A(x) and B(x). While Lemma 4 provides exactly an approach
to confirm the monotonicity of such ratio. Undoubtedly, it is a novel idea.

Moreover, it is known that Laplace transformation is related to the completely mono-
tonic function. A function f is said to be completely monotonic on an interval I if f has
derivatives of all orders on I and satisfies

(–1)nf (n)(x) ≥ 0 for all x ∈ I and n = 0, 1, 2, . . . . (4.1)

If inequality (4.1) is strict, then f is said to be strictly completely monotonic on I . The
classical Bernstein’s theorem [36, 37] states that a function f is completely monotonic on
(0,∞) if and only if it is a Laplace transform of some nonnegative measure μ, that is,

f (x) =
∫ ∞

0
e–xt dμ(t),

where μ(t) is non-decreasing and the integral converges for 0 < x < ∞.

Remark 4 Let α > β . If B(t) > 0 for t > 0 and

β <
∫ ∞

0 A(t)e–xt dt∫ ∞
0 B(t)e–xt dt

< α,

then, by Bernstein’s theorem, both the functions

x �→
∫ ∞

0

[
A(t) – βB(t)

]
e–xt dt and x �→

∫ ∞

0

[
αB(t) – A(t)

]
e–xt dt
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are completely monotonic on (0,∞). And then, by Theorem 1, we immediately get the
following.

Proposition 1 Both the functions

g1(x) = 2880
(

x2 +
31
98

)[
ln�(x + 1/2) – x ln x + x –

1
2

ln(2π )
]

+ 120x +
1517
49x

,

g2(x) = –
(

x2 +
7

120

)[
ln�(x + 1/2) – x ln x + x –

1
2

ln(2π )
]

–
1

24
x

are completely monotonic on (0,∞).

Furthermore, by Bernstein’s theorem and Lemma 7, Proposition 1 can be improved as
follows.

Theorem 2 The function

g(x) = 24x
(

120
7

x2 + a
)[

ln�(x + 1/2) – x ln x + x – ln
√

2π
]

+
120

7
x2 + a – 1

is completely monotonic on (0,∞) if and only if a ≥ 1860/343, and so is –g(x) on (0,∞) if
and only if a ≤ –120λ0/7 ≈ –0.88635, where λ0 is defined in Lemma 7.

Proof By Lemma 5 and identities (3.4), (3.5) and (3.6), g(x) can be written as

g(x) = –24
(

120
7

x2 + a
)(

1
24

+
∫ ∞

0
h′(t)e–xt dt

)
+

120
7

x2 + a – 1

= –1 –
2880

7
x2

∫ ∞

0
h′(t)e–xt dt – 24a

∫ ∞

0
h′(t)e–xt dt

= –24
∫ ∞

0

[
a –

(
–

120
7

h′′′(t)
h′(t)

)]
h′(t)e–xt dt.

Since h′(t) < 0 for t > 0, by Bernstein’s theorem and Lemma 7, g is completely monotonic
on (0,∞) if and only if

a ≥ 120
7

sup
t∈(0,∞)

(
–

h′′′(t)
h′(t)

)
= –

120
7

inf
t∈(0,∞)

h′′′(t)
h′(t)

= –
120

7

(
–

31
98

)
=

1860
343

,

and so is –g on (0,∞) if and only if

a ≤ 120
7

inf
t∈(0,∞)

(
–

h′′′(t)
h′(t)

)
= –

120
7

sup
t∈(0,∞)

h′′′(t)
h′(t)

= –
120

7
λ0 ≈ –0.88635.

This ends the proof. �

Remark 5 The expression of f (x) reminds us to consider the asymptotic expansion of

1
24x(ln�(x + 1/2) – x ln x + x – ln

√
2π ) + 1

:= x2
∞∑

n=0

cn

x2n .
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Using asymptotic expansion (3.8), we have

–

(
24

∞∑
n=2

(1 – 21–2n)B2n

2n(2n – 1)
1

x2n–2

)(
x2

∞∑
n=0

cnx–2n

)
= 1,

that is,

∞∑
n=0

( n∑
k=0

(1 – 2–2k–3)B2k+4

2(k + 2)(2k + 3)
cn–k

)
1

x2n = –
1

24
.

Comparing coefficients gives

–
7

2880
c0 = –

1
24

,

n∑
k=0

(1 – 2–2k–3)B2k+4

2(k + 2)(2k + 3)
cn–k = 0 for n ≥ 1,

which show that cn has the recurrence formula

cn =
2880

7

n∑
k=1

(1 – 2–2k–3)B2k+4

2(k + 2)(2k + 3)
cn–k and c0 =

120
7

,

from which we obtain a new asymptotic expansion for the gamma function:

�(x + 1/2)√
2π (x/e)x

∼ exp

(
–

1
24x

+
1

24x3
1

120
7 + 1860

343 x–2 + · · · + cnx–2n + · · ·
)

as x → ∞.

Moreover, it is easy to prove the inequalities

exp

(
–

1
1440

5880x2 + 1517
x(98x2 + 31)

)
= exp

(
–

1
24x

+
1

24x3
1

120
7 + 1860

343 x–2

)

<
�(x + 1/2)√

2π (x/e)x
< exp

(
–

1
24x

+
1

24x3
1

120
7

)

= exp

(
–

120x2 – 7
2880x3

)

hold for x ≥ 1/2.
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