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Abstract
In signal processing theory, l0-minimization is an important mathematical model.
Unfortunately, l0-minimization is actually NP-hard. The most widely studied approach
to this NP-hard problem is based on solving lp-minimization (0 < p ≤ 1). In this paper,
we present an analytic expression of p∗(A,b), which is formulated by the dimension of
the matrix A ∈ R

m×n, the eigenvalue of the matrix ATA, and the vector b ∈R
m, such

that every k-sparse vector x ∈R
n can be exactly recovered via lp-minimization

whenever 0 < p < p∗(A,b), that is, lp-minimization is equivalent to l0-minimization
whenever 0 < p < p∗(A,b). The superiority of our results is that the analytic expression
and each its part can be easily calculated. Finally, we give two examples to confirm
the validity of our conclusions.
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1 Introduction
In sparse information theory, a central goal is to get the sparsest solutions of underdeter-
mined linear systems including visual coding [1], matrix completion [2], source localiza-
tion [3], and face recognition [4]. All these problems are popularly modeled by the follow-
ing l0-minimization:

min
x∈Rn

‖x‖0 s.t. Ax = b, (1)

where A ∈ R
m×n is an underdetermined matrix (i.e. m < n), and ‖x‖0 is the number of

nonzero elements of x, which is commonly called l0-norm although it is not a true vector
norm. If x ∈R

n is a unique solution of l0-minimization, we also say that x can be recovered
by l0-minimization; we adopt these two statements in this paper.

Since A has more columns than rows, the underdetermined linear system Ax = b ad-
mits an infinite number of solutions. To find the sparsest one, much excellent theoretical
work (see, e.g. [5, 6], and [7]) has been devoted to the l0-minimization. However, Natara-
jan [8] proved that l0-minimization is NP-hard. Furthermore, it is combinationally and
computationally intractable to solve l0-minimization directly because of its discrete and
discontinuous nature. Therefore, a lot of work put forward some alternative strategies to
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get the sparsest solution (see, e.g. [5, 9–14], and [15]). Among these methods, the most
popular one is lp-minimization with 0 < p ≤ 1 introduced by Gribonval and Nielsen [16],

min
x∈Rn

‖x‖p
p s.t. Ax = b, (2)

where ‖x‖p
p =
∑n

i=1 |xi|p. In the literature, ‖x‖p is still called the p-norm of x though it is
only a quasi-norm when 0 < p < 1 (because in this case it violates the triangle inequality).
Due to the fact that ‖x‖0 = limp→0 ‖x‖p

p, l0-minimization and lp-minimization are collec-
tively called lp-minimization with 0 ≤ p ≤ 1 in this paper.

However, to get the sparsest solution of Ax = b via lp-minimization, we need certain
conditions on A and/or b, for example, the novel restricted isometry property (RIP) of A.
A matrix A is said to have restricted isometry property of order k with restricted isometry
constant δk ∈ (0, 1) if δk is the smallest constant such that

(1 – δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (3)

for all k-sparse vectors x, where a vector x is said to be k-sparse if ‖x‖0 ≤ k.
There exist a lot of sufficient conditions for the exact recovery by l1-minimization, such

as δ3k + 3δ4k < 2 in [10], δ2k <
√

2 – 1 in [9], and δ2k < 2(3 –
√

2)/7 in [11]. Cai and Zhang
[17] showed that for any given t ≥ 4

3 , the condition δtk <
√

t–1
t guarantees recovery of every

k-sparse vector by l1-minimization. From the definition of p-norm it seems to be more
natural to consider lp-minimization with 0 < p < 1 instead of l0-minimization. Foucart
[11] showed that the condition δ2k < 0.4531 can guarantee exact k-sparse recovery via lp-
minimization for any 0 < p < 1. Chartrand [18] proved that if δ2k+1 < 1, then we can recover
a k-sparse vector by lp-minimization for some p > 0 small enough. However, it should be
pointed out that the problem of calculating δ2k for a given matrix A is still NP-hard.

Recently, Peng, Yue, and Li [7] have proved that there exists a constant p(A, b) > 0 such
that every solution of lp-minimization is also a solution of l0-minimization whenever 0 <
p < p(A, b). This result builds a bridge between lp-minimization and l0-minimization, and
it is important that this conclusion is not limited by the structure of a matrix A. However,
the paper [7] does not give an analytic expression of p(A, b). The model of choice of lp-
minimization is still difficult.

As already mentioned, it is NP-hard to calculate δ2k for a given matrix A ∈ R
m×n and

also to calculate these p. On the other hand, the possibility of recovery of every k-sparse
vector by l0-minimization is just a necessary condition for the existence of such δ2k , and
therefore the results based on δ2k lead to limitations of practical application.

We have to emphasize that although lp-minimization is also difficult due to its non-
convexity and nonsmoothness, a lot of algorithms have been designed to solve lp-
minimization; see e.g. [11, 19], and [20]. Moreover, a reasonable range of p in these algo-
rithms is very important. In this paper, we devote ourselves to giving a complete answer
to this problem.

Our paper is organized as follows. In Section 2, we present some preliminaries of the
lp-null space property, which plays a core role in the proof of our main theorem. In Sec-
tion 3, we focus ourselves on proving the main results of this paper: we present an analytic
expression of p∗(A, b) such that every k-sparse vector x ∈R

n can be exactly recovered via
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lp-minimization with 0 < p < p∗(A, b) as long as x can be recovered via l0-minimization.
Finally, we summarize our findings in the last section.

For convenience, for x ∈ R
n, its support is defined by support(x) = {i : xi 	= 0}, and the

cardinality of a set � is denoted by |�|. Let Ker(A) = {x ∈ R
n : Ax = 0} be the null space

of a matrix A, and denote by λmin+ (A) the minimal nonzero absolute-value eigenvalue of
A and by λmax(A) the maximal one. We denote by x� the vector that is equal to x on the
index set � and zero elsewhere and by A� the submatrix the columns of which are the
columns of A that are in the set index �. Let �c be the complement of �.

2 Preliminaries
To investigate conditions under which both l0-minimization and lp-minimization have
the same unique solution, it is convenient for us to work with a sufficient and necessary
condition of the solutions of l0-minimization and lp-minimization. Therefore, in this pre-
liminary section, we focus on introducing such an condition, namely the lp-null space
property.

Definition 1 ([16]) A matrix A ∈ R
m×n with m ≤ n is said to satisfy the lp-null space

property of order k if

‖x�‖p < ‖x�c‖p (4)

for every x ∈ Ker(A) \ {0} and every set � ⊂ {1, 2, . . . , n} with |�| ≤ k.

In the literature, the null space property usually means the l1-null space property. We
now indicate the relation between the lp-null space property and exact recovery via lp-
minimization with 0 ≤ p ≤ 1.

Theorem 1 ([16, 21]) Given a matrix A ∈ R
m×n with m ≤ n, every k-sparse vector x ∈ R

n

can be recovered via lp-minimization with 0 ≤ p ≤ 1 if and only if A satisfies the lp-null
space property of order k.

Theorem 1 provides a sufficient and necessary condition to judge whether a vector can
be recovered by lp-minimization with 0 ≤ p ≤ 1, which is the most important advantage
of the lp-null space property. However, the lp-null space property is difficult to be checked
for a given matrix. To reach our goal, we recall the concept of the null space constant
(NSC), which is closely related to the lp-null space property and offers tremendous help
in illustrating the performance of l0-minimization and lp-minimization.

Definition 2 ([22]) For any 0 ≤ p ≤ 1 and k > 0, the null space constant (NSC) h(p, A, k)
is the smallest number such that:

∑

i∈�

|xi|p ≤ h(p, A, k)
∑

i /∈�

|x|p (5)

for every index set � ⊂ {1, 2, . . . , n} with |�| ≤ k and every x ∈ Ker(A) \ {0}.

Similarly to the lp-null space property, NSC also can be used for characterizing the per-
formance of lp-minimization. Combining the definition of NSC and the results in [23] and
[22], we can derive the following corollaries.
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Corollary 1 For any p ∈ [0, 1], h(p, A, k) < 1 is a sufficient and necessary condition for re-
covery of all k-sparse vectors via lp-minimization with 0 ≤ p ≤ 1.

Proof The proof is very easy, and we leave it to the readers. �

Corollary 2 Given a matrix A ∈R
m×n, if h(0, A, k) < 1, we have:

(a) ‖x‖0 ≥ 2k + 1 for every x ∈ Ker(A) \ {0};
(b) k ≤ � n–2.5

2 � + 1, where �a� represents the integer part of a.

Proof (a) We assume that there exists a vector x ∈ Ker(A) \ {0} with ‖x‖0 ≤ 2k.
Let � = support(x). If ‖x‖0 ≤ k, then we get that ‖x�‖0 ≥ ‖x�c‖0 = 0.
If k < ‖x‖0 ≤ 2k, we consider an arbitrary set �̃ ⊂ � with |�̃| = k. Then we get that

‖x�̃‖0 = k ≥ ‖x�̃c‖0.
According to the definition of h(p, A, k), these two conclusions contradict h(0, A, k) < 1,

and therefore we have that ‖x‖0 ≥ 2k + 1 for any x ∈ Ker(A) \ {0}.
(b) As has been proved in (a), we get that

2k + 1 ≤ ‖x‖0 ≤ n. (6)

Due to the integer values of ‖x‖0 and k, it is easy to get that

k ≤
{

n–1
2 when n is odd,

n–2
2 when n is even.

In total, we have k ≤ � n–2.5
2 � + 1. �

Remark 1 In Corollary 2, we obtained a relation of inequality between n and k under
the assumption h(0, A, k) < 1. Furthermore, Foucart [23, p. 49, Chapter 2] showed another
relation of inequality between m and k. If every k-sparse vector x ∈ R

n can be recovered
via l0-minimization, then we get that m ≥ 2k; furthermore, it is easy to get that k ≤ �m

2 �
due to the integer values of k.

Remark 2 Chen and Gu [22] showed some important properties of h(p, A, k). It is shown
that h(p, A, k) is a continuous function in p ∈ [0, 1] when k ≤ spark(A) – 1, where spark(A)
is the smallest number of columns from A that are linearly dependent. Therefore, if
h(0, A, k) < 1 for some fixed A and k, then there exists a constant p∗ such that h(p, A, k) < 1
for p ∈ [0, p∗), that is, every k-sparse vector can be recovered via both l0-minimization and
lp-minimization for p ∈ (0, p∗), which is a corollary of the main theorem in [7].

Theorem 2 ([7]) There exists a constant p(A, b) > 0 such that when 0 < p < p(A, b), every
solution to lp-minimization also solves l0-minimization.

Theorem 2 is the main theorem in [7]. Obviously, this theorem qualitatively proves the
effectiveness of solving the original l0-minimization problem via lp-minimization. More-
over, the theorem becomes more practical if p(A, b) is computable. At the end of this sec-
tion, we need to point out a necessary and sufficient condition based on the lp-null space
property, and NSC can provide us the following lemma, which is similar to RIP.
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Lemma 1 Given an underdetermined matrix A ∈ R
m×n and an integer k, the inequality

h(0, A, k) < 1 holds if and only if there exist two constants 0 < u ≤ w with

0 < λmin+
(
AT A

)≤ u2 ≤ w2 ≤ λmax
(
AT A

)
(7)

such that

u2‖x‖2
2 ≤ ‖Ax‖2

2 ≤ w2‖x‖2
2 (8)

for every 2k-sparse vector x ∈R
n.

Proof Necessity. The proof is divided into two steps.
Step 1: Proof of the existence of u.
To prove this result, we just need to prove that the set

V =
{

u : ‖Ax‖2/‖x‖2 ≥ u for any nonzero x with ‖x‖0 ≤ 2k
}

has a nonzero infimum.
If we assume that inf V = 0, then, for any n ∈ N+, there exists a vector 2k-sparse vector

xn with ‖xn‖2 = 1 such that ‖Axn‖2 ≤ n–1.
Furthermore, it is easy to get a convergent subsequence {xni} of the bounded sequence

{xn}, that is, xni → x0, and it is obvious that Ax0 = 0 because the function y(x) = Ax is
continuous.

Let J(x0) = {i : (x0)i 	= 0}. There exists Ni such that (xnk )i 	= 0 when k ≥ Ni for any i ∈ J(x0).
Let N = maxi∈J(x0) Ni. For any i ∈ J(x0), it is easy to get that (xnk )i 	= 0 when k ≥ N . When

k ≥ N , we get that ‖xnk ‖0 ≥ ‖x0‖0 and ‖x0‖0 ≤ 2k.
However, according to Corollary 2, it is easy to get that ‖x‖0 ≥ 2k + 1 for any x ∈ Ker(A)\

{0}. We notice that x0 ∈ Ker(A), so the result ‖x0‖0 ≤ 2k contradicts Corollary 2.
Therefore, there exists a constant u > 0 such that ‖Ax‖2 ≥ u‖x‖2 for any x ∈ R

n with
‖x‖0 ≤ 2k.

Step 2: Proof of u2 ≥ λmin+ (AT A).
According to the proof above, there exists a vector x̃ ∈ R

n with ‖̃x‖0 ≤ 2k such that
‖Ãx‖2 = u‖̃x‖2.

Let V = support(̃x). It is easy to get that

u2xT x ≤ xT AT
V AV x (9)

for all x ∈ R
|V |. Therefore, the smallest eigenvalue of AT

V AV is u2 since AT
V AV ∈ R|V |×|V | is

a symmetric matrix, and we can choose an eigenvector z ∈ R|V | of eigenvalue u2.
If u2 < λmin+ (AT A), then consider the vector x′ ∈ R

n with xi
′ = zi when i ∈ V and zero

otherwise. Therefore, it is easy to get that AT Ax′ = u2x′, which contradicts the definition
of λmin+ (AT A).

Finally, notice that AT A is a semipositive definite matrix such that ‖Ax‖2
2 = xT AT Ax ≤

λmax(AT A)‖x‖2
2 for all x ∈ R

n. So there exists a constant w such that ‖Ax‖2
2 ≤ w2‖x‖2

2 for
all ‖x‖0 ≤ 2k.
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Sufficiency. Let a k-sparse vector x∗ be the unique solution of l0-minimization. For any
k-sparse vector x1, we have that

u2∥∥x∗ – x1
∥
∥2

2 ≤ ∥∥A
(
x∗ – x1

)∥
∥2

2 ≤ w2∥∥x∗ – x1
∥
∥2

2. (10)

Therefore, we get that x∗ = x1 as long as x1 is a solution of Ax = b, that is, every k-sparse
vector can be recovered by l0-minimization (1), and this is equivalent to h(0, A, k) < 1 by
Corollary 1. �

3 Main contribution
In this section, we focus ourselves on the proposed problem. By introducing a new tech-
nique and utilizing preparations provided in Section 2, we will present an analytic expres-
sion of p∗(A, b) such that every k-sparse vector x can be recovered via lp-minimization
with 0 < p < p∗(A, b) as long as it can be recovered via l0-minimization. To this end, we
first begin with two lemmas.

Lemma 2 For any x ∈R
n and 0 < p ≤ 1, we have that

‖x‖p ≤ ‖x‖
1
p – 1

2
0 ‖x‖2.

Proof This result can be easily proved by Hölder’s inequality. �

Lemma 3 Given a matrix A ∈R
m×n, if u‖x‖2 ≤ ‖Ax‖2 ≤ w‖x‖2 for all ‖x‖0 ≤ 2k, then

∣
∣〈Ax1, Ax2〉

∣
∣≤ w2 – u2

2
‖x1‖2‖x2‖2

for all x1 and x2 with ‖xi‖0 ≤ k (i = 1, 2), and support(x1) ∩ support(x2) = ∅.

Proof By the assumption on the matrix A, it is easy to get that

|〈Ax1, Ax2〉|
‖x1‖2‖x2‖2

=
∣
∣
∣
∣

〈

A
(

x1

‖x1‖2

)

, A
(

x2

‖x2‖2

)〉∣
∣
∣
∣

=
1
4

∣
∣
∣
∣

∥
∥
∥
∥A
(

x1

‖x1‖2
+

x2

‖x2‖2

)∥
∥
∥
∥

2

2
–
∥
∥
∥
∥A
(

x1

‖x1‖2
–

x2

‖x2‖2

)∥
∥
∥
∥

2

2

∣
∣
∣
∣

≤ 1
4

∣
∣
∣
∣w

2
∥
∥
∥
∥

x1

‖x1‖2
+

x2

‖x2‖2

∥
∥
∥
∥

2

2
– u2

∥
∥
∥
∥

x1

‖x1‖2
–

x2

‖x2‖2

∥
∥
∥
∥

2

2

∣
∣
∣
∣. (11)

Since support(x1) ∩ support(x2) = ∅, we have that

∥
∥
∥
∥

x1

‖x1‖2
+

x2

‖x2‖2

∥
∥
∥
∥

2

2
=
∥
∥
∥
∥

x1

‖x1‖2
–

x2

‖x2‖2

∥
∥
∥
∥

2

2
= 2, (12)

from which we get that

∣
∣〈Ax1, Ax2〉

∣
∣≤ w2 – u2

2
‖x1‖2‖x2‖2. (13)

�
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With the above lemmas in hand, we now can prove our main theorems.

Theorem 3 Given a matrix A ∈R
m×n with m ≤ n and 0 < p ≤ 1, if h(0, A, k) < 1, then

h(p, A, k) < h∗(p, A, k), (14)

where

h∗(p, A, k) =
(√

2 + 1
2

)p( k
k + 1

)[
(λ – 1)(n – 2 – k)

2k
+
(

λ +
√

1
k + 1

)

k– 1
2

]p

(15)

with

λ =
λmax(AT A)
λmin+ (AT A)

.

Proof According to Theorem 1 and Corollary 2, it is easy to get that ‖x‖0 ≥ 2k + 1 for
every x ∈ Ker(A) \ {0} since h(0, A, k) < 1. Furthermore, according to Lemma 1, we can
find constants λmin+ (AT A) ≤ u2 ≤ w2 ≤ λmax(AT A) such that

u‖x̃‖2 ≤ ‖Ax̃‖2 ≤ w‖x̃‖2 (16)

for any x̃ ∈R
n with ‖x̃‖0 ≤ 2k.

Now we consider a nonzero vector x ∈ Ker(A) \ {0} and an arbitrary index set �0 ⊂
{1, 2, . . . , n} with |�0| = k. We partition the complement of �0 as �c

0 =
⋃t

i=1 �i, where

�1 = {indices of the k + 1 largest absolute-value components of x – x�0},
�2 = {indices of the k largest absolute-value components of x – x�0 – x�1},
�3 = {indices of the k largest absolute-value components of x – x�0 – x�1 – x�2},
. . .

�t = {indices of the remaining components of x}.

We know that ‖x‖0 ≥ 2k + 1, so both �1 and �0 are not empty, and there are only two
cases:

(i) �0 and �i (i = 2, . . . , t – 1) all have k elements except, possibly, �t .
(ii) �0 has k elements, �1 has less than k + 1 elements, and �i (i = 2, . . . , t – 1) are

empty.
Furthermore, in both cases, the set �1 can be divided in two parts:

�
(1)
1 = {indices of the k largest absolute-value components of �1},

�
(2)
1 = {indices of the rest components of �1}.

It is obvious that �1 = �
(1)
1 ∪ �

(2)
1 and the set �

(2)
1 is not empty since ‖x‖0 ≥ 2k + 1.
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Since u‖x̃‖2 ≤ ‖Ax̃‖2 ≤ w‖x̃‖2 for any ‖x̃‖0 ≤ 2k, we have that

‖x�0‖2
2 + ‖x�1‖2

2 = ‖x�0‖2
2 + ‖x

�
(1)
1

‖2
2 + ‖x

�
(2)
1

‖2
2

= ‖x�0 + x
�

(1)
1

‖2
2 + ‖x

�
(2)
1

‖2
2

≤ 1
u2 ‖A(x�0 + x

�
(1)
1

)‖2
2 +
∥
∥x

�
(2)
1

∥
∥2

2. (17)

Since x = x�0 + x
�

(1)
1

+ x
�

(2)
1

+ x�2 + · · · + x�t ∈ Ker(A) \ {0}, we have that

∥
∥A(x�0 + x

�
(1)
1

)
∥
∥2

2 =
〈
A(–x�0 – x

�
(1)
1

, A(x
�

(2)
1

+ x�2 + · · · + x�t )
〉

=
〈
A(–x�0 – x

�
(1)
1

), Ax
�

(2)
1

〉

+
t∑

i=2

(〈
A(–x�0 ), Ax�i

〉
+
〈
A(–x

�
(1)
1

), Ax�i

〉)
. (18)

According to Lemma 3, for any i ∈ {2, 3, . . . , t}, we get that

〈
A(–x�0 ), Ax�i

〉≤ w2 – u2

2
‖x�0‖2‖x�i‖2,

〈
A(–x

�
(1)
1

), Ax�i

〉≤ w2 – u2

2
‖x

�
(1)
1

‖2‖x�i‖2.
(19)

Substituting inequalities (19) into (18), we have

∥
∥A(x�0 + x

�
(1)
1

)
∥
∥2

2 ≤ ∥∥A(–x�0 – x
�

(1)
1

)
∥
∥

2‖Ax
�

(2)
1

‖

+
w2 – u2

2

( t∑

i=2

‖x�i‖2

)
(‖x�0‖2 + ‖x

�
(1)
1

‖2
)

≤ w2(‖x�0‖2 + ‖x
�

(1)
1

‖2
)‖x

�
(2)
1

‖2

+
w2 – u2

2

( t∑

i=2

‖x�i‖2

)
(‖x�0‖2 + ‖x

�
(1)
1

‖2
)
. (20)

By the definition of x
�

(1)
1

and x�1 it is easy to get that

‖x
�

(1)
1

‖2 ≤ ‖x�1‖2 (21)

and

‖x
�

(2)
1

‖2 ≤
√

1
k + 1

‖x�1‖2. (22)

Therefore, we get that

‖x
�

(2)
1

‖2
2 ≤
√

1
k + 1

(‖x�0‖2 + ‖x�1‖2
)‖x

�
(2)
1

‖2. (23)
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Substituting inequalities (20) and (23) into (17), we have that

‖x�0‖2
2 + ‖x�1‖2

2 ≤ 1
u2

∥
∥A(x�0 + x

�
(1)
1

)
∥
∥2

2 + ‖x
�

(2)
1

‖2
2

≤ (‖x�0‖2 + ‖x�1‖2
)
[

w2 – u2

2u2

t∑

i=2

‖x�i‖2

+
(

w2

u2 +
√

1
k + 1

)

‖x
�

(2)
1

‖2

]

. (24)

For any 2 ≤ i ≤ t and any element a of x�i , it is easy to get that |a|p ≤ 1
k+1‖x�1‖p

p, so we
have the inequalities:

‖x�i‖2
2 ≤ k(k + 1)– 2

p ‖x�1‖2
p (25)

and

‖x
�

(2)
1

‖2
2 ≤ (k + 1)– 2

p ‖x�1‖2
p. (26)

Substituting inequalities (25) and (26) into (24), we derive that

‖x�0‖2
2 + ‖x�1‖2

2 ≤ (‖x�0‖2 + ‖x�1‖2
)
[

w2 – u2

2u2 k
1
2 (k + 1)– 1

p (t – 1)

+
(

w2

u2 +
√

1
k + 1

)

(k + 1)– 1
p

]

‖x�1‖p. (27)

Let r = w2

u2 and

B =
[

w2 – u2

2u2 k
1
2 (k + 1)– 1

p (t – 1) +
(

w2

u2 +
√

1
k + 1

)

(k + 1)– 1
p

]

‖x�1‖p.

Then we can rewrite inequality (27) as

‖x�0‖2
2 + ‖x�1‖2

2 ≤ B
(‖x�0‖2 + ‖x�1‖2

)
, (28)

so that

(

‖x�0‖2 –
B
2

)2

+
(

‖x�1‖2 –
B
2

)2

≤ B2

2
.

Therefore, we get that ‖x�0‖2 ≤
√

2+1
2 B.

According to Lemma 2, we have that

‖x�0‖p ≤ k
1
p – 1

2 ‖x�0‖2 ≤ k
1
p – 1

2

√
2 + 1
2

B. (29)
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Substituting the expression of B into inequality (29), we obtain that

‖x�0‖p ≤ k
1
p – 1

2

(√
2 + 1
2

)

×
[

r – 1
2

k
1
2 (k + 1)– 1

p (t – 1) +
(

r +
√

1
k + 1

)

(k + 1)– 1
p

]

‖x�1‖p

=
(

k
k + 1

) 1
p
(√

2 + 1
2

)[
r – 1

2
(t – 1) +

(

r +
√

1
k + 1

)

k– 1
2

]

‖x�1‖p. (30)

We notice that the sets �0 and �i (i = 2, . . . , t – 1) all have k elements and the set �1 has
k + 1 elements such that tk + 2 ≤ n ≤ (t + 1)k + 1, so we get that t ≤ n–2

k .
According to Lemma 1, we have that r = w2

u2 ≤ λ = λmax(AT A)
λmin+ (AT A) . Substituting the inequalities

into (30), we obtain

‖x�0‖p ≤
√

2 + 1
2

(
k

k + 1

) 1
p
[

(λ – 1)(n – 2 – k)
2k

+
(

λ +
√

1
k + 1

)

k– 1
2

]

‖x�1‖p.

It is obvious that ‖x�1‖p ≤ ‖x�c
0
‖p, and therefore we get that

‖x�0‖p
p ≤ h∗(p, A, k)‖x�c

0
‖p

p,

where h∗(p, A, k) is given in (15).
According to the definition of h(p, A, k), we can get that h(p, A, k) ≤ h∗(p, A, k). �

Theorem 3 presents a result that is very similar to the result in Theorem 1. However,
it is worth pointing out that the constant h∗(p, A, k) plays a central role in Theorem 3.
In fact, we can treat h∗(p, A, k) as an estimate of h(p, A, k), where the former is calcu-
lable, and since the latter is NP-hard, h∗(p, A, k) may be considered as an improvement
of h(p, A, k). According to Theorem 1, if we take k as the l0-norm of the unique solu-
tion of l0-minimization, then we can get the main contribution as soon as the inequality
h∗(p, A, k)

1
p < 1 is satisfied.

Theorem 4 Let A ∈ R
m×n be an underdetermined matrix of full rank, and denote �∗ =

| support(AT (AAT )–1b)|. If every k-sparse vector x can be recovered via l0-minimization,
then x also can be recovered via lp-minimization with p ∈ (0, p∗(A, b)), where

p∗(A, b) = max

{

h
(
�∗), h

(⌈
n – 2.5

2

⌉

+ 1
)

, h
(⌈

m
2

⌉)}

(31)

with

h(x) =
ln(x + 1) – ln x

ln[(
√

2+1
2 )( (λ–1)(n–3)

2 + λ +
√

1
2 )]

(32)

and

λ =
λmax(AT A)
λmin+ (AT A)

.
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Proof Recalling (15), we can get the equivalence between l0-minimization and
lp-minimization as long as h∗(p, A, k)

1
p < 1. However, k cannot be calculated directly, and

we need to estimate k and change the inequality h∗(p, A, k)
1
p < 1 into a computable one

through inequality technique.
Due to the integer values of ‖x‖0, we have that

(

λ +
√

1
k + 1

)

k– 1
2 ≤ λ +

√
1
2

.

Notice that λ > 1, so we have

(λ – 1)(n – 2 – k)
2k

≤ (λ – 1)(n – 3)
2

.

Furthermore, according to Corollary 2, we get that 2k + 1 ≤ n, and it is easy to get that
(λ – 1)(n – 2 – k) ≥ 0, so that

h∗(p, A, k)
1
p ≤

√
2 + 1
2

(
k

k + 1

) 1
p
[

(λ – 1)(n – 3)
2

+ λ +
√

1
2

]

.

Furthermore, it is obvious that (λ–1)(n–3)
2 + λ +

√
1
2 > 0. Therefore, for x ∈ (0, +∞) and

p ∈ (0, 1), it is easy to prove that the function

f (x, p) =
√

2 + 1
2

(
x

x + 1

) 1
p
[

(λ – 1)(n – 3)
2

+ λ +
√

1
2

]

increases in x when p is fixed and also increases in p when x is fixed.
According to Corollary 2 and Remark 2, we have that k ≤ � n–2.5

2 � + 1, k ≤ �m
2 �, and

k ≤ |�∗|, where �∗ = | support(AT (AAT )–1b)|, because it is obvious that x = AT (AAT )–1b is
a solution of the underdetermined system Ax = b.

Therefore, we get that

f (k, p) ≤ min

{

f
(⌈

n – 2.5
2

⌉

+ 1, p
)

, f
(
�∗, p

)
, f
(⌈

m
2

⌉

, p
)}

. (33)

It is obvious that f (k, p) < 1 as long as one of three inequalities f (� n–2.5
2 � + 1, p) < 1,

f (�∗, p) < 1, and f (�m
2 �, p) < 1 is satisfied.

Furthermore, the inequality f (x, p) < 1 when x fixed is very easily solved, and the range
of such p is

p < h(x) =
ln(x + 1) – ln x

ln[(
√

2+1
2 )( (λ–1)(n–3)

2 + λ +
√

1
2 )]

.

Hence, for any 0 < p < p∗ = max{h(�∗), h(� n–2.5
2 �+1), h(�m

2 �)}, we have that h∗(p, A, k)
1
p ≤

f (k, p) < 1. Therefore, according to Theorem 1, every k-sparse vector x ∈R
n can be recov-

ered via both l0-minimization and lp-minimization. �
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Combining Theorems 3 and 4, we have reached the major goals of this paper. The most
important result in these two theorems is the analytic expression of p∗(A, b), with which
the specific range of p can be easily calculated.

Next, we present two examples to demonstrate the validation of Theorem 4. We consider
two matrixes of different dimensions of their null spaces and get the unique solution to
lp-minimization to verify whether it is the unique solution to l0-minimization.

Example 1 We consider an underdetermined system Ax = b, where

A =

⎛

⎜
⎝

1 –1.5 –0.7 0
0 –2 0.5 1
1 0.5 –1 1

⎞

⎟
⎠

and

b =

⎛

⎜
⎝

0.5
0

0.5

⎞

⎟
⎠ .

It is obvious that the sparsest solution is x∗ = [0.5, 0, 0, 0]T and Ker(A) is spanned by
[–10, –2, –10, 1]T , so the solutions of the equation Ax = b can be expressed in the form

x = [0.5, 0, 0, 0]T + t[–10, –2, –10, 1]T , where t ∈ R.

Therefore, the p-norm of x can be expressed as

‖x‖p
p = |0.5 – 10t|p + |2t|p + |10t|p + |t|p.

Furthermore, it is easy to get that λmax(AT A) = 7.2583, λmin(AT A) = 1.1926, and λ =
λmax(AT A)
λmin(AT A) = 6.0856.

We can get that

AT(AAT)–1b = [0.2561, –0.0488, –0.2439, 0.0244]T ,

and hence h(�∗) = 0.0921 and h(� n–2.5
2 � + 1) = h(�m

2 �) = 0.2862, so p∗(A, b) = 0.2862.
As shown in the Figure 1, we can get the solution of lp-minimization in different

cases where p = 0.2861, 0.2, 0.15, and 0.1. It is obvious that l0.2861-minimization, l0.2-
minimization, l0.15-minimization, and l0.1-minimization all reach their minimums at t = 0,
which corresponds to the sparsest solution x∗ = [0.5, 0, 0, 0]T .

Example 2 We consider a more complex situation with Ax = b, where

A =

⎛

⎜
⎝

1 0 3.5 –3 –2.7
0 2 0 –1.5 4.5
2 2 –4 –0.5 1.5

⎞

⎟
⎠
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Figure 1 The p-norm of the solutions of the different cases in Example 1.

and

b =

⎛

⎜
⎝

0.5
0
1

⎞

⎟
⎠ .

It is easy to get the sparsest solution x∗ = [0.5, 0, 0, 0, 0]T , and the solutions of the under-
determined system Ax = b can be expressed in the parameterized form

x = [0.5, 0, 0, 0, 0]T + s
[

213
110

, –
9
4

,
12
55

, 0, 1
]T

+ t
[

17
22

,
3
4

,
7

11
, 1, 0

]T

, where s, t ∈R.

Therefore

‖x‖p
p =
∣
∣
∣
∣0.5 +

213
110

s +
17
22

t
∣
∣
∣
∣

p

+
∣
∣
∣
∣–

9
4

s +
3
4

t
∣
∣
∣
∣

p

+
∣
∣
∣
∣
12
55

s +
7

11
t
∣
∣
∣
∣

p

+ |s|p + |t|p.

Furthermore, we can get λ = λmax(AT A)
λmin(AT A) = 4.1792. It is easy to get that

AT(AAT)–1b = [0.1903, 0.1083, –0.1188, –0.1527, –0.0990]T .

Hence h(�∗) = 0.0801, h(� n–2.5
2 � + 1) = 0.1782, and h(�m

2 �) = 0.3046, so we take p∗(A, b) =
0.3046.

From Figure 2 we can also find the solutions in different cases where p = 0.3045, 0.3,
0.2, and 0.1. It is obvious that the minimum is reached at s = t = 0, which corresponds to
the sparsest solution x∗ = [0.5, 0, 0, 0, 0]T . The result can be seen more clearly in Figure 3.

4 Conclusions
In this paper, we have studied the equivalence between l0-minimization and
lp-minimization. By using the lp-null space property and a sufficient and necessary con-
dition to recover a sparse vector via these two models, we present an analytic expression
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Figure 2 The p-norm of the solutions of the different cases in Example 2.

Figure 3 On s-t plane for the p-norm of the solutions to the different cases in Example 2.

of p∗(A, b) such that lp-minimization is equivalent to l0-minimization. Although it is NP-
hard to find the global optimal solution of lp-minimization, a local minimizer can be done
in polynomial time [24]. Chen [22] proved that h(p, A, k) < 1 is a necessary and sufficient
condition for the global optimality of lp-minimization. Therefore, it is confident that we
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can find the sparse solution with lp-minimization with 0 < p < p∗(A, b) as long as we start
with a good initialization.

However, in this paper, we only consider the situation where l0-minimization has an
unique solution. The uniqueness assumption is vital for us to prove the main results.
However, from Lemma 1 we see that the uniqueness assumption is equivalent to a cer-
tain double-inequality condition, which looks like RIP. The evident difference between
them is in that the former possesses the homogeneity rather than the latter. This implies
that, unlike RIP, the uniqueness assumption is not in essential conflict with equivalence
of all linear systems λAx = λx, λ ∈R. Therefore, we think that the uniqueness assumption
and, equivalently, the resulting double-inequality condition in Lemma 1 can replace the
RIP in many cases.
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