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Abstract
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1 Introduction
In recent years, the Hausdorff operator has gained much attention. This is mainly because
of seminal work done by Liflyand and Móricz in [1]. In the paper, they considered the one
dimensional Hausdorff operator

h�(x) =
∫ ∞

0

�(t)
t

f
(

x
t

)
dt,

on real Hardy spaces. In [2], Lerner and Liflyand gave the following extension of h� to
Euclidean space R

n for n ≥ 2:

H�,Af (x) =
∫
Rn

�(y)
|y|n f

(
A(y)x

)
dy, (1.1)

where A(y) is an n × n matrix satisfying non-singularity conditions almost everywhere in
the support of a fixed integrable function �. After the appearance of references [1, 2], it was
natural to study, refine and extend the existing results on relevant function spaces. A num-
ber of significant studies have been undertaken in this regard like for example bounded-
ness of one and multidimensional Hausdorff operators on Hardy, Lp and BMO spaces [3–
8]. Besides, many authors have contributed a lot towards obtaining new estimates on other
function spaces. Among them we refer to [9–14] and the references therein.

On the other hand weighted norm inequalities for Hausdorff operators on function
spaces have recently been reported in the literature, which includes boundedness of Haus-
dorff operator on power weighted Hardy spaces [15, 16], weighted Herz-type Hardy spaces
[17] and on weighted Herz space on the Heisenberg group [18].
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In harmonic analysis the study of commutator operators on function spaces is also con-
sidered to be very important. It is to be noted that the commutators generated by Haus-
dorff operators with other functions are not widely discussed in the past. In a survey of
available literature one can find very few papers on this topic [19–23]. We define commu-
tators Hb

�,A of H�,A with locally integrable function b as

Hb
�,A(f ) = bH�,A(f ) – H�,A(bf ). (1.2)

When A(y) = diag[1/|y|, 1/|y|, . . . , 1/|y|], we obtain the commutators Hb
� of H�, where H�

is given by

H�f (x) =
∫
Rn

�(y)
|y|n f

(
x
|y|

)
dy. (1.3)

In [20], the authors have obtained some size conditions on � such that the commutator
generated by Hausdorff operator H� with Lipschitz function b is bounded on classical
Morrey spaces. However, the question of the boundedness of Hb

�,A on function spaces is
yet to be answered.

The purpose of this study is twofold. Firstly, motivated by the work in [17, 18], we give
estimates for the Hausdorff operator on weighted central Morrey space. In addition, under
some assumption on A(y), we work out the operator norm for H�,A on power weighted
central Morrey spaces. Secondly, we try to fill the gap to existing theory of the commuta-
tor of Hausdorff operators by defining a new type of commutators in (1.2) and establishing
the weighted estimates for such commutator operators. More precisely, under some as-
sumptions on A(y), we give necessary and sufficient conditions on the function � such
that Hb

�,A is bounded on power weighted central Morrey spaces.
This paper is organized as follows. In the next section, we will introduce some notations

and definitions along with some necessary lemmas to be used in the subsequent sections of
this paper. Our main results regarding boundedness of Hausdorff operators on weighted
central Morrey spaces are stated and proved in the third section. Finally, the last section
is devoted to obtaining weighted estimates for the commutators of Hausdorff operator.

2 Notations and definitions
In 1938, Morrey [24] carried out a systematic study to investigate the local behavior of
solutions to a certain kind of partial differential equations and introduced a new function
space, what is called Morrey space. For 1 ≤ q < ∞ and –1/q < λ < 0, the Morrey space
Mq,λ(Rn) was defined as the set of all locally integrable functions f satisfying

‖f ‖Mq,λ(Rn) = sup
a∈Rn ,R>0

(
1

|B(a, R)|1+λq

∫
B(a,R)

∣∣f (x)
∣∣q dx

)1/q

< ∞,

where B(a, R) is the Euclidean ball centered at a with radius R and |B(a, R)| is its Lebesgue
measure. If B(a, R) is replaced by B(0, R) in the above definition, then the function space
is the central Morrey space Ṁq,λ(Rn) introduced in [25] with the norm condition

‖f ‖Ṁq,λ(Rn) = sup
R>0

(
1

|B(0, R)|1+λq

∫
B(0,R)

∣∣f (x)
∣∣q dx

)1/q

< ∞.
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For the boundedness of the commutator operator on function spaces of central nature,
one usually looks for a corresponding function class to which the symbol function b be-
longs and which has BMO-type behavior at the origin. Having such a property an appro-
priate function space is the homogeneous central mean oscillation space CṀOq(Rn). Let
fB(0,R) denote the mean value of f over B(0, R), then we say that any locally integrable func-
tion f is in CṀOq(Rn) if

‖f ‖CṀOq(Rn) = sup
R>0

(
1

|B(0, R)|
∫

B(0,R)

∣∣f (x) – fB(0,R)
∣∣q dx

)1/q

< ∞.

For a detailed study of CṀOq(Rn) space we refer the interested reader to [25, 26].
Obviously, BMO(Rn) ⊂ CṀOq(Rn) for 1 ≤ q < ∞. However, the two spaces differ in

their properties. For example CṀOq(Rn) depends on q and CṀOq(Rn) ⊂ CṀOp(Rn), 1 ≤
p < q < ∞. Therefore, there is no analogy of the John-Nirenberg inequality of BMO(Rn)
for CṀOq(Rn). The space BMO(Rn) is the mean oscillation function space satisfying the
following norm condition:

‖f ‖BMO(Rn) = sup
B

1
|B|

∫
B

∣∣f (x) – fB
∣∣dx.

Muckenhoupt [27] firstly introduced the theory of Ap weights while studying Hardy-
Littlewood maximal functions on weighted Lp spaces. A weight w is a nonnegative, locally
integrable function on R

n. For a given subset E of Rn, we denote by w(E) the weighted
measure of E, that is, w(E) =

∫
E w(x) dx. Also, by p′ we denote the conjugate index of p,

satisfying 1/p + 1/p′ = 1.

Definition 2.1 A weight w is said to belong to the Muckenhoupt class Ap, 1 < p < ∞, if
there exists a positive constant C such that, for every ball B ⊂R

n,

(
1

|B|
∫

B
w(x) dx

)(
1

|B|
∫

B
w(x)–1/(p–1) dx

)p–1

≤ C.

Also, w ∈ A1 if there exists a positive constant C such that, for every ball B ⊂R
n,

(
1

|B|
∫

B
w(x) dx

)
≤ C essinf

x∈B
w(x).

For p = ∞, we define A∞ =
⋃

1≤p<∞ Ap.

Definition 2.2 ([28]) A weight w is said to belong to the reverse Hölder class RHr if there
exists a fixed positive constant C and r > 1 such that, for every ball B ⊂R

n,

(
1

|B|
∫

B
wr(x) dx

)1/r

≤ C
|B|

∫
B

w(x) dx.

It is also well known for s > p that Ap ⊂ As and that if w ∈ Ap, 1 < p < ∞, then w ∈ Aq for
some 1 < q < p. The infimum of all q such that w ∈ Aq is denoted by qw and is known as the
critical index for w. In addition, if w ∈ RHr , r > 1, then for some ε > 0 we have w ∈ RHr+ε .
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We therefore use rw ≡ sup{r > 1 : w ∈ RHr} to denote the critical index of w for the reverse
Hölder condition.

A special class of Muckenhoupt Ap weights is the power function |x|α . It is well known
that |x|α ∈ A1 if and only if –n < α ≤ 0. Also, for 0 < α < ∞, |x|α ∈ ⋂

(n+α)/n<p<∞ Ap, where
(n + α)/n is known as the critical index of |x|α .

Here we state some propositions regarding Ap weights, which will be helpful in obtaining
weighted estimates for Hausdorff operator and their commutators.

Proposition 2.3 ([28, 29]) Let w ∈ Ap ∩ RHr , p ≥ 1 and r > 1. Then there exist constant
C1, C2 > 0 such that

C1

( |E|
|B|

)p

≤ w(E)
w(B)

≤ C2

( |E|
|B|

)(r–1)/r

,

for any measurable subset E of the ball B. In general, for any λ > 1,

w(B(x0,λR) ≤ λnpw
(
B(x0, R)

)
.

Proposition 2.4 ([17]) Let f be a nonnegative locally integrable function. If w ∈ Ap, p ≥ 1,
then

1
|B(x0, R)|

∫
B(x0,R)

f (x) dx ≤ C
(

1
w(B(x0, R))

∫
B(x0,R)

f p(x)w(x) dx
)1/p

.

Let w be a weight function on R
n, for any measurable set E ⊂R

n, the weighted Lebesgue
space Lp(E; w) is the space of all functions satisfying

‖f ‖Lp(E;w) =
(∫

E

∣∣f (x)
∣∣pw(x) dx

)1/p

< ∞.

In 2009, Komori and Shirai [30] introduced the weighted Morrey space and studied the
properties of classical operators on this space. Here, we only give the definition of the
weighted central Morrey space.

Definition 2.5 Let λ ∈R, 1 ≤ q < ∞ and w is a weight function on R
n. Then the weighted

central Morrey space Ṁq,λ(Rn; w) is defined by

Ṁq,λ(
R

n; w
)

=
{

f ∈ Lq
loc

(
R

n; w
)

: ‖f ‖Ṁq,λ(Rn ;w) < ∞}
,

where

‖f ‖Ṁq,λ(Rn ;w) = sup
R>0

(
1

w(B(0, R))1+λq

∫
B(0,R)

∣∣f (x)
∣∣qw(x) dx

)1/q

< ∞.

If w is a weight function and fB,w = 1
w(B(0,R))

∫
B(0,R) |f (y)|w(y) dy, then the weighted central

mean oscillation space can be defined as follows.
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Definition 2.6 Let 1 < q < ∞, and w be a weight function. Then we say a function f ∈
Lq

loc(Rn; w) belongs to the weighted central mean oscillation space CṀOq(Rn; w) if

‖f ‖CṀOq(Rn ;w) = sup
R>0

(
1

w(B(0, R))

∫
B(0,R)

∣∣f (x) – fB,w
∣∣qw(x) dx

)1/q

< ∞.

In the sequel, we shall use the notation A � B, meaning that there exists a constant
C > 0 independent of all essential values and variables such that A ≤ CB. We shall use
the notation A � B, meaning that there exist constants C > 0 and c > 0 independent of all
essential values and variables such that cB ≤ A ≤ CB. Moreover, we will denote a weight
from the Muckenhoupt Ap class by w. However, when the weight is reduced to the power
function, we will denote it by v, that is, v(x) = |x|α .

Finally, for an invertible matrix D we will use the norm

‖D‖ = sup
x∈Rn ,x 
=0

|Dx|
|x| . (2.1)

Then it is easy to see that

‖D‖–n ≤ ∣∣det
(
D–1)∣∣ ≤ ∥∥D–1∥∥n. (2.2)

Proposition 2.7 Let α be a real number, D is any nonsingular matrix and x ∈R
n, then we

have the following results:
(i)

v(Dx) �
⎧⎨
⎩

‖D‖αv(x) if α > 0,

‖D–1‖–αv(x) if α ≤ 0;

(ii)

v
(
B
(
0,‖D‖R

))
= ‖D‖n+αv

(
B(0, R)

)
.

Proof The proof follows from the definition of v(x) and (2.1). �

Henceforth, for the sake of convenience, we will denote B(0, R) by B.

3 Bounds for H�,A on weighted central Morrey space
This section is devoted to stating and proving results on the boundedness of H�,A on a
weighted central Morrey space.

3.1 Main results
We now present the main results for this section.

Theorem 3.1 Let 1 ≤ q1, q2 < ∞, λ < 0. Suppose that w ∈ A1 with the critical index rw for
the reverse Hölder condition and suppose that q1 > q2rw/(rw – 1).

Then for any 1 < δ < rw

‖H�,Af ‖Ṁq2,λ(Rn ;w) � K1‖f ‖Ṁq1,λ(Rn ,w),



Hussain and Ajaib Journal of Inequalities and Applications  (2018) 2018:6 Page 6 of 19

where

K1 =
∫

‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥nλ+n/q1 dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1+nλ(δ–1)/δ dy.

In the case that general weights are replaced by a power function, the result can be stated
in the form of the following theorem.

Theorem 3.2 Let 1 ≤ q < ∞, –1/q ≤ λ < 0.
(i) If 0 < α < ∞,

‖H�,Af ‖Ṁq,λ(Rn ;v) � K2‖f ‖Ṁq,λ(Rn ,v),

where

K2 =
∫
Rn

�(y)
|y|n

∣∣det A–1(y)
∣∣1/q∥∥A(y)

∥∥(n+α)(λ+1/q)∥∥A–1(y)
∥∥α/q dy.

(ii) If –n < α ≤ 0, then

‖H�,Af ‖Ṁq,λ(Rn ;v) � K3‖f ‖Ṁq,λ(Rn ,v),

where

K3 =
∫
Rn

�(y)
|y|n

∣∣det A–1(y)
∣∣1/q∥∥A(y)

∥∥n(λ+1/q)+αλ dy.

Especially, if ‖A–1(y)‖ and ‖A(y)‖–1 are comparable, we obtain the following sharp result.

Theorem 3.3 Let 1 ≤ q < ∞, –1/q ≤ λ < 0, –n < α < ∞, and � be a nonnegative function.
Suppose that there is a constant C independent of y such that ‖A–1(y)‖ ≤ C‖A(y)‖–1 for all
y ∈ supp(�), then H�,A is bounded on Ṁq,λ(Rn; v) if and only if

K4 =
∫
Rn

�(y)
|y|n |∥∥A(y)

∥∥(n+α)λ dy < ∞.

Remark 3.4 Let A(y) = diag[1/μ1(y), . . . , 1/μn(y)] for μi(y) 
= 0 (i = 1, 2, . . . , n). Define

m(y) = min
{∣∣μ1(y)

∣∣, . . . ,
∣∣μn(y)

∣∣}, M(y) = max
{∣∣μ1(y)

∣∣, . . . ,
∣∣μn(y)

∣∣}.

For a constant C ≥ 1 independent of y if M(y) ≤ Cm(y), then it can easily be verified that
A(y) satisfies the assumptions of Theorem 3.3.

In the remaining of this section we will prove Theorems 3.1-3.3.
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3.2 Proof of Theorem 3.1
For a fixed ball B ⊂R

n, by the Minkowski inequality

‖H�,Af ‖Lq2 (B;w) =
(∫

B

∣∣∣∣
∫
Rn

�(y)
|y|n f

(
A(y)x

)
dy

∣∣∣∣
q2

w(x) dx
)1/q2

≤
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣f (A(y)x
)∣∣q2 w(x) dx

)1/q2

dy. (3.1)

In view of the condition q1 > q2rw/(rw – 1), there exists 1 < r < rw such that q1 = q2r′ =
q2r/(r – 1). An application of the Hölder inequality and the reverse Hölder condition yields

∥∥f
(
A(y)·)∥∥Lq2 (B;w) ≤

(∫
B

∣∣f (A(y)x
)∣∣q1 dx

)1/q1(∫
B

w(x)r dx
)1/(rq2)

� ∣∣det A–1(y)
∣∣1/q1 |B|–1/q1 w(B)1/q2

(∫
A(y)B

∣∣f (x)
∣∣q1 dx

)1/q1

.

By virtue of Proposition 2.4, one has

(∫
A(y)B

∣∣f (x)
∣∣q1 dx

)1/q1

� ∣∣B(
0,

∥∥A(y)
∥∥R

)∣∣1/q1
(

1
w(B(0,‖A(y)‖R))

∫
B(0,‖A(y)‖R)

∣∣f (x)
∣∣q1 w(x) dx

)1/q1

� ∥∥A(y)
∥∥n/q1 ∣∣B(0, R)

∣∣1/q1 w
(
B
(
0,

∥∥A(y)
∥∥R

))λ‖f ‖Ṁq1,λ(Rn ,w), (3.2)

which suggests that

∥∥f
(
A(y)·)∥∥Lq2 (B;w)

� ∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1 w(B)1/q2 w
(
B
(
0,

∥∥A(y)
∥∥R

))λ‖f ‖Ṁq1,λ(Rn ,w). (3.3)

We thus conclude from (3.1) and (3.3) that

‖H�,Af ‖Ṁq2,λ(Rn ;w)

� ‖f ‖Ṁq1,λ(Rn ,w)

∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1
(

w(B(0,‖A(y)‖R))
w(B(0, R))

)λ

dy

� ‖f ‖Ṁq1,λ(Rn ,w)

×
(∫

‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1
(

w(B(0,‖A(y)‖R))
w(B(0, R))

)λ

dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1
(

w(B(0,‖A(y)‖R))
w(B(0, R))

)λ

dy
)

. (3.4)

Since λ < 0, Proposition 2.3 implies that, if ‖A(y)‖ < 1,

(
w(B(0,‖A(y)‖R))

w(B(0, R))

)λ

�
( |B(0,‖A(y)‖R)|

|B(0, R)|
)λ

=
∥∥A(y)

∥∥nλ, (3.5)
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and, if ‖A(y)‖ ≥ 1,

(
w(B(0,‖A(y)‖R))

w(B(0, R))

)λ

�
( |B(0,‖A(y)‖R)|

|B(0, R)|
)λ(δ–1)/δ

=
∥∥A(y)

∥∥nλ(δ–1)/δ , (3.6)

for any 1 < δ < rw.
Therefore, from (3.4)-(3.6) it is easy to see that, for any 1 < δ < rw,

‖H�,Af ‖Ṁq2,λ(Rn ;w)

� ‖f ‖Ṁq1,λ(Rn ,w)

(∫
‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥nλ+n/q1 dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1+nλ(δ–1)/δ dy
)

.

The proof of Theorem 3.1 is completed.

3.3 Proof of Theorem 3.2
In view of the Minkowski inequality, change of variables and Proposition 2.7, we have

(
1

v(B(0, R))1+λq

∫
B(0,R)

|H�,Af |qv(x) dx
)1/q

� v
(
B(0, R)

)–(λ+1/q)
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣f (A(y)x
)∣∣qv(x) dx

)1/q

dy

� v
(
B(0, R)

)–(λ+1/q)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q

(∫
A(y)B

∣∣f (x)
∣∣qv

(
A–1(y)x

)
dx

)1/q

dy

� ‖f ‖Ṁq,λ(Rn ,v)

×
⎧⎨
⎩

∫
Rn

|�(y)|
|y|n |det A–1(y)|1/q‖A(y)‖(n+α)(λ+1/q)‖A–1(y)‖α/q dy if α > 0,∫

Rn
|�(y)|
|y|n |det A–1(y)|1/q‖A(y)‖n(λ+1/q)+αλ dy if α ≤ 0.

Therefore, we conclude that

‖H�,A‖Ṁq,λ(Rn ,v)→Ṁq,λ(Rn ,v) �
⎧⎨
⎩

K2 if α > 0,

K3 if α ≤ 0.

Thus we finish the proof of Theorem 3.2.

3.4 Proof of Theorem 3.3
If ‖A–1(y)‖ � ‖A(y)‖–1, we infer from (2.2) that

∥∥A(y)
∥∥–n � ∣∣det A–1(y)

∣∣ � ∥∥A–1(y)
∥∥n. (3.7)

Here we will prove the necessary part of Theorem 3.3, as the sufficient part can easily be
obtained from Theorem 3.2. We divide our proof into the following two cases.
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Case 1. If –1/q < λ < ∞.
In this case, we select f0 ∈ Ṁp,λ(Rn; v) such that f0(x) = |x|(n+α)λ. It is easy to see that

‖f0‖Ṁp,λ(Rn ;v) = |Sn–1|–λ(n + α)λ(1 + λq)–1/q, where |Sn–1| denotes the volume of unit sphere
Sn–1.

On the other hand, making use of the fact that (n + α)λ < 0, we obtain

H�,Af0(x) =
∫
Rn

�(y)
|y|n

∣∣A(y)x
∣∣(n+α)λ dy

� |x|(n+α)λ
∫
Rn

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ dy,

this implies that

‖H�,A‖Ṁq,λ(Rn ,v)→Ṁq,λ(Rn ,v) �
∫
Rn

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ dy,

as required.
Case 2. If λ = –1/q, then, for 0 < ε < 1, we take

fε(x) = |x|–(n+α)/q–εχ{|x|>1}.

A simple computation yields ‖fε‖q
Lq(Rn ;v) = |Sn–1|

εq . Now, by definition

H�,A(fε)(x) =
∫
Rn

�(y)
|y|n

∣∣A(y)x
∣∣–(n+α)/q–ε

χ{|A(y)x|>1} dy

�
(∫

‖A(y)‖�1/|x|
�(y)
|y|n

∥∥A(y)
∥∥–(n+α)/q–ε

)
|x|–(n+α)/q–ε .

Now,

∥∥H�,A(fε)
∥∥q

Lq(Rn ,v)

�
∫

|x|>1

(
|x|–(n+α)/q–ε

∫
‖A(y)‖�1/|x|

�(y)
|y|n

∥∥A(y)
∥∥–(n+α)/q–ε

)q

v(x) dx

�
∫

|x|> 1
ε

|x|–n–εq dx
(∫

‖A(y)‖�ε

�(y)
|y|n

∥∥A(y)
∥∥–(n+α)/q–ε dy

)q

=
(∫

‖A(y)‖�ε

�(y)
|y|n

∥∥A(y)
∥∥–(n+α)/q–ε dy

)q(
εε

)q‖fε‖q
Lq(Rn ,v),

by letting ε → 0, we have

‖H�‖Lq(Rn ,v)→Lq(Rn ,v) �
∫
Rn

�(y)
|y|n

∥∥A(y)
∥∥–(n+α)/q dy.

With this we complete the proof of Theorem 3.3.

4 Bounds for Hb
�,A on weighted central Morrey space

4.1 Main results
We now present the main results for this section.
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Theorem 4.1 Let 1 ≤ q < ∞, 1 ≤ s < q1 < ∞, 1/s = 1/q1 + 1/q2, and λ < 0. Suppose that
w ∈ A1 with the critical index rw for the reverse Hölder condition and suppose that s >
qrw/(rw – 1).

Then for any 1 < δ < rw

∥∥Hb
�,Af

∥∥
Ṁq,λ(Rn ;w) � K5‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w),

where

K5 =
∫

‖A(y)‖<1

|�(y)||det A–1(y)|1/q1

|y|n‖A(y)‖–nλ–n/q1

(
1 +

|det A–1(y)|1/q2

‖A(y)‖–n/q2

)
log

2
‖A(y)‖ dy

+
∫

‖A(y)‖≥1

|�(y)||det A–1(y)|1/q1

|y|n‖A(y)‖–n/q1–nλ(δ–1)/δ

(
1 +

|det A–1(y)|1/q2

‖A(y)‖–n/q2

)
log 2

∥∥A(y)
∥∥dy.

Instead of general weights, when dealing with power weights, we have the following
results.

Theorem 4.2 Let 1 ≤ q < q1 < ∞, 1/q = 1/q1 + 1/q2, –1/q ≤ λ < 0. Then:
(i) If 0 < α < ∞,

∥∥Hb
�,Af

∥∥
Ṁq,λ(Rn ;v) � K6‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v),

where

K6 =
∫
Rn

|�(y)||det A–1(y)| 1
q1 ‖A–1(y)‖ α

q1

|y|n‖A(y)‖–(n+α)(λ+ 1
q1

)

(
1 +

|det A–1(y)| 1
q2 ‖A–1(y)‖ α

q2

‖A(y)‖– n+α
q2

)

×
(

log
2

‖A(y)‖χ{‖A(y)‖<1} + log 2
∥∥A(y)

∥∥χ{‖A(y)‖≥1}
)

dy.

(ii) If –n < α ≤ 0, then

∥∥Hb
�,Af

∥∥
Ṁq,λ(Rn ;v) � K7‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v),

where

K7 =
∫
Rn

|�(y)||det A–1(y)| 1
q1

|y|n‖A(y)‖–n(λ+ 1
q1

)–αλ

(
1 +

|det A–1(y)| 1
q2

‖A(y)‖– n
q2

)

×
(

log
2

‖A(y)‖χ{‖A(y)‖<1} + log 2
∥∥A(y)

∥∥χ{‖A(y)‖≥1}
)

dy.

More specifically, if ‖A–1(y)‖ and ‖A(y)‖–1 are comparable, we obtain the sharp results
by decomposing Hb

φ,A as follows:

Hb,1
�,Af =

∫
‖A(y)‖<1

�(y)
|y|n

(
b(x) – b

(
A(y)x

))
f
(
A(y)x

)
dy,

Hb,2
�,Af =

∫
‖A(y)‖≥1

�(y)
|y|n

(
b(x) – b

(
A(y)x

))
f
(
A(y)x

)
dy.
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Theorem 4.3 Let 1 < q < q1 < ∞, 1/q = 1/q1 + 1/q2, –1/q < λ < 0, and � be a nonnegative
function. Suppose that there is a positive constant C independent of y such that ‖A–1(y)‖ ≤
C‖A(y)‖–1 for all y ∈ supp(�). In addition, if �(y)/|y|n is integrable then:

(i) Hb,1
�,A is bounded from Ṁq1,λ(Rn; v) to Ṁq,λ(Rn; v) if and only if

K8 =
∫

‖A(y)‖<1

�(y)
|y|n |∥∥A(y)

∥∥(n+α)λ
log

2
‖A(y)‖ dy < ∞.

(ii) Hb,2
�,A is bounded from Ṁq1,λ(Rn; v) to Ṁq,λ(Rn; v) if and only if

K9 =
∫

‖A(y)‖≥1

�(y)
|y|n |∥∥A(y)

∥∥(n+α)λ
log 2

∥∥A(y)
∥∥dy < ∞.

Remark 4.4 Note that, from the preceding theorem, one cannot deduce Lp(Rn; v) bound-
edness for the commutator operator by taking λ = –1/p, just in the case of Theorem 3.3.
This raises an open question regarding the Lp boundedness of Hb

�,A, which will be an-
swered later.

Remark 4.5 Validity of assumptions in Theorem 4.3 can be justified by Remark 3.4 in
third section.

4.2 Proof of Theorem 4.1
As before we fix a ball B ⊂R

n. Using Minkowski inequality, we obtain

∥∥Hb
�,Af

∥∥
Lq(B;w)

=
(∫

B

∣∣∣∣
∫
Rn

�(y)
|y|n

(
b(x) – b

(
A(y)x

))
f
(
A(y)x

)
dy

∣∣∣∣
q

w(x) dx
)1/q

≤
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣(b(x) – b
(
A(y)x

))
f
(
A(y)x

)∣∣qw(x) dx
)1/q

dy

≤
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣(b(x) – bB,w
)
f
(
A(y)x

)∣∣qw(x) dx
)1/q

dy

+
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣(bB,w – bA(y)B,w)f
(
A(y)x

)∣∣qw(x) dx
)1/q

dy

+
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣(b
(
A(y)x

)
– bA(y)B,w

)
f
(
A(y)x

)∣∣qw(x) dx
)1/q

dy

= I1 + I2 + I3.

Let us start estimating I1. For this purpose, we first compute the inner norm ‖(b(·) –
bB,w)f (A(y)·)‖Lq(B;w). The condition s > qrw/(rw – 1) implies that there is 1 < r < rw such that
s = qr′ = qr/(r – 1). By the Hölder inequality and the reverse Hölder condition, we obtain

∥∥(
b(·) – bB,w

)
f
(
A(y)·)∥∥Lq(B;w)

≤
(∫

B

∣∣(b(x) – bB,w
)
f
(
A(y)x

)∣∣s dx
)1/s(∫

B
w(x)r dx

)1/(rq)

� |B|–1/sw(B)1/q
(∫

B

∣∣(b(x) – bB,w
)
f
(
A(y)x

)∣∣s dx
)1/s

.
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In view of the condition 1/s = 1/q1 + 1/q2, we have

∥∥(
b(·) – bB,w

)
f
(
A(y)·)∥∥Lq(B;w)

� |B|–1/sw(B)1/q
(∫

B

∣∣b(x) – bB,w
∣∣q2 dx

)1/q2(∫
B

∣∣f (A(y)x
)∣∣q1 dx

)1/q1

� ∣∣det A–1(y)
∣∣1/q1 |B|–1/sw(B)1/q

×
(∫

B

∣∣b(x) – bB,w
∣∣q2 dx

)1/q2(∫
A(y)B

∣∣f (x)
∣∣q1 dx

)1/q1

. (4.1)

By virtue of Proposition 2.4, it is easy to see that

(∫
B

∣∣b(x) – bB,w
∣∣q2 dx

)1/q2

� |B|1/q2‖b‖CṀOq2 (Rn ,w). (4.2)

Substituting the result from inequalities (3.2) and (4.2) into (4.1), one has

∥∥(
b(·) – bB,w

)
f
(
A(y)·)∥∥Lq(B;w)

� w(B)1/q∣∣det A–1(y)
∣∣1/q2∥∥A(y)

∥∥n/q1 w
(
A(y)B

)λ‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w).

Therefore, we obtain

I1 � w(B)λ+1/q‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥n/q1
(

w(B(0,‖A(y)‖R))
w(B(0, R))

)λ

dy. (4.3)

Making use of the inequalities (3.5) and (3.6) into (4.3), we get

I1 � w(B)λ+1/q‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w)

×
(∫

‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥nλ+n/q1 dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥nλ(δ–1)/δ+n/q1 dy
)

.

Now, we turn to an estimate of I2, which can be written as

I2 =
∫
Rn

|�(y)|
|y|n

∥∥f
(
A(y)·)∥∥Lq(B;w)|bB,w – bA(y)B,w|dy. (4.4)

Here, the indices q and s bear the same relationship as observed between q1 and q2 of
Theorem 3.1. Therefore, we infer from (3.3) that

∥∥f
(
A(y)·)∥∥Lq(B;w)

� ∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n/sw
(
B(0, R)

)1/qw
(
B
(
0,

∥∥A(y)
∥∥R

))λ‖f ‖Ṁs,λ(Rn ,w).
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Applying the Hölder inequality to s/q1 and s/q2, we have

∥∥f
(
A(y)·)∥∥Lq(B;w)

� ∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n/sw(B)1/qw
(
B
(
0,

∥∥A(y)
∥∥R

))λ‖f ‖Ṁq1,λ(Rn ,w). (4.5)

With the help of (4.5), inequality (4.4) assumes the following form:

I2 � w(B)λ+1/q‖f ‖Ṁq1,λ(Rn ,w)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n/s w(B(0,‖A(y)‖R))λ

w(B(0, R))λ
|bB,w – bA(y)B,w|dy.

For λ < 0, the inequalities (3.5) and (3.6) help us to obtain

I2 � w(B)λ+1/q‖f ‖Ṁq1,λ(Rn ,w)

×
(∫

‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥nλ+n/s|bB,w – bA(y)B,w|dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥nλ(δ–1)/δ+n/s|bB,w – bA(y)B,w|dy
)

=: w(B)λ+1/q‖f ‖Ṁq1,λ(Rn ,w)(I21 + I22). (4.6)

For convenience, we denote φ(y) = |�(y)|
|y|n |det A–1(y)|1/s‖A(y)‖n(λ+1/s). Moreover, for

‖A(y)‖ < 1, there exists j ∈ Z such that 2–j–1 ≤ ‖A(y)‖ < 2–j. Thus

I21 =
∫

‖A(y)‖<1
φ(y)

{ j∑
i=1

|b2–iB,w – b2–i+1B,w| + |b2–jB,w – bA(y)B,w|
}

dy.

Since w ∈ A1, using the Hölder inequality it is easy to see that

|b2–iB,w – b2–i+1B,w| ≤ 1
w(2–iB)

∫
2–iB

∣∣b(y) – b2–i+1B,w
∣∣w(y) dy

≤ w(2–i+1B)
w(2–iB)

‖b‖CṀOq2 (Rn ,w)

� ‖b‖CṀOq2 (Rn ,w).

Similarly, |b2–jB,w – bA(y)B,w| � ‖b‖CṀOq2 (Rn ,w) and thus

I21 � ‖b‖CṀOq2 (Rn ,w)

∞∑
j=0

∫
2–j–1≤‖A(y)‖<2–j

φ(y){j + 1}dy

� ‖b‖CṀOq2 (Rn ,w)

∞∑
j=0

∫
2–j–1≤‖A(y)‖<2–j

φ(y)
{
log 2j + 1

}
dy

� ‖b‖CṀOq2 (Rn ,w)

∫
‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n(λ+1/s)
log

2
‖A(y‖ dy.
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Following the same procedure as in the approximation of I21, we estimate I22 as

I22 � ‖b‖CṀOq2 (Rn ,w)

×
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n(λ(δ–1)/δ+1/s)
log 2

∥∥A(y
∥∥dy.

Incorporating the estimates of I21 and I22 into (4.6), we obtain

I2 � w(B)λ+1/q‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w)

×
(∫

‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n(λ+1/s)
log

2
‖A(y‖)

dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n(λ(δ–1)/δ+1/s)
log 2

∥∥A(y)
∥∥dy

)
.

It remains to approximate I3. For this purpose, we infer from (4.1) that

∥∥(
b
(
A(y)·) – bA(y)B,w

)
f
(
A(y)·)∥∥Lq(B;w)

� ∣∣det A–1(y)
∣∣1/q1 |B|–1/sw(B)1/q

×
(∫

B

∣∣b(
A(y)x

)
– bA(y)B,w

∣∣q2 dx
)1/q2(∫

A(y)B

∣∣f (x)
∣∣q1 dx

)1/q1

. (4.7)

Making use of Proposition 2.4, one can obtain

(∫
B

∣∣b(
A(y)x

)
– bA(y)B,w

∣∣q2 dx
)1/q2

=
∣∣det A–1(y)

∣∣1/q2
(∫

A(y)B

∣∣b(x) – bA(y)B,w
∣∣q2 dx

)1/q2

=
∣∣det A–1(y)

∣∣1/q2∥∥A(y)
∥∥n/q2 ∣∣B(0, R)

∣∣1/q2‖b‖CṀOq2 (Rn ,w). (4.8)

In view of (3.2), (4.7) and (4.8), it is easy to verify that

∥∥(
b
(
A(y)·) – bA(y)B,w

)
f
(
A(y)·)∥∥Lq(B;w)

� w(B)1/q∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n/sw
(
A(y)B

)λ‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w).

We thus obtain

I3 � w(B)λ+1/q‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥n/s
(

w(B(0,‖A(y)‖R))
w(B(0, R))

)λ

dy.
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Finally, inequalities (3.5) and (3.6) lead to

I3 � w(B)λ+1/q‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w)

×
(∫

‖A(y)‖<1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥nλ+n/s dy

+
∫

‖A(y)‖≥1

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/s∥∥A(y)

∥∥nλ(δ–1)/δ+n/s dy
)

,

for any 1 < δ < rw.
Combining the estimates for I1, I2, and I3, we obtain

∥∥Hb
�,Af

∥∥
Ṁq,λ(Rn ;w) � K5‖b‖CṀOq2 (Rn ,w)‖f ‖Ṁq1,λ(Rn ,w).

This completes the proof of Theorem 4.1.

4.3 Proof of Theorem 4.2
(i) As in the previous theorem

∥∥Hb
�,Af

∥∥
Lq(B;v) ≤ J1 + J2 + J3,

where J1, J2 and J3 assume the form of I1, I2 and I3, respectively, but with w(·) is replaced
by v(·).

An application of the Hölder inequality and change of variables yields

J1 ≤
∫
Rn

|�(y)|
|y|n

(∫
B

∣∣b(x) – bB,v
∣∣q2 v(x) dx

)1/q2(∫
B

∣∣f (A(y)x
)∣∣q1 v(x) dx

)1/q1

dy

≤ v(B)1/q2‖b‖CṀOq2 (Rn ,v)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1

(∫
A(y)B

∣∣f (x)
∣∣q1 v

(
A–1(y)x

)
dx

)1/q1

dy.

In view of Proposition 2.7 it is easy to see that

J1 � v(B)λ+1/q‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q1∥∥A(y)

∥∥(n+α)(λ+1/q1)∥∥A–1(y)
∥∥α/q1 dy.

The expression for J2 can be written as

J2 =
∫
Rn

|�(y)|
|y|n

∥∥f
(
A(y)·)∥∥Lq(B;v)|bB,v – bA(y)B,v|dy. (4.9)
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In order to estimate J2 we first compute ‖f (A(y)·)‖Lq(B;v). For this purpose a change of vari-
ables following the Hölder inequality and Proposition 2.7 gives us

∥∥f
(
A(y)·)∥∥Lq(B;v)

=
(∫

B

∣∣f (A(y)x
)∣∣qv(x) dx

)1/q

=
∣∣det A–1(y)

∣∣1/q
(∫

A(y)B

∣∣f (x)
∣∣qv

(
A–1(y)x

)
dx

)1/q

� ∣∣det A–1(y)
∣∣1/q∥∥A–1(y)

∥∥α/q‖f ‖Lq(A(y)B;v)

� ∣∣det A–1(y)
∣∣1/q∥∥A–1(y)

∥∥α/q‖f ‖Lq1 (A(y)B;v)v
(
A(y)B

)1/q2

� v(B)λ+1/q∣∣det A–1(y)
∣∣1/q∥∥A(y)

∥∥(n+α)(λ+1/q)∥∥A–1(y)
∥∥α/q‖f ‖Ṁq1,λ(Rn ,v).

Therefore (4.9) becomes

J2 � v(B)λ+1/q‖f ‖Ṁq1,λ(Rn ,v)

×
∫
Rn

|�(y)||det A–1(y)|1/q‖A–1(y)‖α/q

|y|n‖A(y)‖–(n+α)(λ+1/q) |bB,v – bA(y)B,v|dy.

By denoting ψ(y) = |�(y)||det A–1(y)|1/q‖A–1(y)‖α/q

|y|n‖A(y)‖–(n+α)(λ+1/q) , we decompose J2 as

J2 � v(B)λ+1/q‖f ‖Ṁq1,λ(Rn ,v)

×
(∫

‖A(y)‖<1
ψ(y)|bB,v – bA(y)B,v|dy +

∫
‖A(y)‖≥1

ψ(y)|bB,v – bA(y)B,v|dy
)

= v(B)λ+1/q‖f ‖Ṁq1,λ(Rn ,v)(J21 + J22).

Again, we arrive at the same point as reached in (4.6) with w(·) replaced by v(·). Therefore,
performing in a way similar to that point forward we estimate J2 as

J2 � v(B)λ+1/q‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v)

×
(∫

‖A(y)‖<1

|�(y)||det A–1(y)|1/q‖A–1(y)‖α/q

|y|n‖A(y)‖–(n+α)(λ+1/q) log
2

‖A(y)‖ dy

+
∫

‖A(y)‖≥1

|�(y)||det A–1(y)|1/q‖A–1(y)‖α/q

|y|n‖A(y)‖–(n+α)(λ+1/q) log 2
∥∥A(y)

∥∥dy
)

.

It remains to estimate J3. For this purpose we proceed as follows:

∥∥(
b
(
A(y)·) – bA(y)B,v

)
f
(
A(y)·)∥∥Lq(B;v)

=
(∫

B

∣∣(b
(
A(y)x

)
– bA(y)B,v

)
f
(
A(y)x

)∣∣qv(x) dx
)1/q

=
∣∣det A–1(y)

∣∣1/q
(∫

A(y)B

∣∣(b(x) – bA(y)B,v
)
f (x)

∣∣qv
(
A–1(y)x

)
dx

)1/q

� ∣∣det A–1(y)
∣∣1/q∥∥A–1(y)

∥∥α/q∥∥(
b(·) – bA(y)B,v

)
f (·)∥∥Lq(A(y)B;v)
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� ∣∣det A–1(y)
∣∣1/q∥∥A–1(y)

∥∥α/q‖b – bA(y)B,v‖Lq2 (A(y)B;v)‖f ‖Lq1 (A(y)B;v)

� v(B)λ+1/q‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v)

× ∣∣det A–1(y)
∣∣1/q∥∥A(y)

∥∥(n+α)(λ+1/q)∥∥A–1(y)
∥∥α/q.

Hence,

J3 � v(B)λ+1/q‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v)

×
∫
Rn

|�(y)|
|y|n

∣∣det A–1(y)
∣∣1/q∥∥A(y)

∥∥(n+α)(λ+1/q)∥∥A–1(y)
∥∥α/q dy.

Combining the estimates for J1, J2, and J3 we obtain

∥∥Hb
�,Af

∥∥
Ṁq,λ(Rn ;v) � K6‖b‖CṀOq2 (Rn ,v)‖f ‖Ṁq1,λ(Rn ,v).

This completes the proof of part (i).
(ii) Using Proposition 2.7 along with an argument as given above, the proof of this part

becomes simpler. We thus finish the proof of Theorem 4.2.

4.4 Proof of Theorem 4.3
(i) If ‖A–1(y)‖ � ‖A(y)‖–1, then (3.7) is valid. The sufficient part of Theorem 4.3 can easily
be obtained from Theorem 4.2. Next we will show the necessary part.

For –1/q < λ < 0, choose f0(x) = |x|(n+α)λ. It is easy to see that f0 ∈ Ṁq1,λ(Rn; v) and
‖f0‖Ṁq1,λ(Rn ;v) = |Sn–1|–λ(n + α)λ(1 + λq1)–1/q1 . Assume that Hb,1

φ,A is bounded from Ṁq1,λ

to Ṁq,λ for all b ∈ ‖b‖CṀOq2 (Rn ,v). Taking b0 = log |x|, then by Lemma 2.3 in [31], b ∈
CṀOq2 (Rn, v). Noting that (n + α)λ < 0, we have

Hb0,1
�,A f0(x) =

∫
‖A(y)‖<1

�(y)
|y|n

∣∣A(y)x
∣∣(n+α)λ

log

( |A(y)x|
|x|

)–1

dy

� f0(x)
∫

‖A(y)‖<1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ

log
1

‖A(y)‖ dy.

Hence,

∥∥Hb0,1
�,A

∥∥
Ṁq1,λ(Rn ,v)→Ṁq,λ(Rn ,v) �

∫
‖A(y)‖<1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ

log
1

‖A(y)‖ dy.

Therefore, we obtain

∫
‖A(y)‖<1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ

log
1

‖A(y)‖ dy < ∞. (4.10)

On the other hand
∫

‖A(y)‖≤1/2

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ dy

≤
∫

‖A(y)‖≤1/2

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ

log
1

‖A(y)‖ dy. (4.11)
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Since �(y)/|y|n is integrable and (n + α)λ < 0,

∫
1/2≤‖A(y)‖≤1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ dy ≤ ∞. (4.12)

From (4.11) and (4.12), we have

∫
‖A(y)‖≤1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ dy < ∞. (4.13)

It is important to note that

K8 = log 2
∫

‖A(y)‖≤1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ dy

+
∫

‖A(y)‖≤1

�(y)
|y|n

∥∥A(y)
∥∥(n+α)λ

log
1

‖A(y)‖ dy.

Then, combining (4.10) and (4.13), we have K8 < ∞.
This proves part (i) of Theorem 4.3.
(ii) In this case we replace b0(x) by log 1

|x| , then by an argument similar to above the proof
can be obtained easily.
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