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1 Introduction
It is well known that we often need to deal with the problem of approximating the factorial

function n! and its extension to real numbers called the gamma function, defined by
oo
Ix) = / #letdt, Re(x)>0,
0

and the logarithmic derivatives of I"(x) are called the psi-gamma functions, denoted by

_d _IM(x)
Yx) = o InT(x) = T

For x > 0, the derivatives v’'(x) are called the tri-gamma functions, while the derivatives
v P (x), k=1,2,3,..., are called the poly-gamma functions.
Mortici [1] proved that

Fx+1)= 2nx<§)xexp(%w/(x + 1/2)) exp h(x) (1.1)
and
ad Bz;,n > Bm—l
hle) = ; 2m(2m — 1)1 ; 12(x + 1/2)m° 12
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where By, k > 0, noting the Bernoulli numbers which are generated by

Rl k
z z

el ZBkE. (1.3)

k=0
It is found that

1 11 107 2911 1

hix) = _ - of = ). 14

™) = 5300 ~ 6720 * 80,6800 _ 1,520,680 (x“) 14

However, those coefficients of the asymptotic formula (1.1) are not complete. The
asymptotic expansion of I'(x + 1) via the tri-gamma function can be generalized to the
general cases by the arguments in [2] as follows.

Barnes (1899) and Rowe (1931) have shown that

1 1
InT(z+a)= <z+a—§>lnz—z+ §In2n

n k+1
k=1

where |argz| <7 — ¢, & > 0 and Bi(x) is the Bernoulli polynomial. If a = %, By (a) vanishes
if k is odd, note that

1 “". B
lnF(z+ 5) z(Inz-1) + = ln2n Z T ;];( )1)21_21( + O(z’z"_l) (1.6)

for |argz| <m —¢, & >0 listed in [2], p. 32, (5). We can get as x — 00,

1 1 = Bx(3) 1
lnF(x+ 5):xlnx—x+ iln2ﬂ+EMx2k*1' (1.7)

So we consider a function /(x) defined by

(x+1) = v2rx" 12 exp( llzw/(x + %)) exp h(x). (1.8)

By (1.7), one can easily obtain that as x — oo,

h(x)=InT(x+1) 112 L 1 lw’ !
x)=InT'(x+1)—-In27r - [x+ = |Inx+x— —¢¥'|x+ =
2 2 12 2

ind B, 1 1 d2 1
:27 - ——InT

— 2n(2m — 1) x2-1 12 dx? 2
o0

_ Z B2n+2 + (1 - 2172”)3271 1
—~\2(n+1)2n+1) 12 x2n+l’

Thus, together with (1.8) the asymptotic expansion can be explicitly expressed as

1 1 >
(x+1) = V2ra* 12 exp(ﬁw(x + 5) —x+ Z xzcnnﬁ), x — 00, (1.9)
n=1
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where

BZVHZ (1 - 21_2”)32;1
+ ,
2(n+1)2n +1) 12

Cy =

(1.10)

here B,, denotes the Bernoulli number.

In this paper we will apply the multiple-correction method [3—-5] to construct a new
asymptotic expansion for the factorial n! and the gamma function via the tri-gamma func-
tion.

Theorem 1 For every integer n > 1, we have

n
n 1
Fn+1)~ \/27171(—) exp(ﬁlll’(n + 1/2)) exp(m(n) + 7]2(11)), (1.11)
e
where
1 193
_ 240 _ 282,240
m(n) = B0, na(n) = 7 , 108,338 5 _ 21,252,897,179 3 . 997,042,514,542,183 "
28 44,583 59,061,418,416 188,081,086,945,752

Using Theorem 1, we provide some inequalities for the gamma function.

Theorem 2 For every integer n > 1, the following holds:

n!

«/27111(%)” exp(l—l2 ¥ (n+1/2))

expni(n) < <exp(ni(n) + na(n)). (1.12)

To obtain Theorem 2, we need the following lemma which was used in [6—8] and is very

useful for constructing asymptotic expansions.

Lemma 1 Ifthe sequence (x,),cn is convergent to zero and there exists the limit

lim #°(x, —x,41) =1 € [-00, +00] (1.13)
n—+00

with s > 1, then

lim #*lx, = (1.14)

l
n—+00 s—l'

Lemma 1 was proved by Mortici in [6]. From Lemma 1, we can see that the speed of
convergence of the sequences (x,,),cn increases together with the values s satisfying (1.13).

2 Proof of Theorem 1

(Step 0) The initial-correction. We can introduce a sequence (uo(#)),>1 by the relation

n!= Znn(ﬁ)n exp(i v (n+ 1/2)) exp uo(n), (2.1)
e 12

and to say that an approximation n! ~ v/27n(%)" exp(%t//(n + 1/2)) is better if the speed
of convergence of uy(n) is higher.
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From (2.1), we have
1 n 1 ,
ug(n)=Inn!'- —In27rn-nln— — —y'(n + 1/2). (2.2)
2 e 12

For any integer k, x > 0, we have ¥ (x + 1) = ¥ (x) + (—1)’%% and when k=1, x = n, it
yields ¥'(n+ 1) = ¢'(n) — n% Thus,

1
- —1n27nf1—nlnE

- 1) =1
uo(n) — ug(n + 1) nn+1 5 .

l12 1)+ (1)1 n+l 1 1
+=-In2r(n+1)+(m+1)In -— .
2 e 12 (m + 1/2)2

(2.3)

Developing (2.3) into power series expansion in 1/n, we have

uog(n) —up(n +1) = L i + O<i> (2.4)

80 n°

By Lemma 1, we know that the rate of convergence of the sequence (uo(#)),,>1 is n7>.

(Step 1) The first-correction. We define the sequence (u;(7)),>1 by the relation

n! ~ \/2nn<g>n exp(ll—ZIﬁ’(n + 1/2)> exp n1(n) exp uy (n), (2.5)

where

ay

M) = m+ by +bin+by

From (2.5), we have

1 n 1
——In27rn-nln—+ =In2w(n+1)
n+l 2 e 2

n+l 1 1
+(n+1)In 5 —ﬁ(n+1/2)2—nl(n)+n1(n+1). (2.6)

ui(n)—ui(n+1)=1In

Developing (2.6) into power series expansion in 1/n, we have

1 1 1 1
ur(n) —u(n+1)= (% - Sal)ﬁ + (—4—0 + a1(6+4b2))$

15 2\ 1
+ (m +5a1(-2 + by — 2b, —b2)>%

17 1
+ (—m +a1(15 + 6bg + 20b; + 15b3 + 6b3 — 3b; (5 + 4b2))> =

N o(%). (2.7)

By Lemma 1, the fastest possible sequence (u;(n)),>1 is obtained as the first four items on
the right-hand side of (2.7) vanish.
(i) Ifa; # %, then the rate of convergence of the sequence (u(1)),,>1 is 2.
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(ii) Ifa; = ﬁ, by=0,by = %, by =0, from (2.7) we have

193 1 1
u(n) —uy(m+1)= 20305 " O(E)'

and the rate of convergence of the sequence (1 (1)),>1 is at least ™.

(Step 2) The second-correction. So we define the sequence (#,(#)),,>1 by the relation

n! ~ \/271n<g> exp(ll—zl//’(n + 1/2)> exp(nl(n) + nz(n)) exp uy(n), (2.8)

where

ay

n) = .
() 1’ + bgn® + bsn® + ban* + bsnd + byn? + bin + by

Using the same method as above, we obtain that the sequence (u;(n)),>1 converges

. _ 193 _ _ 108338 _ _ _21,252,897,179 _ _
fastest only if @y = 5555, be = 0, bs = 55, ba = 0, by = — 5358 ag1er b2 = 0, by =
997,042,514,542,183 1 _ .

18805 L086.935755 Lo = 0, and the rate of convergence of the sequence (u2(1)),>1 is at least

n~1%, We can get

uy(n) —us(m+1) =

— 4+
516,188,874,145,329,388,523,520 116

168,288,414,443,284,544,502,901 1 ( 1 )
7

The new asymptotic (1.11) is obtained.

3 Proof of Theorem 2
The double-side inequality (1.12) may be written as follows:

1 1
f(m)=InT(n+1)- Eannn—nln n_ 1—21//(n+ 1/2) = n1(n) — n2(n) <0
e
and
1 n 1 ,
gn)=InT(n+1)- §1n2nn—nln— - Ew (n+1/2)—n1(n) >0.
e

Suppose F(n) =f(n+1) — f(n) and G(n) = g(n + 1) — g(n). For every x > 1, we can get

F'(x) = As(x 1) >0 (3.1)
 70x3(1 + x)3(1 + 2x)4(11 + 28x2)3(39 + 564 + 28x2)3W? (x; 6) W3 (x; 6) '
and
B(x—-1)
G'(x) = 0, 3.2
) = O3+ %)7(1+ 22)7(11 + 28x2)°(39 + 56x + 282 (32)
where

W, (x;6) = 1,994,085,029,084,366 — 135,359,702,133,051x°

+914,085,135,478,944x* + 376,162,173,891,504x°,
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W, (x;6) = 3,148,972,636,321,763 + 5,642,594,180,998,698x% + - - -

+376,162,173,891,504x°.

A(x) = 471,110,623,493,199,298,560x%° + - - - is a polynomial of 20th degree with all pos-
itive coefficients and B(x) = —26,572,808,192x'? — - - - is a polynomial of 12th degree with
all negative coeflicients.

This shows that F(x) is strictly convex and G(x) is strictly concave on (0,00). Ac-
cording to Theorem 1, when n — oo, it holds that lim,_, o f (n) = lim,_, o g(n) = 0; thus
lim,,_, oo F(n) = lim,,_, o, G(1) = 0. As a result, we can make sure that F(x) > 0 and G(x) < 0
on (0,00). Consequently, the sequence f(n) is strictly increasing and g(n) is strictly de-
creasing while they both converge to 0. As a result, we conclude that f(#) < 0 and g(n) > 0
for every integer n > 1.

The proof of Theorem 2 is complete.

4 Numerical computations
In this section, we give Table 1 to demonstrate the superiority of our new series respec-
tively. From what has been discussed above, we found out the new asymptotic function as

follows:
n\" 1
nl~«/2mn =) exp Etﬁ (n+1/2) ) exp(n1(n) + n2(n)) = B(n), (4.1)
where
L _193
240 282,240
m(n) = BRI m2(1) = —— 5335 — 21,050897,179 , 3 , 997,042,514,542,183
28 44,583 59,061,418,416 188,081,086,945,752
Mortici and Qi [1] gave the formula
n\" 1 1 11 107
I~2xul - ) expl =v'(n+1/2) |e - +
" "(e) Xp(lzl/’ (n )> xp<240n3 672015 80,64On7)

= a1(n). (4.2)

We can get the approximation by truncation of the asymptotic formula (1.9)

n! ~ \/Zn;q(E)n exp(iw’(n + 1/2))
e 12

11 107 2911 808,733
X exp - + - +
240m®  6720n°  80,640n7  1,520,640n°  184,504,320n!!

=y (n). (4.3)

Table 1 Simulations for a1 (n), a2(n) and B(n)

n aq(n)-n! ay(n)-n! B(n)-n!
n! n! n!
50 9.7924 x 1071° 1.1997 x 10724 ~7.0866 x 10728
500 9.8013 x 10728 12019 x 1073/ 71217 x 10743
1000 1.9143 x 10730 14672 x 1074 21734 x 107%
1

2000 3.7389 x 10733 7910 x 1074 6,63 x 1072
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The great advantage of our approximation 8(u) consists in its simple form and its accu-
racy. From Table 1, we can see that the formula (n) converges faster than the approxima-
tion of the formula a (#) and s (n).
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