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Abstract
In this paper, we present a new sharp approximation for the gamma function via the
tri-gamma function. This approximation is fast in comparison with the recently
discovered asymptotic series. We also establish the inequalities related to this
approximation. Finally, some numerical computations are provided for demonstrating
the superiority of our approximation.
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1 Introduction
It is well known that we often need to deal with the problem of approximating the factorial
function n! and its extension to real numbers called the gamma function, defined by

�(x) =
∫ ∞

0
tx–1e–t dt, Re(x) > 0,

and the logarithmic derivatives of �(x) are called the psi-gamma functions, denoted by

ψ(x) =
d

dx
ln�(x) =

�′(x)
�(x)

.

For x > 0, the derivatives ψ ′(x) are called the tri-gamma functions, while the derivatives
ψ (k)(x), k = 1, 2, 3, . . . , are called the poly-gamma functions.

Mortici [1] proved that

�(x + 1) =
√

2πx
(

x
e

)x

exp

(
1

12
ψ ′(x + 1/2)

)
exp h(x) (1.1)

and

h(x) =
∞∑

m=1

B2m

2m(2m – 1)x2m–1 –
∞∑

m=1

Bm–1

12(x + 1/2)m , (1.2)
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where Bk , k ≥ 0, noting the Bernoulli numbers which are generated by

z
ez – 1

=
∞∑

k=0

Bk
zk

k!
. (1.3)

It is found that

h(x) =
1

240x3 –
11

6720x5 +
107

80,640x7 –
2911

1,520,640x9 + O
(

1
x11

)
. (1.4)

However, those coefficients of the asymptotic formula (1.1) are not complete. The
asymptotic expansion of �(x + 1) via the tri-gamma function can be generalized to the
general cases by the arguments in [2] as follows.

Barnes (1899) and Rowe (1931) have shown that

ln�(z + a) =
(

z + a –
1
2

)
ln z – z +

1
2

ln 2π

+
n∑

k=1

(–1)k+1Bk+1(a)
k(k + 1)

z–k + O
(
z–n–1), (1.5)

where | arg z| ≤ π – ε, ε > 0 and Bk(x) is the Bernoulli polynomial. If a = 1
2 , Bk(a) vanishes

if k is odd, note that

ln�

(
z +

1
2

)
= z(ln z – 1) +

1
2

ln 2π +
n∑

k=1

B2k( 1
2 )

2k(2k – 1)
z1–2k + O

(
z–2n–1) (1.6)

for | arg z| ≤ π – ε, ε > 0 listed in [2], p. 32, (5). We can get as x → ∞,

ln�

(
x +

1
2

)
= x ln x – x +

1
2

ln 2π +
∞∑

k=1

B2k( 1
2 )

2k(2k – 1)
1

x2k–1 . (1.7)

So we consider a function h(x) defined by

�(x + 1) =
√

2πxx+1/2e–x exp

(
1

12
ψ ′

(
x +

1
2

))
exp h(x). (1.8)

By (1.7), one can easily obtain that as x → ∞,

h(x) = ln�(x + 1) –
1
2

ln 2π –
(

x +
1
2

)
ln x + x –

1
12

ψ ′
(

x +
1
2

)

=
∞∑

n=1

B2n

2n(2n – 1)
1

x2n–1 –
1

12
d2

dx2 ln�

(
x +

1
2

)

=
∞∑

n=1

(
B2n+2

2(n + 1)(2n + 1)
+

(1 – 21–2n)B2n

12

)
1

x2n+1 .

Thus, together with (1.8) the asymptotic expansion can be explicitly expressed as

�(x + 1) =
√

2πxx+1/2 exp

(
1

12
ψ ′

(
x +

1
2

)
– x +

∞∑
n=1

cn

x2n+1

)
, x → ∞, (1.9)
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where

cn =
B2n+2

2(n + 1)(2n + 1)
+

(1 – 21–2n)B2n

12
, (1.10)

here Bn denotes the Bernoulli number.
In this paper we will apply the multiple-correction method [3–5] to construct a new

asymptotic expansion for the factorial n! and the gamma function via the tri-gamma func-
tion.

Theorem 1 For every integer n ≥ 1, we have

�(n + 1) ∼ √
2πn

(
n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)
exp

(
η1(n) + η2(n)

)
, (1.11)

where

η1(n) =
1

240

n3 + 11
28 n

, η2(n) =
193

282,240

n7 + 108,338
44,583 n5 – 21,252,897,179

59,061,418,416 n3 + 997,042,514,542,183
188,081,086,945,752 n

.

Using Theorem 1, we provide some inequalities for the gamma function.

Theorem 2 For every integer n > 1, the following holds:

expη1(n) <
n!√

2πn( n
e )n exp( 1

12ψ ′(n + 1/2))
< exp

(
η1(n) + η2(n)

)
. (1.12)

To obtain Theorem 2, we need the following lemma which was used in [6–8] and is very
useful for constructing asymptotic expansions.

Lemma 1 If the sequence (xn)n∈N is convergent to zero and there exists the limit

lim
n→+∞ ns(xn – xn+1) = l ∈ [–∞, +∞] (1.13)

with s > 1, then

lim
n→+∞ ns–1xn =

l
s – 1

. (1.14)

Lemma 1 was proved by Mortici in [6]. From Lemma 1, we can see that the speed of
convergence of the sequences (xn)n∈N increases together with the values s satisfying (1.13).

2 Proof of Theorem 1
(Step 0) The initial-correction. We can introduce a sequence (u0(n))n≥1 by the relation

n! =
√

2πn
(

n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)
exp u0(n), (2.1)

and to say that an approximation n! ∼ √
2πn( n

e )n exp( 1
12ψ ′(n + 1/2)) is better if the speed

of convergence of u0(n) is higher.
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From (2.1), we have

u0(n) = ln n! –
1
2

ln 2πn – n ln
n
e

–
1

12
ψ ′(n + 1/2). (2.2)

For any integer k, x > 0, we have ψ (k)(x + 1) = ψ (k)(x) + (–1)k k!
xk+1 and when k = 1, x = n, it

yields ψ ′(n + 1) = ψ ′(n) – 1
n2 . Thus,

u0(n) – u0(n + 1) = ln
1

n + 1
–

1
2

ln 2πn – n ln
n
e

+
1
2

ln 2π (n + 1) + (n + 1) ln
n + 1

e
–

1
12

1
(n + 1/2)2 . (2.3)

Developing (2.3) into power series expansion in 1/n, we have

u0(n) – u0(n + 1) =
1

80
1
n4 + O

(
1
n5

)
. (2.4)

By Lemma 1, we know that the rate of convergence of the sequence (u0(n))n≥1 is n–3.
(Step 1) The first-correction. We define the sequence (u1(n))n≥1 by the relation

n! ∼ √
2πn

(
n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)
expη1(n) exp u1(n), (2.5)

where

η1(n) =
a1

n3 + b2n2 + b1n + b0
.

From (2.5), we have

u1(n) – u1(n + 1) = ln
1

n + 1
–

1
2

ln 2πn – n ln
n
e

+
1
2

ln 2π (n + 1)

+ (n + 1) ln
n + 1

e
–

1
12

1
(n + 1/2)2 – η1(n) + η1(n + 1). (2.6)

Developing (2.6) into power series expansion in 1/n, we have

u1(n) – u1(n + 1) =
(

1
80

– 3a1

)
1
n4 +

(
–

1
40

+ a1(6 + 4b2)
)

1
n5

+
(

15
448

+ 5a1
(
–2 + b1 – 2b2 – b2

2
)) 1

n6

+
(

–
17

448
+ a1

(
15 + 6b0 + 20b2 + 15b2

2 + 6b3
2 – 3b1(5 + 4b2)

)) 1
n7

+ O
(

1
n8

)
. (2.7)

By Lemma 1, the fastest possible sequence (u1(n))n≥1 is obtained as the first four items on
the right-hand side of (2.7) vanish.

(i) If a1 
= 1
240 , then the rate of convergence of the sequence (u1(n))n≥1 is n–3.
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(ii) If a1 = 1
240 , b2 = 0, b1 = 11

28 , b0 = 0, from (2.7) we have

u1(n) – u1(n + 1) =
193

40,320
1
n8 + O

(
1
n9

)
,

and the rate of convergence of the sequence (u1(n))n≥1 is at least n–7.
(Step 2) The second-correction. So we define the sequence (u2(n))n≥1 by the relation

n! ∼ √
2πn

(
n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)
exp

(
η1(n) + η2(n)

)
exp u2(n), (2.8)

where

η2(n) =
a2

n7 + b6n6 + b5n5 + b4n4 + b3n3 + b2n2 + b1n + b0
.

Using the same method as above, we obtain that the sequence (u2(n))n≥1 converges
fastest only if a2 = 193

282,240 , b6 = 0, b5 = 108,338
44,583 , b4 = 0, b3 = – 21,252,897,179

59,061,418,416 , b2 = 0, b1 =
997,042,514,542,183
188,081,086,945,752 , b0 = 0, and the rate of convergence of the sequence (u2(n))n≥1 is at least
n–15. We can get

u2(n) – u2(n + 1) =
168,288,414,443,284,544,502,901
516,188,874,145,329,388,523,520

1
n16 + O

(
1

n17

)
.

The new asymptotic (1.11) is obtained.

3 Proof of Theorem 2
The double-side inequality (1.12) may be written as follows:

f (n) = ln�(n + 1) –
1
2

ln 2πn – n ln
n
e

–
1

12
ψ ′(n + 1/2) – η1(n) – η2(n) < 0

and

g(n) = ln�(n + 1) –
1
2

ln 2πn – n ln
n
e

–
1

12
ψ ′(n + 1/2) – η1(n) > 0.

Suppose F(n) = f (n + 1) – f (n) and G(n) = g(n + 1) – g(n). For every x > 1, we can get

F ′′(x) =
A2(x – 1)

70x3(1 + x)3(1 + 2x)4(11 + 28x2)3(39 + 56x + 28x2)3�3
1 (x; 6)�3

2 (x; 6)
> 0 (3.1)

and

G′′(x) =
B(x – 1)

10x3(1 + x)3(1 + 2x)4(11 + 28x2)3(39 + 56x + 28x2)3 < 0, (3.2)

where

�1(x; 6) = 1,994,085,029,084,366 – 135,359,702,133,051x2

+ 914, 085, 135, 478, 944x4 + 376,162,173,891,504x6,
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�2(x; 6) = 3,148,972,636,321,763 + 5,642,594,180,998,698x + · · ·
+ 376,162,173,891,504x6.

A(x) = 471,110,623,493,199,298,560x20 + · · · is a polynomial of 20th degree with all pos-
itive coefficients and B(x) = –26,572,808,192x12 – · · · is a polynomial of 12th degree with
all negative coefficients.

This shows that F(x) is strictly convex and G(x) is strictly concave on (0,∞). Ac-
cording to Theorem 1, when n → ∞, it holds that limn→∞ f (n) = limn→∞ g(n) = 0; thus
limn→∞ F(n) = limn→∞ G(n) = 0. As a result, we can make sure that F(x) > 0 and G(x) < 0
on (0,∞). Consequently, the sequence f (n) is strictly increasing and g(n) is strictly de-
creasing while they both converge to 0. As a result, we conclude that f (n) < 0 and g(n) > 0
for every integer n > 1.

The proof of Theorem 2 is complete.

4 Numerical computations
In this section, we give Table 1 to demonstrate the superiority of our new series respec-
tively. From what has been discussed above, we found out the new asymptotic function as
follows:

n! ∼ √
2πn

(
n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)
exp

(
η1(n) + η2(n)

)
= β(n), (4.1)

where

η1(n) =
1

240

n3 + 11
28 n

, η2(n) =
193

282,240

n7 + 108,338
44,583 n5 – 21,252,897,179

59,061,418,416 n3 + 997,042,514,542,183
188,081,086,945,752 n

.

Mortici and Qi [1] gave the formula

n! ∼ √
2πn

(
n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)
exp

(
1

240n3 –
11

6720n5 +
107

80,640n7

)

= α1(n). (4.2)

We can get the approximation by truncation of the asymptotic formula (1.9)

n! ∼ √
2πn

(
n
e

)n

exp

(
1

12
ψ ′(n + 1/2)

)

× exp

(
1

240n3 –
11

6720n5 +
107

80,640n7 –
2911

1,520,640n9 +
808,733

184,504,320n11

)

= α2(n). (4.3)

Table 1 Simulations for α1(n), α2(n) and β(n)

n α1(n)–n!
n!

α2(n)–n!
n!

β(n)–n!
n!

50 9.7924× 10–19 1.1997× 10–24 –7.0866× 10–28

500 9.8013× 10–28 1.2019× 10–37 –7.1217× 10–43

1000 1.9143× 10–30 1.4672× 10–41 –2.1734× 10–47

2000 3.7389× 10–33 1.7910× 10–45 –6.63× 10–52
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The great advantage of our approximation β(n) consists in its simple form and its accu-
racy. From Table 1, we can see that the formula β(n) converges faster than the approxima-
tion of the formula α1(n) and α2(n).
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