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Abstract

The aim of this paper is to introduce a new generalization of Bleimann-Butzer-Hahn
operators by using (p, g)-integers which is based on a continuously differentiable
function w on [0, 00) = R,;. We establish the Korovkin type approximation results and
compute the degree of approximation by using the modulus of continuity. Moreover,
we investigate the shape preserving properties of these operators.
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1 Introduction and preliminaries

The g-generalization of Bernstein polynomials [1] was introduced by Lupas [2] as follows:

v a) = 1 - % n @l EPAY.2)
Enalfix) = 121 - %) + g} ;f([n]q) LL (1 -2

In 1997, Phillips [3] introduced another modification of Bernstein polynomials, obtained
the rate of convergence and the Voronovskaja type asymptotic expansion for these poly-
nomials.

The (p,g)-integer was introduced in order to generalize or unify several forms of g-
oscillator algebras well known in the early physics literature related to the representation
theory of single parameter quantum algebras [4].

In the recent years, the first (p, g)-analogue of Bernstein operators was introduced by
Mursaleen et al. (see [5]), and some approximation properties were studied (see [6—
9]). Moreover, the (p, q)-calculus in computer-aided geometric design (CAGD) given by
Khalid et al. (see [10]) will help readers to understand the applications. Besides this, we also
refer the reader to some recent papers on (p, g)-calculus in approximation theory [11-20]
and [21].

We recall some definitions and notations of (p, g)-calculus.
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The (p, q) integers [u],, are defined by
pn_qn
e P#q71)
[n]p,q =l7"_1 + qpn_Z AR qn_l = % (p=1),
n p=q=1),
(1.1)

n
-)n—i-1)  ii-1) | 71 P
(au + bv)z,q = Zp 2 q 2 |: i a by

-0 i),
(+v)s, =+ V) pu+qv)(PPu+q*v) - (" u+ "),

A-wp,=0-wp-q)(p*-qu)--- ("' -q" ")

and the (p, g¢)-binomial coefficients are defined by

|:n:| _ (1] 4!
LM [l — iy

By a simple calculation [5], we have the following relation:

q[n i+1],,=[n+1],,—-p" ”l[i]p,q

For details on g-calculus and (p, g)-calculus, one can refer to [22-25].

Totik [26] studied the uniform approximation properties of Bleimann-Butzer-Hahn op-
erators [27] when f belongs to the class C(R,) of continuous functions on R, that have
finite limits at infinity.

The Bleimann-Butzer-Hahn operators (BBH) based on g-integers are defined as follows:

[il4 o | n|
nq()zf< i+1]qqi)q Hq’“

where £, ,(x) = ]_[;’;01 (1 + ¢*x). For g = 1, these operators reduce to the classical BBH oper-
ators [27].
Forf € C[0,1],x € [0, 1], Morales et al. [28] introduced a new generalization of Bernstein

Li(f;x) =

polynomials denoted by By,

By (f;%) = Bu(f o n™5 () = [ﬂ 1@ (1= @) (Fon™) (é)
i=0

where p is a continuously differentiable function of infinite order on [0, 1] such that 1£(0) =
0, #(1) =1, and p/(x) > 0 for x € [0, 1]. They have also studied some shape preserving and
convergence properties on approximation concerning the generalized Bernstein operators
By (f;x).

For 0 < g < p <1 and f defined on semiaxis R,, we give a generalization of (p,q)-
Bleimann-Butzer-Hahn type operators (see [21]) as follows:

~ P iy Olp=i=) i) | 7 ;
nu(f x) = Eﬁz( ) 4 Z(f I’ <Tl]q)p q |:l.:|pqﬂ(x) ’ (1.2)
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where

e x)—]"[(p + 4 u(),

and u is a continuously differentiable function defined on R, having the property

un(0)=0 and  inf u'(x)>1. (1.3)

x€[0,00)

We can easily see that

L29f = Lupg(f o n)m,
where L, ,, , is defined in [21] as

n 1+1

[ipq (n-in-i-1) ii-1) | m .
(f;x) = < >p g T || A
Lupg W(x)Zf il "

The operators defined by (1.2) are more flexible and sensitive to the rate of convergence

than the (p, g)-BBH operators. Our results show that the new operators are sensitive to the
rate of convergence to f, depending on the selection of w. For the particular case u(x) = x,
the previous results for (p, g)-Bleimann-Butzer-Hahn operators are obtained (see [21]).

Lemma 1.1 Let LY, be operators defined by (1.2). Then, for a continuously differentiable
function u(x) on R, defined by (1.3), we have

1, Jorf(£) =
L) = | it i) forf© =iy (1)
e et + T As),  for (0 = (495 .
Proof For the proof of this lemma, we refer to [21]. O

2 Korovkin type approximation result

Here we propose to obtain a Korovkin type approximation theorem for operators L%,
Let Cp(R,) denote the set of all bounded and continuous functions defined on R,.

Cp(R,) is a normed linear space with

Ifllc, = Slilglf(u)l.

The modulus of continuity w is a non-negative and non-decreasing function defined on
R, such that it is sub-additive and lims_,q () = 0.
One can easily see that

w(nd) <nw(d), neN, (2.1)
w(x8) <w(1+[IAl]) 1+ rw(8), A>0, (2.2)

where [|1]] denotes the greatest integer which is not greater than .
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Let H,, denote the space of all real-valued functions f defined on R, satisfying

) 23)

() u(v)
If () -f(¥)| < w(‘ L+ u(w) 1+p

for any u,v e R,.

Theorem 2.1 ([29]) Let P, : H, — Cg(R,) be a sequence of positive linear operators such
that

. m@® \" mx) "
gﬁloHP"((l + //«(t)> x> B (1 + /L(x))

forv=0,1,2. Then, for any function f € H,,

=0

Cs

tim 2,467, =O.

To compute the convergence results for the operators L%?, defined by (1.2), we take q =

qn» P = pn, Where 0 < g, < p,, < 1 satisfying

limp, =1, limg, =1, (2.4)
n n

limp), = a, limg),=b (0<ab<l). (2.5)
n n

Theorem 2.2 Let L}}, be operators defined by (1.2) and take p = p,, q = q, satisfying (2.5).
Then, for 0 < q, < p, < 1 and any function f € H,,, we have

tim [ L52 (F) = f] ., = 0. (2.6)

Proof Here we use Theorem 2.1. For v = 0, 1,2, it is sufficient to verify the following three

conditions:

we) N\ r® Y
L <<1+M(t)> ’x> (1+M(x))

For v = 0, applying Lemma 1.1, (2.6) is fulfilled. Now, we observe that

i n@® N\ kr®)
Lt <(1 +M(t))'x) (1 +M(x)>

p” [n]anLIn
[Vl + l]l’nﬂn

DPn n 1 B
<|(2) (-rigy ) -

=0.
Cp

lim

n—00

Cp

_1‘
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Here we have used g,[#n],,.q, = [+ 11,4, — P} [1+ 1,4, = 00 as n — 00, equation (2.6)
holds for v = 1. Now, to verify for v = 2, we see that

ol 1O\ n) \?
() ) - () o

{ /'L(x)z (Pn%% [n]p,,,qn [I’l - 1]pn,qn . 1 + M(x) _ 1)
1+ p(x))? (n+115 .. P+ qnjt(x)

n+1

+pn [ ]PnQn . /‘L(x) }
[n+l]pnqn 1+u) |

= sup
x>0

By a simple calculation, we have

-1 1 n 1 n 1
[n]ann[n ]anﬂn _ _B{I_PZ(2+ Q_> +( Z)2(1+ q_) . },
[Vl + 1]}7}1 qn 4 Pn [I’l + l]pnﬂn Pn [l’l + I]Pn an

and

[n]}’n qn _ i ( 1 n 1 )
[+ 1]Pn o Gn\In+ l]qun Py [+ 1]12% 0 .

Thus, we have
ol 1O\ nx O\
b <(1 +M(t)) x) B (1 ¥ M(x)) G
P an)_ 1 ZAVEEE S
< qn {1 pn( Pn) [Vl + I]an%t ( V‘) (1 Pn > [I’l + 1]127n qn 1}

. P 1 B 1
Pro \n+ 11, ”"[n+1]pnqn :

Hence (2.6) holds for v = 2, and the proof is completed by Theorem 2.1. d

3 Rate of convergence
In this section, we determine the rate of convergence of operators L.
For f € H,, the modulus of continuity is defined by

af;i = Y fw-fo)

@) _pu)
‘ Tru() ~ Trp(v) |=d
u,v>0

which satisfies the following conditions:
1) &(f;8) = 0 (8 — 0);
(u) nv) |

() 1) ~fW)] = B(f;8) (LT 7).

Theorem 3.1 Let p = p,, § = qu, 0 < gy < py < 1 satisfying (2.5). Then, for each p defined

by (1.3) on R, and for any function f € H,,, we have

’Lp”q”(f x) —f(x)] <2w<f 8”(x>
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where

8 (x) =

p(x)? (PnQi["]pn,qn (n-1lp,q, 1+ pnx) _9 Pnlnlp,q, + 1>
1+ M(x))z [n+ l]zn,qn Pnt q;dﬂ(x) [n+ l]pn,qy,

pz+l [n]Pn’qn /L(x)
(m+112 1+ wx)

Proof For L‘Z?f”, we have

L (f2) ~ £ ()] = L2387 ([f(©) - £5) )

< L~o(f;8){1 + %Lﬁ,”f”( () ()

T+u() 1+pk)

=)}

Applying the Cauchy-Schwarz inequality, we get

L2550~/ 2

<g‘,)(f.5){1+i|:(Lpn,qn< p)  pk) )2'x)i|i(Lpn,qn(1.x))%}
- S\ \ 1) 1vpuw)’ -\

~r 1 M(x)z anf,[n]p,,,qn [I’l - l]pn,qn 1 + M(x)
= ol 5”){1 s, [(1 () ( 12, put@un®

1
oy PilMonan 1) P Mg, 1) T }

(n+1],,4, [n+ l]ﬁmqn 1+ ulx)

This completes the proof. O

4 Pointwise estimation of the operators L},
The aim of this section is to give an estimate concerning the rate of convergence. Here, we
take the Lipschitz type maximal function space defined on F C R, (see [30])

Eﬁf:{fiwp(ﬂu)ﬁfﬁ(u)SC :u§0,andvel-"},

1
1+v)?

where f is a bounded and continuous function on R,, 0 < 8 <1 and C is a positive con-
stant.

Lenze [31] introduced a Lipschitz type maximal function f3 as follows:

fﬁ(M,V) — Z lf(l/i) _f(V)|

—
u>0 |u V|

u#v

Theorem 4.1 Let L)% be operators defined by (1.2). Then, for all f € E,g,p, we have

L2 (%) —f ()| < c( (66))" + 2(inf{lx - yliy € F})’),

where 8y, (x) is defined in Theorem 3.1.
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Proof Let F be the closure of F. Then there exists xy € F such that |x — x| = d(x, F) =
inf{|x — y|;y € F}, where x € R,. Thus we can write

lf—f(x)| = lf—f(xo)| + lf(xo) —f(x)|.
Forf e Eﬂ,p, we have

|L24 (%) - f ()|
= Lﬁiﬁ(lf —f (o)

<C <Lﬁ:z (

Using the inequality (u + v)? < u? + v#, we obtain

5x) + |f (o) — f ()| L2 (1; %)

! B
. [ e(x) — p(x0)| o
,x> ' (L+ p(@))P (1 + p(x0))? Liii(l:x))-

p@)  plxo)
T+up@) 1+ ulxo)

Lm0 ) P
L%(‘ Tru@ 1+ pwo) ")
(| ro® u |” e ulxo) |°
SL%QIW(”_“W) ”‘)”ﬁf‘(‘lw(x)_lw(xo) x)
, (t) ux) P |1(x) — o) P .
= Lﬁf‘(‘ T+ u® 1+ x) T+ 1@+ ulayp -5

Applying Holder’s inequality, we have

B
)

(t) @ \2 \* ”
<23 (75 - 7o) ) ez
|pe(x) = pxo)l” o
7 2P (L + eyp D15

Y () — (o) |P
C) T e@P s p)?

[pa (‘ p@®)  plxo)
PENIT+ (@) 1+ p(xo)

This completes the proof. O

Corollary 4.2 For F =R,, we have

124 (F;2) - f ()] < €/ (81 )",
where 8! is defined in Theorem 3.1.

5 Other results
Theorem 5.1 Ifx € (0,00) \ (-t e 1i20,1,2,...,n), then

[n—i+1]pqq’
: px
1 ~1(7)

w@)™ ween L [pulx) plnlp, _
-2 | S Pa (o o)
Loy (%) q q
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11(x) ”Z‘l[pu(x).pn_m [ ; (fou_l)}

7 (x) q ' (n—i+1ly.q

1 (=(n=irl) ., #=3) o | 7 .
PEr A S R O
P4 P

i=0

X

Proof We have
px
Lot (f3%) —f(-)
q
nei ], X (=dn=i-1) =) | 1 )
(Fou)( L2t ) —f(Z2) """ || uey
(n—i+1],,4" q i o

Z":(pu(x)_ P ilpg )[pu(x) P ilpg (fou )}

& (x) =\ 4 [n—i+1],.q q [n-i+1],,q

(n=i)(n=i-1)  i(i-1) n i
Xp T q?2 ; wx)'.
pq

M-

O (%)

[i]
[n— ifl‘ipq [;lq]pq = [[j’l]p,q’ we haVe

Using

—
(%) X":[pu() )| l]pq (o )]

I W sl g il

(n—i)(n—i-1) i(i-1) n X
xp z ‘gz [Z] ()
pq

1 N[pul)  prip,
t b [}9 (f op )
Zn,u(x) -1 q [Vl—l+1pqq
><p—("'”(?'i'“'“‘”qmgn_i{n } e
i—1
pa
1x) « [pu(x) P Z]pq ]
o™
ﬁﬁZ()lZ:O: q [m-i+1]y, (f )

(n=i)(n—i-1) -1y | n )
xp 2 ‘g2 1[1’] ()’
Pq

n-1 n—i 1
() b [i+ ]pq OM_1)1|

El’ q Z[ q [Vl _ l]p,qul ;

1=

bq

X p ;
M(x)yHl [p,u(x) p[n]p,q -1 ] nn-1) 4

=0 ; . U Oon pq
el a9 " g ren™)



Mursaleen et al. Journal of Inequalities and Applications (2017) 2017:310 Page 9 of 14

n-1
nz[ 1
5[ v

i=

pu(x) p"’”l (1] =dric)) ) 4 ;e ;
—[ Pl (fou™)|ip = gzt |
pq

q [n-i+1],,q

By a simple calculation, we have

n— z+1[l

[pu(x) P i+ 1)y, (Fon )]_[pu(x) vy
g - ilpgg™ q ‘mn-i+1],

_ pn—l[l’+ l]p,q _ pn—i+1 [i]p,q (fo M—l)
(n—ilpqaqt [m—i+ 1,44

[W(x) P iy P i+ Uy ou‘l)}
q T n-i+1l,eq’ [n-ilpeqt’

ilfon)|

and

pn—i[i + l]p,q pn—i+1 [i]p,q

(n—ilpqaq™t [m—i+1lpeq

= [}’l + l]p,qx

we have

n+l 1
gkl f<px>‘ Z{E:(x) [m;(X)’p[ZM o )}”q¥_l

) () p
qu’(cx)z{[l?ﬂx p lpq (f ou )j|

q [n-i+1],

P+ 1], =i)n=i-1) , =) _, | n .
X —— —rl——tp 2 gz U p@)
(n—ilpqgln—i+1l,4q g

This completes the proof. O

6 Shape preserving properties
Theorem 6.1 Let f € E,g'R“ which is a j-convex function non-increasing on R,. Then we
have

L2 (f;x) > LY (fix), neN.

Proof We have
Lii;qt(f X n+1 /l.(f x

prirt [i]pq -)n—i-1) ii-1) | 7
B
gﬁfl[l. Z(f M ([Vl—l+1] q,)p q l »a

x w@®) (p" +q" (%))

1 Ak PR v (=i+D)n=iv2) i(i=1) | m+ 1 )
R x):
Wz (x)Z(f " ([n—i+2]p,qq‘ )p 1 i pq“()

n+l,u
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P iy (n=0)(=i=1) -y | n ,
; fﬁ'ﬂ X 13
e Al vy R
P ilpg ) =dlp=icl) i)y, | 7 i1
o N =P 2 q?2 | n)
Zifm(x) Z(f ([n —i+1],.q il
n+l n z+2 X , L
l]pq . (m—i+)(n-i+2) iG-1) | 1 + 1 :
gpq Z(f om ( =it 2y )P *oq |: ; p(x)’
n+l p. )24
() nins) [ (p ) B )< pln+1], >:|
=g .4
T,
le i+l [l ) (n=i)(n—i-1) n i-1) i
w - |p M(x)
Ziflﬂ(x)z(f ([ —i+1],
pn Hl[l > (ntntl i il
o 5 |p p(x)
Eﬁflu(x)z(f <[ _Hlpqq
)z 204 (-is)(n-ix2)  iG-1) | m+ 1 .
S Z(fou ( s vl AR H G
}’H'lll« i=1 )24
~ () nn+1 [ (p Hlpg ) )<p[n+1 >:|
Eiflu(x) qn n+l1
prli+1],, > (n=n=i=1)  iGis1) | 72 i+1
ou” p 2 97 |. p(x)*
Eifm(x) Z(f ( (1 - ilpqgq™"’ i+1 .
P il n=dn-i-1) -1, | n ;
EM Z(fou <[ Zit 1, ? Pz g " | pwt
n+l u i=0 ! )2
1 P i+ 1], ) n=n=iv)) i) | 7+ 1 ;
ou Dp" S i,
El}ifl /L( (f ( —i+ 1] Hl P 1 i+1 ra

By a simple calculation, we have

_n+1 B
iv1|
= Y204

n
i
L dpg

[(lpqln+ 1],
[ —ilpgli + 1l

n-1
i b
P4
n-—1

i )

P4
i )

P4

[Vl]p,q
(n—ilpq

n [1pq

[i+ 1]y

i+1 -
- )24
we get

pq
Ln+1;4

L (f5 %) (f;%)

)
eﬁfl p,(x)

grcs [(f o 1" )( q] )—(foul)(p[nq:}l]p'q

)

Page 10 of 14
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n-1
1 =idn-i-)) i) [Mlpgln+1],, [n—1 i
a2 P 2 49— . p(x)™*
Zﬁfm(x) Zo: n—ilpgli+ 1y, | i
i= pq
prili+1] L =iy,
(fo " ) pti; » pa
(n—ilpqq™ (m+1],4

+ (fo M—l)( Pn_f+l[i]pvq ‘;>qn—i [i+1]p4

(m—i+1]p4q (m+1],4

~ (f . M,I) pn—i+1[i + l]p,q : pnii )
[n—i+1],,q""

By the calculation, 2 [’;’;Hm _ % = (5)”*1, hence we have
1
(fO ,ufl) (p[n]p,q> _ (f ou” )(p[l’l + 1]pq) 0.
qn q}’l+

Since f is t-convex, by using [32], we obtain
LﬁZ(f’x) n+1u(f x)>0

where x € [0,00) and n € N.
This completes the proof. d

7 Generalization of L},
In this section, we give a generalization of the operators L1,%, based on (p, )-integers sim-
ilar to the work done in [30, 33].

Consider

pn Hl[l]pq"']/
bl eﬁz()z(f " ( 0

(n=)(n-i-1) -1 | » .

Xp 2 g2 [l} nx)' (v €R),
2

where 6,,; satisfies the following conditions:

X n
P ilpg +6ni=by and [ b]’”"’ — 1 forn—oo.
n

Note that for u = t, these operators reduce to [21]. If we choose y =0, g =1, p =1 and
1 = t, then we get the Baldzs type generalization of g-BBH operators [30] given in [33].

Theorem 7.1 Let p = p,, 4 = qu, 0 < q, < pn < 1 satisfying (2.5). Then, for any function
fe Eﬂ,Rw we have

B B
tim | L2 (/) —f<x>||CBS3CmaX{([2p”'q") ([n]y > ’

+y Pndn

’ ( Pnlpg )‘3
[l’l + 1]Pn)q»1 '

_9 pn[n]pn,qn + q}’l [n]Pn qn [}’1 - ]‘]pnvqn
7+ 1lp,.q. [n+1]2

1-— [Vl + l]pnr%
by +y

Pnqn
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Proof We have

’Lpn%t(f x f(x |

Ly

1 [pgn + 2y ipaan
< gty o) () - o ()

(n=dn-i-1) =) | )
Xpn 0 qn’ ; w(x)'
Pnn

1 . -1 PZHl[i]pn,qn)_ 1( szfm[i]pn,qn )
e"ﬁﬁ"(m;(f(’“ )( o ) NG g

(n=i)(n-i-1)  i(i-1) n .

13

Xpu 1 qn’ ; ()
Pnn

’LPVI n (f x) —f(x)‘

mu,y

Since f € Eﬁ,]& and by using Corollary 4.2, we can write

|Lpn»q;1 x) —f(x)|

n/ty
B

n

C
an Aqn (x) Z

i=0

(n=in=i=1) =) | 5 ,

i

X Pn : qn : ; wn(x)
Pnin

n—i+1 [ ‘]pn,qn ~ pz—i+l [Z]Pn;Qn
P iy e + =i+ 1,0,

pZ il [l]Pn qn 4 PZ i [i]Pn:Qn
)4 1 ]pn an TV T enz 14 +pz_l+l[i]py,,qn + 0,

n

C
gpn qn (x) Z pz—iﬁ-l [i]Pn;Qn +y+ en,i

wageen sn )
X Pu qn ; wx)' +C ( )
Pndn

N\tm

This implies that

|Lqun (f x) f(x) |

4

[n]l’n:q” )ﬂ ( 14 )ﬂ
C
B < by +y (1 p.q

C

[l’l + I]anq;«

B n—it+17 s B

p [{1p,, (r=)(n=i-1) i) | '

E <%p”qn> P 2 qn? ! )
i=0 [l’l + ]p,,,qn i -

T havy
B
+C(8)?
B B B
— C( [n]anQn Y +Cl1= [Vl + l]py,,qn Lﬁ”’q” ( /L(t) ;x)
b.+y [n]pn,qn b,+y oy 1+ u(t)

Lc(s)®
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Applying Holder’s inequality, we get
L5 i) —f )]

[n]pn,qny( y )ﬂ
C
= (bnw o,

[I’l + l]anQn P
by +y

B
+ C‘l - LPnn (ﬂ;,& (Lpn,qn(l;x))lfﬂ " C((Sﬁ)%

Ly 1 +/’L(t) Ly

< C<[”]ﬂmqn>ﬂ< 14 )ﬁ N C'l _ (7 + 1l p,.q,
b, +vy [n]pn,qn b,+y
B
+C(8%)2.

ﬁ( Palnlpg, 1) )ﬂ
[(n+1]p,q, 1+ p1(x)

This completes the proof. O

8 Conclusion

In this paper we have used the (p,g)-integers to the Bleimann-Butzer-Hahn operators
based on a continuously differentiable function u on R, = [0, 00). We have obtained some
approximation results on the Korovkin type theorem and computed the rate of conver-
gence by using the modulus of continuity as well as Lipschitz type maximal functions.
Further, we investigated the shape preserving properties of these operators.
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